Almeida, GCS, de Souza ACZ, Ribeiro PF (2020) A neural network application for a lithium-ion battery pack state-of-charge estimator with enhanced accuracy. Proceedings 58(1):33.

Article
Google Scholar

Bailer-Jones, CAL, MacKay DJC, Withers PJ (1998) A recurrent neural network for modelling dynamical systems. Netw (Bristol Engl) 9(4):531–547.

Article
Google Scholar

Charkhgard, M, Farrokhi M (2010) State-of-charge estimation for lithium-ion batteries using neural networks and ekf. IEEE Trans Ind Electron 57(12):4178–4187.

Article
Google Scholar

Che, Z, Purushotham S, Cho K, Sontag D, Liu Y (2018) Recurrent neural networks for multivariate time series with missing values. Sci Rep 8(1):6085.

Article
Google Scholar

Chen, M, Rincon-Mora GA (2006) Accurate electrical battery model capable of predicting runtime and i–v performance. IEEE Trans Energy Convers 21(2):504–511.

Article
Google Scholar

Chen, RTQ, Rubanova Y, Bettencourt J, Duvenaud DK (2018) Neural ordinary differential equations. In: Bengio S, Wallach H, Larochelle H, Grauman K, Cesa-Bianchi N, Garnett R (eds)Advances in Neural Information Processing Systems, vol 31, 6571–6583.. Curran Associates, Inc., Red Hook.

Google Scholar

Döbel, I, Leis M, Vogelsang MM, Neustroev D, Henning P, Riemer A, Rüping S, Voss A, Wegele M, Welz J (2018) Maschinelles Lernen: Eine Analyse zu Kompetenzen, Forschung und Anwendung. Fraunhofer-Gesellschaft, München.

Google Scholar

Dreyer, W, Jamnik J, Guhlke C, Huth R, Moskon J, Gaberscek M (2010) The thermodynamic origin of hysteresis in insertion batteries. Nat Mater 9(5):448–453.

Article
Google Scholar

Duarte, B, Saraiva PM, Pantelides CC (2004) Combined mechanistic and empirical modelling. Int J Chem React Eng 2(1):A3.

Google Scholar

Dupont, E, Doucet A, Teh YW (2019) Augmented neural odes In: Advances in Neural Information Processing Systems 32 (NIPS 2019), vol 32.. Curran Associates, Inc., Red Hook.

Google Scholar

Estrada-Flores, S, Merts I, de Ketelaere B, Lammertyn J (2006) Development and validation of “grey-box” models for refrigeration applications: A review of key concepts. Int J Refrig 29(6):931–946.

Article
Google Scholar

Fleischer, C, Waag W, Heyn H-M, Sauer DU (2014) On-line adaptive battery impedance parameter and state estimation considering physical principles in reduced order equivalent circuit battery models: Part 1. requirements, critical review of methods and modeling. J Power Sources 260:276–291.

Article
Google Scholar

Gholami, A, Keutzer K, Biros G, Gholaminejad A (2019) Anode: Unconditionally accurate memory-efficient gradients for neural odes In: International Joint Conference on Artificial Intelligence, IJCAI, 730–736.. International Joint Conferences on Artificial Intelligence, California.

Google Scholar

Gusak, J, Markeeva L, Daulbaev T, Katrutsa A, Cichocki A, Oseledets I2020. Towards understanding normalization in neural odes.

Haber, E, Ruthotto L (2017) Stable architectures for deep neural networks. Inverse Probl 34(1):014004.

Article
MathSciNet
Google Scholar

Haber, E, Ruthotto L, Holtham E, Jun S-H (2018) Learning across scales - multiscale methods for convolution neural networks In: Proceedings of the AAAI Conference on Artificial Intelligence, vol 32(1).. Association for the Advancement of Artificial Intelligence (AAAI), Palo Alto.

Google Scholar

Haifeng, D, Xuezhe W, Zechang S (2009) A new soh prediction concept for the power lithium-ion battery used on hevs In: 2009 IEEE Vehicle Power and Propulsion Conference, 1649–1653.

Hamilton, F, Lloyd AL, Flores KB (2017) Hybrid modeling and prediction of dynamical systems. PLoS Comput Biol 13(7):1005655.

Article
Google Scholar

He, H, Xiong R, Fan J (2011) Evaluation of lithium-ion battery equivalent circuit models for state of charge estimation by an experimental approach. Energies 4(4):582–598.

Article
Google Scholar

He, K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 770–778.. IEEE. https://doi.org/10.1109/cvpr.2016.90.

Hu, Y, Yurkovich S, Guezennec Y, Yurkovich BJ (2009) A technique for dynamic battery model identification in automotive applications using linear parameter varying structures. Control Eng Pract 17(10):1190–1201.

Article
Google Scholar

Jiménez-Bermejo, D, Fraile-Ardanuy J, Castaño-Solis S, Merino J, Álvaro-Hermana R (2018) Using dynamic neural networks for battery state of charge estimation in electric vehicles. Proc Comput Scis 130:533–540.

Article
Google Scholar

Kingma, DP, Ba JL (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.

Krewer, U, Röder F, Harinath E, Braatz RD, Bedürftig B, Findeisen R (2018) Review—dynamic models of li-ion batteries for diagnosis and operation: A review and perspective. J Electrochem Soc 165(16):3656–3673.

Article
Google Scholar

Liao, Q, Poggio T (2016) Bridging the gaps between residual learning, recurrent neural networks and visual cortex. arXiv preprint arXiv:1604.03640.

Lindskog, P, Ljung L (2000) Ensuring monotonic gain characteristics in estimated models by fuzzy model structures. Automatica 36(2):311–317.

Article
MathSciNet
Google Scholar

Ljung, L (1999) System identification. In: Webster JG (ed)Wiley Encyclopedia of Electrical and Electronics Engineering.. Wiley, New York.

Google Scholar

Mayur, M, Yagci MC, Carelli S, Margulies P, Velten D, Bessler WG (2019) Identification of stoichiometric and microstructural parameters of a lithium-ion cell with blend electrode. Phys Chem Chem Phys PCCP 21(42):23672–23684.

Article
Google Scholar

Oussar, Y, Dreyfus G (2001) How to be a gray box: dynamic semi-physical modeling. Neural Netw 14(9):1161–1172.

Article
Google Scholar

Paszke, A, Gross S, Chintala S, Chanan G, Yang E, DeVito Z, Lin Z, Desmaison A, Antiga L, Lerer A (2017) Automatic differentiation in PyTorch. NIPS 2017 Workshop on Autodiff, Long Beach.

Google Scholar

Ruthotto, L, Haber E (2020) Deep neural networks motivated by partial differential equations. J Math Imaging Vis 62(3):352–364. https://doi.org/10.1007/s10851-019-00903-1.

Article
MathSciNet
Google Scholar

Sohlberg, B (2003) Grey box modelling for model predictive control of a heating process. J Process Control 13(3):225–238.

Article
Google Scholar

Tong, S, Klein MP, Park JW (2015) On-line optimization of battery open circuit voltage for improved state-of-charge and state-of-health estimation. J Power Sources 293:416–428.

Article
Google Scholar

Turetskyy, A, Laue V, Lamprecht R, Thiede S, Krewer U, Herrmann C (2019) Artificial neural network enabled p2d model deployment for end-of-line battery cell characterization In: 2019 IEEE 17th International Conference on Industrial Informatics (INDIN), 53–58.. IEEE, Piscataway.

Chapter
Google Scholar

Virtanen, P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, Burovski E, Peterson P, Weckesser W, Bright J, van der Walt SJ, Brett M, Wilson J, Millman KJ, Mayorov N, Nelson ARJ, Jones E, Kern R, Larson E, Carey CJ, Polat İ,., Feng Y, Moore EW, VanderPlas J, Laxalde D, Perktold J, Cimrman R, Henriksen I, Quintero EA, Harris CR, Archibald AM, Ribeiro AH, Pedregosa F, van Mulbregt P (2020) Scipy 1.0: fundamental algorithms for scientific computing in python. Nat Methods 17(3):261–272.

Article
Google Scholar

Wang, Y, Fang H, Zhou L, Wada T (2017) Revisiting the state-of-charge estimation for lithium-ion batteries: A methodical investigation of the extended kalman filter approach. IEEE Control Syst 37(4):73–96.

Article
MathSciNet
Google Scholar

Wu, B, Han S, Shin KG, Lu W (2018) Application of artificial neural networks in design of lithium-ion batteries. J Power Sources 395:128–136.

Article
Google Scholar

Yagci, MC, Behmann R, Daubert V, Braun JA, Velten D, Bessler WG (2021) Electrical and structural characterization of large–format lithium iron phosphate cells used in home–storage systems. Energy Technol 9:2001122.

Article
Google Scholar

Yang, D, Wang Y, Pan R, Chen R, Chen Z (2017) A neural network based state-of-health estimation of lithium-ion battery in electric vehicles. Energy Procedia 105:2059–2064.

Article
Google Scholar

Zhang, H, Gao X, Unterman J, Arodz T (2020) Approximation capabilities of neural odes and invertible residual networks In: International Conference on Machine Learning, 11086–11095.. Association for Computing Machinery, New York.

Google Scholar

Zhang, T, Yao Z, Gholami A, Keutzer K, Gonzalez J, Biros G, Mahoney MW (2019) Anodev2: A coupled neural ode evolution framework. arXiv preprint arXiv:1906.04596.