The global electricity market is facing the disruptive 3D’s: digitalization, decentralization and decarbonization which brings with it enormous changes and challenges to the electricity sector. These 3D’s are not only driving the electricity consumers or businesses and industries involved in the electricity sector, but it has also made various other stakeholders beyond the electricity sector think about addressing the intersection of technology, software, economics, markets, regulations, etc. Along with these 3D’s as disruptive drivers, other drivers for change are also important in terms of international and regional commitments and national plans and policies such as the Energy Efficiency Directive, the European Renewable Energy Directive, the Energy Union Package and the resulting National Plan including the Low-Carbon White Paper (Department of Communication Climate Action and Environment, 2015), the National Energy Efficiency Action Plan (Department of Communication Climate Action and Environment, 2014) and the National Mitigation Plan (Department of Communications Climate Action and Environment, 2017).
In parallel with these drivers, the penetration of renewables in Ireland has increased to 27.8% of gross electricity consumption in 2015 (Sustainable Energy Authority of Ireland (SEAI), 2016) which is increasing year-on-year, and these renewables are also being extended in terms of distributed generation/microgrids along with centralized renewable-based electricity generation. This proliferation of distributed generation enables infrastructure changes to address the dynamic nature of the demand side. Irish government is also implementing the smart meter programme which will make the electricity infrastructure more flexible to integrate with other innovative technologies. With intelligent, connected components plugged into an increasingly smarter grid, electricity consumers will become direct participants in the energy network.
Energy trading within an individual microgrid and/or between multiple microgrids is necessary to maximize the usage of renewable energy. Lack of secure, regulated and flexible markets for energy trading is the main motivation of this project. The desirable properties of such a market are (a) autonomous execution of trading decisions - autonomous execution of trading decisions will remove the burden to study the energy market and decision making of microgrid owners, (b) security of information shared for trading - security of information requires guarantees that information will not be overwritten, (c) governance of the market - governance requires checking the compliance of traders, and (d) scalable execution of market models - scalability of the market is indicated as an increase in the number of trades as the market grows. This project will use blockchain technology to deliver these properties more efficiently and securely (PricewaterhouseCoopers, 2016). Blockchain smart contracts will be used to automate the trading decision making process. A blockchain-distributed consensus protocol is a solution for the self-regulation of such a market, i.e., a few microgrids cannot deviate from the regulations of the market. Blockchain will facilitate parallel and asynchronous trades between microgrids to improve the market scalability.
This project is named as “EnerPort” and it is an industry-led collaborative research project that will investigate new market models for peer-to-peer (P2P) energy trading.Footnote 1 This involves implementing blockchain technology with smart metering, and designing and demonstrating residential hardware and software platforms in the laboratory of the Power Electronics Research Centre (PERC) at NUI Galway and University College Cork. It will develop a new software tool for the co-simulation of electricity distribution networks and blockchain-based peer-to-peer energy trading. A simple block diagram to highlight the key aspects of the EnerPort project has been shown in the Fig. 1 below:
The International Energy Research Centre (IERC) is the lead member of the EnerPort consortium that includes the Insight SFI Centre for Data Analytics at NUI Galway, University College Cork and Irish companies including Systemlink, mSemicon, Verbatm.