Abbasi, A, Sarker S, Chiang R (2016) Big Data Research in Information Systems: Toward an Inclusive Research Agenda. J Assoc Inf Syst 17(2):00026.

Google Scholar

Albert, A, Rajagopal R (2013) Smart Meter Driven Segmentation: What Your Consumption Says About You. IEEE Trans Power Syst 28(4):4019–4030.

Article
Google Scholar

Anhorn, J, Herfort B, Albuquerque JPd (2016) Crowdsourced validation and updating of dynamic features in OpenStreetMap an analysis of shelter mapping after the 2015 Nepal, earthquake In: Proceedings of the ISCRAM, 2016 Conference – Rio de Janeiro, Brazil, Rio de Janeiro. http://www.iscram2016.nce.ufrj.br/. Accessed 30 Apr 2016.

Arlot, S, Celisse A (2010) A survey of cross-validation procedures for model selection. Statist Surv 4:40–79. https://doi.org/10.1214/09-SS054.

Article
MathSciNet
MATH
Google Scholar

Ballatore, A, Bertolotto M, Wilson D (2012) Geographic knowledge extraction and semantic similarity in OpenStreetMap. Knowledge and Information Systems 37(1):61–81.

Article
Google Scholar

Ballatore, A, Wilson DC, Bertolotto M (2013) A survey of volunteered open geo-knowledge bases in the semantic web In: Quality issues in the management of web information, 93–120, Springer.

Beckel, C, Sadamori L, Santini S (2012) Towards automatic classification of private households using electricity consumption data. In: Pappas GJ (ed)Proceedings of the Fourth ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in Buildings, 169–176.. ACM, Toronto and Ontario.

Chapter
Google Scholar

Beckel, C, Sadamori L, Santini S (2013) Automatic socio-economic classification of households using electricity consumption data. In: Culler D Rosenberg C (eds). Proceedings of the Fourth International Conference on Future Energy Systems, 75–86.. Berkeley and California, ACM.

Chapter
Google Scholar

Beckel, C, Sadamori L, Staake T, Santini S (2014) Revealing household characteristics from smart meter data. Energy 78:397–410.

Article
Google Scholar

Becker, M (2012) Geodesy In: Springer Handbook of Geographic Information, 95–117.. Springer, Berlin, Heidelberg.

Google Scholar

Breiman, L (2001) Random forests. Mach Learn 45(1):5–32.

Article
MATH
Google Scholar

Chandrashekar, G, Sahin F (2014) A survey on feature selection methods. Comput Electr Eng 40(1):16–28. 00276.

Article
Google Scholar

Chicco, G (2012) Overview and performance assessment of the clustering methods for electrical load pattern grouping, 68–80.

Constantiou, ID, Kallinikos J (2015) New games, new rules: big data and the changing context of strategy. J Inf Technol 30(1):44–57.

Article
Google Scholar

Crowston, K, Li Q, Wei K, Eseryel UY, Howison J (2007) Self-organization of teams for free/libre open source software development. Inf Softw Technol 49(6):564–575. 00195.

Article
Google Scholar

Crowston, K, Wei K, Howison J, Wiggins A (2008) Free/Libre Open-source Software Development: What We Know and What We Do Not Know. ACM Comput Surv 44(2):7:1–7:35. 00330.

Google Scholar

Dangerman, ATCJ, Schellnhuber HJ (2013) Energy systems transformation. Proc Natl Acad Sci 110(7):E549–E558.

Article
Google Scholar

Elwood, S, Goodchild MF, Sui DZ (2012) Researching Volunteered Geographic Information: Spatial, Data, Geographic Research, and New Social Practice. Ann Assoc Am Geogr 102(3):571–590.

Article
Google Scholar

Eurostat (2017) Final consumption expenditure of households, by consumption purpose - Eurostat (Code: tsdpc520, Last update: 25/01/17). http://ec.europa.eu/eurostat/web/products-datasets/-/tsdpc520. Accessed 25 June 2017.

Eysenbach, G (2008) Medicine 2.0: Social Networking, Collaboration, Participation, Apomediation, and Openness. J Med Internet Res 10(3). https://doi.org/10.2196/jmir.1030.

Fei, H, Kim Y, Sahu S, Naphade M, Mamidipalli SK, Hutchinson J (2013) Heat Pump Detection from Coarse Grained Smart Meter Data with Positive and Unlabeled Learning In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’13, 1330–1338.. ACM, New York.

Chapter
Google Scholar

Fernández-Delgado, M, Cernadas E, Barro S, Amorim D (2014) Do we need hundreds of classifiers to solve real world classification problems?J Mach Learn Res 15(1):3133–3181.

MathSciNet
MATH
Google Scholar

Gangale, F, Mengolini A, Onyeji I (2013) Consumer engagement: An insight from smart grid projects in Europe. Energy Policy 60:621–628. 00058.

Article
Google Scholar

Gebauer, H, Worch H, Truffer B (2014) Value Innovations in Electricity Utilities. In: Rønning R, Enquist B, Fuglsang L (eds). Framing Innovation in Public Service Sectors, Vol. 30, 85ff.. Routledge Studies in Innovation, Organization and Technology, Routledge.

Google Scholar

Gillon, K, Brynjolfsson E, Mithas S, Griffin J, Gupta M (2012) Business Analytics: Radical Shift or Incremental Change? In: ICIS, 2012 Proceedings.. AIS electronic library. ISBN: 978-0-615-71843-9. http://aisel.aisnet.org/icis2012/proceedings/Panels/4/.

Goodchild, MF (2007) Citizens as sensors: the world of volunteered geography. GeoJournal 69(4):211–221.

Article
Google Scholar

Guyon, I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn Res 3:1157–1182.

MATH
Google Scholar

Guyon, I, Elisseeff A (2006) An Introduction to Feature Extraction. In: Guyon I, Nikravesh M, Gunn S, Zadeh L (eds). Feature Extraction, Vol. 207 of Studies in Fuzziness and Soft, Computing.. Springer, Berlin, Heidelberg.

Google Scholar

Han, J, Kamber M, Pei J (2012) Data mining: Concepts and techniques, The Morgan Kaufmann, series in data management systems, 3. edn. Elsevier, Amsterdam.

Book
Google Scholar

Harvey, F (2013) To Volunteer or to Contribute Locational Information? Towards Truth in Labeling for Crowdsourced Geographic, Information In: Crowdsourcing Geographic Knowledge, 31–42.. Springer, Dordrecht.

Chapter
Google Scholar

Hastie, T, Tibshirani R, Friedman J (2009) The Elements of Statistical Learning, Springer Series in Statistics. Springer New York, New York.

MATH
Google Scholar

Haworth, B, Bruce E (2015) A Review of Volunteered Geographic Information for Disaster Management. Geogr Compass 9(5):237–250.

Article
Google Scholar

Heiple, S, Sailor DJ (2008) Using building energy simulation and geospatial modeling techniques to determine high resolution building sector energy consumption profiles. Energy Build 40(8):1426–1436.

Article
Google Scholar

Hopf, K, Riechel S, Sodenkamp M, Staake T (2017) Predictive Customer Data Analytics – The Value of Public Statistical Data and the Geographic Model Transferability In: Proceedings of the 38. International Conference on Information Systems (ICIS).. AIS electronic library, Seoul.

Google Scholar

Hopf, K, Sodenkamp M, Kozlovskiy I (2016) Energy data analytics for improved residential service quality and energy efficiency In: Proceedings of the 24. European Conference on Information Systems (ECIS).. AIS electronic library, Istanbul. http://aisel.aisnet.org/ecis2016_rip/73/.

Google Scholar

Hopf, K, Sodenkamp M, Kozlovskiy I, Staake T (2016) Feature extraction and filtering for household classification based on smart electricity meter data In: Computer Science-Research and Development, Vol. (31) 3, 141–148.. Springer Berlin Heidelberg, Zürich.

Google Scholar

Hopf, K, Sodenkamp M, Staake T (2018) Enhancing energy efficiency in the residential sector with smart meter data analytics. forthcoming, https://doi.org/10.1007/s12525-018-0290-9.

Horita, FEA, Degrossi LC, de Assis LFG, Zipf A, de Albuquerque JP (2013) The use of volunteered geographic information (VGI) and crowdsourcing in disaster management: a systematic literature review In: Proceedings of the 19. Americas Conference on Information Systems (AMCIS) 2013, Chicago, Illinois.. AIS electronic library. https://aisel.aisnet.org/amcis2013/eGovernment/GeneralPresentations/4/.

Hua, J, Tembe WD, Dougherty ER (2009) Performance of feature-selection methods in the classification of high-dimension data. Pattern Recog 42(3):409–424.

Article
MATH
Google Scholar

Janowicz, K, Raubal M, Kuhn W (2011) The semantics of similarity in geographic information retrieval. J Spat Inf Sci 2011(2):29–57.

Google Scholar

(2015) OpenStreetMap in GIScience, Lecture Notes in Geoinformation and Cartography. In: Jokar Arsanjani J, Zipf A, Mooney P, Helbich M (eds). Springer International Publishing, Cham.

Kavousian, A, Rajagopal R, Fischer M (2013) Determinants of residential electricity consumption: Using smart meter data to examine the effect of climate, building characteristics, appliance stock, and occupants’ behavior. Energy 55:184–194.

Article
Google Scholar

Keogh, E, Mueen A (2011) Curse of Dimensionality. In: Sammut C Webb GI (eds). Encyclopedia of Machine Learning. 257–258.. Springer, Boston.

Google Scholar

Kozlovskiy, I, Sodenkamp M, Hopf K, Staake T (2016) Energy informatics for environmental, economic and social sustainability: A case of the large-scale detection of households with old heating systems In: Proceedings of the 24. European Conference on Information Systems (ECIS).. AIS electronic library, Istanbul.

Google Scholar

Krishnamurti, T, Schwartz D, Davis A, Fischhoff B, de Bruin WB, Lave L, Wang J (2012) Preparing for smart grid technologies: A behavioral decision research approach to understanding consumer expectations about smart meters. Energy Policy 41:790–797. 00084.

Article
Google Scholar

Kudo, M, Sklansky J (2000) Comparison of Algorithms that Select Features for Pattern Classifiers. Pattern Recogn 33(1):25–41. 00931.

Article
Google Scholar

Kwac, J, Tan C-W, Sintov N, Flora J, Rajagopal R (2013) Utility customer segmentation based on smart meter data: Empirical study In: Smart Grid Communications (SmartGridComm) 2013 IEEE, International Conference on, 720–725.. IEEE, Vancouver. https://doi.org/10.1109/SmartGridComm.2013.6688044.

Chapter
Google Scholar

Liaw, A, Wiener M (2015) randomForest: Breiman and Cutler’s Random Forests for Classification and Regression. Fortran original by Leo Breiman and Adele Cutler. https://cran.r-project.org/web/packages/randomForest/index.html. Accessed 25 Oct 2017.

Liu, H, Motoda H (eds) 2008. Computational methods of feature selection, Chapman & Hall/CRC data mining and knowledge discovery series. Chapman & Hall/CRC, Boca Raton.

Google Scholar

Mah, DN-y, van der Vleuten JM, Hills P, Tao J (2012) Consumer perceptions of smart grid development: Results of a Hong Kong survey and policy implications. Energy Policy 49:204–216. 00063.

Article
Google Scholar

Markard, J, Truffer B (2006) Innovation processes in large technical systems: Market, liberalization as a driver for radical change?. Research Policy 35(5):609–625. 00175.

Article
Google Scholar

McLoughlin, F (2013) Characterising Domestic Electricity Demand for Customer, Load Profile Segmentation, PhD thesis. Dublin Institute of Technology. http://arrow.dit.ie/engdoc/62.

Mithas, S, Lee MR, Earley S, Murugesan S, Djavanshir R (2013) Leveraging Big Data and Business Analytics [Guest editors’ introduction]. IT Prof 15(6):18–20.

Article
Google Scholar

Müller, O, Junglas I, Brocke Jv, Debortoli S (2016) Utilizing big data analytics for information systems research: challenges, promises and guidelines. Eur J Inf Syst 25(4):289–302.

Article
Google Scholar

Mondzech, J, Sester M (2011) Quality Analysis of OpenStreetMap Data Based on Application, Needs. Cartographica Int J Geogr Inf Geovisualization 46(2):115–125.

Article
Google Scholar

Mooney, P, Corcoran P, Ciepluch B (2013) The potential for using volunteered geographic information in pervasive health computing applications. J Ambient Intell Humanized Comput 4(6):731–745.

Article
Google Scholar

Motsch, W (2012) Dynamische Tarife zur Kundeninteraktion mit einem Smart Grid. Vieweg+Teubner Verlag, Wiesbaden.

Book
Google Scholar

Oshiro, TM, Perez PS, Baranauskas JA (2012) How many trees in a random forest?. In: Perner P (ed)Machine Learning and Data Mining in Pattern Recognition, 154–168.. Springer Berlin, Heidelberg.

Chapter
Google Scholar

Rinner, C, Fast V (2015) A Classification of User Contributions on the Participatory Geoweb. In: Harvey F Leung Y (eds). Advances in Spatial Data Handling and Analysis, Advances in Geographic, Information Science, 35–49.. Springer International Publishing, Cham.

Chapter
Google Scholar

Saar-Tsechansky, M, Provost F (2007) Handling missing values when applying classification models. J Mach Learn Res 8(Jul):1623–1657.

MATH
Google Scholar

Saeys, Y, Inza I, Larrañaga P (2007) A review of feature selection techniques in bioinformatics. Bioinformatics 23(19):2507–2517.

Article
Google Scholar

Schwering, A (2008) Approaches to Semantic Similarity Measurement for Geo-Spatial Data: A Survey. Trans GIS 12(1):5–29.

Article
Google Scholar

See, L, Mooney P, Foody G, Bastin L, Comber A, Estima J, Fritz S, Kerle N, Jiang B, Laakso M, Liu H-Y, Milčinski G, Nikšič M, Painho M, Pődör A, Olteanu-Raimond A-M, Rutzinger M (2016) Crowdsourcing, Citizen Science or Volunteered Geographic Information? The Current State of Crowdsourced Geographic Information. ISPRS Int J Geo-Inf 5(5):55.

Article
Google Scholar

Sester, M, Arsanjani JJ, Klammer R, Burghardt D, Haunert J-H (2014) Integrating and Generalising Volunteered Geographic Information. In: Burghardt D, Duchêne C, Mackaness W (eds). Abstracting Geographic Information in a Data Rich, World, Lecture Notes in Geoinformation and Cartography, 119–155.. Springer International Publishing.

Sharma, R, Mithas S, Kankanhalli A (2014) Transforming decision-making processes: a research agenda for understanding the impact of business analytics on organisations. Eur J Inf Syst 23(4):433–441.

Article
Google Scholar

Sodenkamp, M, Kozlovskiy I, Hopf K, Staake T (2017) Smart Meter Data Analytics for Enhanced Energy Efficiency in the Residential Sector In: Wirtschaftsinformatik 2017 Proceedings.. AIS electronic library, St. Gallen.

Google Scholar

Stefanidis, A, Crooks A, Radzikowski J (2013) Harvesting ambient geospatial information from social media feeds. GeoJournal 78(2):319–338. 00212.

Article
Google Scholar

Stewart, K, Ammeter T (2002) An exploratory study of factors influencing the level of vitality and popularity of open source projects In: ICIS 2002 Proceedings.. AIS electronic library.

Tiefenbeck, V (2017) Bring behaviour into the digital transformation. Nat Energy 2:17085.

Article
Google Scholar

Verma, A, Asadi A, Yang K, Tyagi S (2015) A data-driven approach to identify households with plug-in electrical vehicles (PEVs). Appl Energy 160:71–79.

Article
Google Scholar

Zeifman, M (2014) Smart meter data analytics: Prediction of enrollment in residential energy efficiency programs In: 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 413–416.. IEEE. 00007. https://doi.org/10.1109/TCE.2011.5735484. ISSN 0098-3063.

Zhou, K, Fu C, Yang S (2016) Big data driven smart energy management: From big data to big insights. Renewable and Sustainable Energy Reviews 56:215–225. 00052.

Article
Google Scholar

Zook, M, Graham M, Shelton T, Gorman S (2010) Volunteered Geographic Information and Crowdsourcing Disaster Relief: A Case Study of the Haitian Earthquake In: SSRN Scholarly Paper ID 2216649.. Social Science Research Network, Rochester. http://papers.ssrn.com/abstract=2216649.

Google Scholar