Skip to main content

Advertisement

Table 1 List of the symbols of the system elements

From: An integrated testbed for locally monitoring SCADA systems in smart grids

Element Property Symbol
Power network Model Ω
  State T
Power generators and consumers Combined set \(\mathcal {P}=\mathcal {P}^{G} \cup \mathcal {P}^{C}\)
  Set of power generators \(\mathcal {P}^{G}=\left \{P_{1}^{G},...,P_{|\mathcal {P}^{G}|}^{G}\right \}\)
  Set of power consumers \(\mathcal {P}^{C}=\left \{P_{1}^{C},...,P_{|\mathcal {P}^{C}|}^{C}\right \}\)
  Position \(P_{i}^{x}.pos = L_{j}\) for x{G,C}
  Power value \(P_{i}^{x}.pv\) for x{G,C}
  Vector of all power values P
Buses Set of buses \(\mathcal {B}= \left \{B_{1},..., B_{|\mathcal {B}|} \right \}\)
  Vector of incoming lines Bi.in=[Lj,...,Ln]
  Vector of outgoing lines Bi.out=[Lc,...,Lh]
Transformers Set of transformers \(\mathcal {T} = \left \{ T_{1},..., T_{|\mathcal {T}|}\right \}\)
  Transformer rate Ti.r
  Tap switch position Ti.p
  Vector of all tap positions T
Power lines Set of power lines \(\mathcal {L} = \left \{L_{1},...,L_{|\mathcal {L}|}\right \}\)
  Position Li.pos=(Bk,Bn)
  Maximum current Li.Imax
  Reference voltage Li.Vref
  Meter (side of Bk) Li.Bk.M=Md
  Vector of meters on line Li Li.M=[Md,...,Mh]
  Switch (side of Bk) Li.Bk.S=Se
  Vector of switches on line Li Li.S=[Se,...,So]
  Fuse (side of Bk) Li.Bk.F=Fu
  Vector of fuses on line Li Li.F=[Fu,...,Fy]
Meters Set of meters \(\mathcal {M} = \left \{M_{1},...,M_{|\mathcal {M}|}\right \}\)
  Position Mi.pos=Li.Bn
  Measured current Mi.I
  Measured voltage Mi.V
  Vector of states of all readings M
Switches Set of switches \(\mathcal {S} = \left \{S_{1},...,S_{|\mathcal {S}|}\right \}\)
  Position Si.pos=Li.Bn
  State of the switch Si.st
  Vector of states of all the switches S
Fuses Set of fuses \(\mathcal {F} = \left \{F_{1},..., F_{|\mathcal {F}|}\right \}\)
  Position Fi.pos=Li.Bn
  State of the fuse Fi.st
  Vector of states of all fuses F
Protective relays(circuit breakers) Set of protective relays \(\mathcal {R} = \left \{ R_{1},...,R_{|\mathcal {R}|}\right \}\)
  Position (on a switch) Ri.S=Sj
  Cutting current Ri.Imax