
Temperature clusters in commercial 
buildings using k‑means and time series 
clustering
Ashani Wickramasinghe1*  , Saman Muthukumarana1, Dan Loewen2 and Matt Schaubroeck2 

Introduction
In commercial buildings, it is hard to maintain and control the environment of the build-
ing while considering thermal comfort and energy consumption. These buildings are 
usually equipped with intelligent HVAC (heating, ventilation, and air conditioning) sys-
tems. Thermostats send data about the temperature of a space (or zone) within a build-
ing to the HVAC system, which then adjusts the air temperature supplied to that space 
accordingly. Fewer thermostats installed generate a less complete picture of a building’s 
performance, as different spaces (zones) can have different temperature needs. Ther-
mostats that are improperly placed can also yield incomplete measurements, causing 
HVAC systems to run too often or not frequently enough. As a result, the temperature 
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measured by the thermostats might be very different from what the building’s occupants 
are experiencing.

The consequences of inefficient HVAC systems can have serious effects on a build-
ing and its occupants. People can have adverse impacts on their productivity and cogni-
tive abilities. For example, a direct correlation has been determined that each 4 degrees 
Fahrenheit shift away from the optimal internal temperature of 72 degrees resulted in a 
2% decrease in productivity. Notably, the economic impact of this productivity decrease 
also demonstrated that regaining that 2% productivity increase yields a 9% increase in 
net revenue for a company working within that environment.   (Allen and Macomber 
2020) Another study conducted in New York City identified that schools with an inter-
nal temperature of 90 degrees Fahrenheit saw a 14% higher likelihood of failing an exam 
than if that same space was controlled to 75 degrees  (Allen and Macomber 2020).

Nowadays, much research has been done on the topic of building health and thermal 
comfort. In 2017   (Lee et  al. 2017) a research was done to identify the thermal com-
fort of a residential house in Malaysia and found that to satisfy human thermal com-
fort HVAC system is needed for the bedroom and living room. Martin Sarnsvosky and 
David Bajus  (2017) used k-means clustering to cluster the university building based on 
temperature and humidity data which were obtained by sensors. With the development 
of smart technologies, people tend to build smart thermostats to control HVAC sys-
tems. Smart thermostats can collect more information than traditional thermostats and 
use machine learning algorithms to optimize the setpoint based on both efficiency and 
occupant comfort. Hence in 2012 research was done to build a smart energy system to 
control HVAC systems based on temperature and humidity  (Yun and Won 2012). This 
system was evaluated using occupants’ feedback. But not all building owners are con-
cerned with replacing their existing thermostats with smart devices, due to their high 
capital cost and how difficult they can be to properly install. A preferred solution would 
be to find ways to optimize a building’s controls system using its existing infrastructure, 
allowing thermostats to be deployed and used more efficiently. Hence, our research work 
is focused on giving a solution to that.

Nikolaou and team   (2012) have used five clustering techniques: Hierarchical, 
K-Means, Gaussian Mixture Models, Fuzzy, and Neural algorithms to cluster energy 
and thermal comfort of office buildings. They have not considered time series clustering 
though. Another research work  (Adán et al. 2020) presents a temporal-clustering based 
technique to identify thermal regions of buildings using a set of thermal orthoimages 
(STO). To test this technique in real life they have used 3D thermal scanners. Time series 
based clustering on temperature using Gaussian Mixture Model was used here, (Wester-
mann et al. 2019) but it was done using only one variable.

In our study, we have clustered each building floor based on temperature data which 
were collected from wireless sensors using k-means and time-series clustering. In the 
k-means method, we clustered sensors based on mean values of variables, while in the 
time series clustering method, we clustered the sensors that show similar trends over 
time. We also considered temperature, humidity, and pressure variables for clustering 
and compared the cluster results with each other. Placing a minimum of one thermostat 
in each identified cluster will generate more accurate measurements and may lead to 
better control of a building’s thermal performance.
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Material and methods
Data collection and preparation

The data collection was done in a commercial building in downtown Winnipeg, MB, 
Canada. We selected three different floors (first, second and fourth floors) which were 
considered as problematic floors by the building owner. Sixty (60) sensors were strate-
gically positioned throughout these floors and air data (temperature, relative humidity, 
and pressure) was collected at five minute intervals between February 1 and February 
9, 2021. During that period, over 135,000 data points were collected to evaluate the 
building’s performance. Weather data was collected using the Government of Canada’s 
weather API. A sample of sensor data set and weather data set is shown in Tables 1 and 
2 respectively.

Based on the data, we could understand that not all 60 sensors started to collect data 
at the same time. For example, when the first sensor started to collect data at “08:00:45”, 
the second one started at “08:00:51”. Hence there was a few second differences between 
the data points of each sensor. It created null data points when we considered all time 
points as not all the sensors have data at each time point. To fix this, we rounded sec-
onds into the closest minute, and in the timestamp, we considered only the hours and 
minutes. Also, another issue was that the weather data were collected on an hourly basis. 
Because of that, when merging weather data with sensor data we were losing most of the 
valuable data points. We interpolated the weather data to one minute intervals which 
helped merge the two data sets without losing any data in the sensor data set.

K‑means clustering

In this analysis, we filtered sensors on each floor and considered the mean temperature 
of each sensor to cluster the sensors. The main objective of clustering is to group similar 
data points (mean temperature of each sensor) together and discover the underlying pat-
tern. To achieve this goal, k-means requires a fixed number of clusters (k). This target 
number k, is referring to the number of centroids, which is an imaginary or real location 

Table 1  Sample of sensor data set

Time Sensor number Temperature (°C) Humidity (%) Pressure (kPa)

2021-02-09 08:58:43 1 26.4 6 99.19

2021-02-09 08:58:42 2 20.3 6 99.15

2021-02-09 08:58:37 3 20.4 6 99.16

2021-02-09 08:58:34 4 20.7 6 99.18

Table 2  Sample of weather data set

Time Temperature (°C) Relative humidity (%) Pressure (kPa)

2021-02-09 08:00 − 24.6 61.0 99.20

2021-02-09 09:00 − 23.8 58.0 99.22

2021-02-09 10:00 − 23.3 52.0 99.28

2021-02-09 11:00 − 22.9 52.0 99.31
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of the center of the cluster. Then every data point is allocated to the nearest cluster while 
minimizing the intracluster variation.

In the standard k-means clustering algorithm  (Hartigan and Wong 1979) total within-
cluster variation is defined as the sum of squared distances of Euclidean distances 
between items and the corresponding centroid which is shown as:

Here xi is ith data point of cluster k ( Ck ), and µk is the mean value of points in cluster k. 
The total within-cluster variation is defined as Eq. (2). The total within-cluster sum of 
squares measures the goodness of the clustering, which increases as the sum of squares 
measures decreases.

 

Algorithm 1: K-means algorithm
Data: k number of clusters
Result: set of k clusters
initialization;
while The centroids do not change do

Assign each point to its closest centroid;
Compute the new centroid (mean) of each cluster;

end while

The above algorithm 1 shows the process of K-means clustering; first, specify the num-
ber of clusters (k) and second, randomly select k data points as initial centroids. Then 
assign the remaining data points to their closest centroid. The fourth step is recomputing 
the new centroids and repeating the third and fourth steps until no changes in centroids.

In this analysis, our objective is to find the optimal number of thermostats for one 
floor and to achieve that, we needed to find the optimal number of clusters. For that, 
there are different methods, and we used the elbow plot method. Here we conducted 
clustering using different numbers of clusters (k) and calculated the total within the sum 
of squares for each k value and plot it against k. Finally, the k value at the location of 
bend (elbow joint) in the plot is considered the optimal number of clusters. For an exam-
ple, Fig. 1 represents an elbow plot, and the total sum of squares distance decreases as 
k increases, but at k = 4 there is a bend. It shows that having additional clusters will 
reduce the sum of squares by small values. Hence four can be considered as the optimal 
number of clusters.

Time series clustering

In k-means clustering, we considered the mean temperature of each sensor as data 
points, but by averaging data, potentially valuable information is lost. In time series 
clustering we can overcome that issue by considering all data points and grouping 

(1)W (Ck) =
∑

xiǫCk

(xi − µk)
2

(2)total within cluster variation =

k
∑

k=1

W (Ck) =

k
∑

k=1

∑

xiǫCk

(xi − µk)
2



Page 5 of 14Wickramasinghe et al. Energy Informatics             (2022) 5:1 	

sensors with similar time series into the same cluster. Here, hierarchical clustering is 
used to cluster the time series based on euclidean distance.

Hierarchical clustering produces a nested hierarchy of similar groups of objects, 
according to a pairwise distance matrix of the objects  (Nielsen 2016). In time series 
clustering, objects are series of numbers. In the agglomerative algorithm, clusters 
are initialized with each series that belongs to their own groups. The algorithm then 
merges the similar groups into larger clusters, based on the distance matrix. There are 
several types of methods and distance matrices to develop clusters. Hierarchical clus-
tering does not require the number of clusters to generate clustering results.

The clustering method used by Santos and team  (2019), showed that the mean link-
age method using the correlation similarity metric provides the most appropriate 
results when studying weather variables. This method overcomes some deficiencies 
of other hierarchical methods in clustering homogeneous groups. Therefore, cluster-
ing is less affected by a typical observation in cluster formation, according to Unal 
et al.  (2003). The average distance between all pairs of objects in any two clusters can 
be calculated as follows:

where D(r, s) is the distance between clusters r and s, and (nr , ns) are the number of ele-
ments in those cluster. The main objective of that study was to cluster precipitation data 
based on their behavior over time by incorporating their temporal variations  (Unal et al. 
2003).

In our study, we used the average method and correlation similarity metric based on 
the work by Unal et al  (2003). To compare those results, we used Ward’s method and 
Euclidean distance, which is the most popular combination of method and similarity 
metric for hierarchical clustering. Ward’s method creates groups while minimizing 
the pooled within-cluster sum of squares. The Euclidean distance between two differ-
ent time series is called Q, and C can be calculated as Eq. (3). Here qi and ci represent 
ith data points of time series Q and C respectively:

(3)D(r, s) =
1

nrns

nr
∑

i=1

ns
∑

j=1

D(xri − xsj)

Fig. 1  Example for Elbow plot to check optimal number of clusters (k). Red line indicates the elbow joint and 
it will help to find k value
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Multivariate clustering

In multivariate clustering, we try to cluster sensors, where all the features within each clus-
ter are as similar as possible. In this study, we measured temperature, relative humidity, 
and pressure. Finding an appropriate method to combine those variables for the time series 
clustering was one of the challenges in this study.

Since time series clustering uses time series to group objects, we needed to create a time 
series by considering multiple features. For that we proposed the following method to cre-
ate a single time series by considering all variables. In this process, we first normalized all 
the series (temperature, relative humidity,and pressure) using Min-Max normalization:

By normalizing the data we brought all the variables into one scale. Then, using Eq. 6, we 
generated a new variable by combining all three variables. Let Vnorm(ji) = ith observa-
tion of jth variable, n = number of variables, and new(i) = ith observation of new vari-
able. This new variable generated a time series for each sensor, and we used those time 
series for the clustering.

Similarity score measures

Once identified the clusters based on different algorithms, a comparison study can be done 
using similarity measures. Those indices measure the similarity between cluster results with 
true labels.

Adjusted rand index (ARI)

The Rand Index computes a similarity measure between two clustering by considering all 
pairs of samples and counting pairs that are assigned in the same or different clusters in the 
predicted and true clustering. If the number of data vectors for clustering is n, then there 
are nC2 pairs. For every example pair, there are three possibilities in terms of grouping. The 
first possibility is that the paired examples are always placed in the same group as a result of 
clustering (a). The second possibility is that the paired examples are never grouped together 
(b). The third possibility is that the paired examples are sometimes grouped and sometimes 
not grouped together. The RI of two groupings is then calculated by the following formula:

RI had one drawback;  it yields a high value for pairs of random partitions of a given 
set of examples. To overcome this drawback, the Rand Index score is then “adjusted for 

(4)D(Q,C) =

√

√

√

√

n
∑

i=1

(qi − ci)2

(5)Vnorm(i) =
vi −Min(v)

Max(v)−Min(v)

(6)new(i) =

∑n
j=1(Vnorm(ji))

n

(7)RI =
Count of Pairs in Agreement

Total Number of Pairs
=

a+ b

nC2
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chance” into the Adjusted Rand Index  (Hubert and Arabie 1985) score using the follow-
ing scheme:

The adjusted Rand index is thus ensured to have a value close to 0 for random labeling 
independently of the number of clusters and samples and exactly 1 when the clusterings 
are identical (up to a permutation).

Normalized mutual information (NMI)

Mutual information (MI) is a measure of the similarity between two labels of the same 
data. Where |Ui| is the number of the samples in cluster Ui and |Vj| is the number of the 
samples in cluster Vj , the Mutual Information between clustering U and V is given as:

This metric is independent of the absolute values of the labels: a permutation of the class 
or cluster label values won’t change the score value in any way. This metric is further-
more symmetric and can be useful to measure the agreement of two independent label 
assignments strategies on the same data set when the real ground truth is not known. 
Normalized Mutual Information (NMI)  (Williams et al. 2007) is a normalization of the 
Mutual Information (MI) score to scale the results between 0 (no mutual information) 
and 1 (perfect correlation).

Adjusted mutual information (AMI)

The baseline value of mutual information between two random clusterings tends to be 
larger when the two partitions have a larger number of clusters (with a fixed number 
of nodes). Hence adjusted mutual information (AMI)  (Vinh et al. 2010) will be able to 
adjust the mutual information (MI) score to account for chance. The AMI between clus-
tering U and V is given as:

This metric is independent of the absolute values of the labels: a permutation of the class 
or cluster label values won’t change the score value in any way. Here H(U) and H(V) 
indicate the entropy associated with the partitioning U and V. The AMI takes a value of 
1 when the two partitions are identical and 0 when the MI between two partitions equals 
the value expected due to chance alone.

Evaluate cluster results

Once perform the cluster analysis we have to evaluate the cluster result. In this study, we 
used silhouette score to find the goodness of clustering techniques.

(8)ARI =
RI − Expected RI

max(RI)− Expected RI

(9)MI(U ,V ) =

|U |
∑

i=1

|V |
∑

j=1

|Ui ∩ Vj|

N
log

N |Ui ∩ Vj|

|Ui||Vj|

(10)AMI(U ,V ) =
MI(U ,V )− E{MI(U ,V )}

max{H(U),H(V )} − E{MI(U ,V )}
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Silhouette score

Silhouette score is used to observe the separation distance between the resulting clus-
ters  (Rousseeuw 1987). This measures how close each point in one cluster is to points in 
the neighboring clusters. To calculate the Silhouette score for each observation, the follow-
ing distances need to be calculated: 

1.	 Mean distance from the observation to all other observations in the same cluster. 
Let’s denote it by Din.

2.	 Mean distance from the observation to all other observations in the nearest cluster. 
Let’s denote it by Dout.

After calculating the above two distances, the silhouette score, S, for each sample is calcu-
lated using the following formula:

The silhouette score varies from −  1 to 1, where 1 means clusters are clearly distin-
guished and -1 means clusters are assigned in the wrong way. The value 0 means the 
distance between clusters is not significant.

Zones and clusters

In the tested building, each floor had multiple thermostats which were connected to vari-
able air volume (VAV) terminal units. VAV terminal units are zone-level flow control 
devices. Thermostats that are connected to one VAV unit control by that VAV unit and can 
be considered as one zone. Based on the number of VAV units, we could identify different 
numbers of zones. After the inspection, we recognized that there are 8, 10, and 10 zones on 
floor 1, floor 2, and floor 4 respectively. We considered those numbers of zones as the num-
bers of clusters that we want from the cluster analysis, and compared those cluster results 
with the actual zones. It helped us identify whether those sensors within zones collect simi-
lar data or not, and whether having one thermostat for each zone is reasonable or not.

We clustered building floors based on k-means and two different time series clustering 
algorithms. From each clustering method, three different results were generated using tem-
perature, temperature + relative humidity, and temperature + relative humidity + pres-
sure. Then, the similarity between zone labels and cluster labels are compared using the 
ARI, NMI, and AMI similarity matrices. These similarity measures are mainly used to do a 
pairwise comparison of two cluster results.

Then to determine the minimum number of thermostats, we found the optimal num-
ber of clusters using three clustering methods with different variables as discussed earlier. 
Silhouette score was used to evaluate those cluster results and identify the best method to 
cluster the building environment.

Results
Descriptive analysis

Before starting the cluster analysis we analyzed the temperature trends of each sen-
sor to identify any anomalies and to understand the building’s current condition. For 

(11)S =
(Dout − Din)

max(Din,Dout)
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an example, Fig.  2 shows temperature variations over time on each sensor. Based on 
ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers) 
55 standards   (ASHRAE 2017), the comfortable temperature range is between 19  and 
24◦ C, illustrated by the highlighted region. The majority of temperature values were 
measured within this comfortable range, except sensors 16 and 17, both of which were 
located in the same office.

Then we averaged the temperatures on each floor, per location to illustrate the tem-
perature trends over one average day. Figure 3 appears to indicate temperature trends 
corresponding with occupancy, beginning to increase at 09:00 am and decrease in the 
afternoon.

Relative humidity (RH) data of all the sensors within each floor showed similar vari-
ations with time. Hence we compared floor-wise RH variations during the test period. 
Figure 4 highlights that floor 1 is typically more humid than floor 2 and floor 4. Based 
on the ASHRAE 55 standards, a comfortable RH range is between 20 and 60%, but this 
building showed very low RH values.

The average air pressure per floor will depend on many factors, specifically outside 
weather conditions. When the weather is cold outside, the warm buoyant indoor air 

Fig. 2  Temperature variations over the entire test period for floor 1. Green color box shows the comfortable 
temperature range

Fig. 3  Average temperature over one average day for floor 4. Dash line shows the set point (expected 
temperature) of this floor
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tends to rise to the top of the building generating increased pressure in the upper 
levels, and relatively low pressure in the lower levels. This is known as the stack 
effect  (Miller 2019; Mijorski and Cammelli 2016). Based on the collected air pressure 
data of this building, Fig. 5 shows the floor-wise pressure distribution, and it indicates 
that floor 1 has consistently higher pressure than floor 2 and floor 4. This may repre-
sent the reverse stack effect.

Clustering based on number of zones

As discussed in "Material and methods", we clustered each floor using three differ-
ent methods by considering three different variables. We clustered sensor data from 
the ground floor, second floor, and fourth floor separately. For example the following 
Figs. 6, 7, 8 illustrate the k-means clustering results based on the temperature in three 
different floors. Different zones are indicated by black color borders. The legend of 
each floor map shows the mean temperature of each cluster from lowest to highest. 
Blue color nodes indicate the sensors with the lowest mean temperature, while red 
color nodes indicate the sensors with the highest mean temperature.

Fig. 4  Average relative humidity per floor, over the entire test period. Building shows very low RH values 
based on ASHRAE 55 standards

Fig. 5  Average pressure per floor, over the entire test period with outside pressure
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Then we calculated similarity matrices to measure the similarity between the zone 
labels and cluster labels. Table 3 shows the ARI, NMI, and AMI scores for each cluster 
results which were generated by different clustering algorithms.

Clustering based on optimal number of clusters

After generating clusters based on the number of zones within each floor, we considered 
clustering based on the optimal number of clusters. In k-means and time series cluster-
ing methods we used elbow plot and silhouette scores to identify the optimal number of 
clusters, respectively. Table 4 shows the optimal number of clusters and silhouette score 
for each clustering algorithm.

Fig. 6  K-means cluster results with zones in floor 1. Black boxes indicate zones while different colors indicate 
each clusters. Legend shows the mean temperature values of each cluster

Fig. 7  K-means cluster results with zones in floor 2. Legend shows the mean temperature values of each 
cluster
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Discussion
Based on the results of cluster analysis with zones, it is clear that time-series cluster 
results have a better agreement with zones than the k-means clusters. When compar-
ing two methods of time series clustering, the results of Ward’s and Euclidean distance 
method have higher similarity scores than the results of the average and correlation 
method. However, the overall results show small similarity scores between clustering 
and zoning, and there can be multiple reasons to have small similarity score values. One 
reason is that there can be some lurking, unmeasured variables that affect the clustering 
and the other one is, that zoning has not done properly.

When discussing the results of the optimal number of clusters, it is clear that we 
can have a smaller number of clusters with sensors that show similar performances. 
Hence for this building we could easily reduce number of thermostats. Here, we could 

Fig. 8  K-means cluster results with zones in floor 4. Legend shows the mean temperature values of each 
cluster

Table 3  Similarity scores when comparing zoning labels with cluster results

Variables Floor K-means clusters Time-series 
clusters
(Ward, Euclidean)

Time-series 
clusters
(average, 
correlation)

ARI NMI AMI ARI NMI AMI ARI NMI AMI

Temperature Floor1 0.03 0.61 0.05 0.09 0.63 0.12 0.12 0.61 0.2

Floor2 0.004 0.68 0.01 0.25 0.75 0.28 0.02 0.65 0.03

Floor4 0.07 0.69 0.09 0.22 0.73 0.25 0.11 0.69 0.18

Temperature + humidity Floor1 0.07 0.62 0.1 0.18 0.7 0.27 0.24 0.71 0.38

Floor2 − 0.08 0.64 − 0.1 0.06 0.69 0.08 0.12 0.69 0.25

Floor4 0.08 0.66 0.1 0.13 0.68 0.15 0.07 0.66 0.11

Temperature + humidity 
+ pressure

Floor1 0.06 0.61 0.09 0.24 0.72 0.31 0.17 0.65 0.26

Floor2 − 0.09 0.63 − 0.11 0.06 0.69 0.08 0.07 0.68 0.11

Floor4 0.03 0.66 0.1 0.13 0.68 0.15 0.19 0.72 0.27
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also see that time-series clustering method clustered sensors better than the k-means 
clustering, and Ward’s and Euclidean method showed better performance between 
two time-series clustering methods. Clustering using only the temperature showed 
better results than combining humidity and pressure to temperature.

For future work, we plan to collect carbon dioxide (CO2) in addition to tempera-
ture measurements to evaluate the indoor air quality. Air quality tends to decrease as 
CO2 values increase, which has a negative impact on an occupant’s health. Given that 
humans exhale CO2, there exists a connection between occupancy and measured CO2 
values. Airflow (ventilation) exhausts the breathed air with high CO2 concentration, 
supplying fresh air with low CO2 concentration. Temperature and therefore airflow 
into a space are controlled in part by thermostats, and by evaluating CO2 and tem-
perature together we can determine effective clustering based on both temperature 
(building efficiency) and ventilation (occupant health).
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Table 4  Optimal number of clusters and silhouette score for each clustering method
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Optimal 
clusters

Silhouette 
score

Optimal 
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Silhouette score

Temperature Floor1 3 0.66 3 0.78 5 0.71

Floor2 4 0.61 3 0.62 3 0.68

Floor4 4 0.58 2 0.88 3 0.61

Temperature + humidity Floor1 4 0.46 2 0.83 2 0.41

Floor2 3 0.4 3 0.68 4 0.6

Floor4 4 0.55 2 0.85 2 0.64

Temperature + humid-
ity + pressure

Floor1 6 0.27 2 0.72 2 0.41

Floor2 4 0.44 2 0.65 2 − 0.05

Floor4 4 0.36 2 0.85 4 0.54
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