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Abstract

In the coming years, several transformations in the transport sector are expected,
associated with the increase in electric vehicles (EVs). These changes directly impact
electrical distribution systems (EDSs), introducing new challenges in their planning
and operation. One way to assist in the desired integration of this technology is to
allocate EV charging stations (EVCSs). Efforts have been made towards the
development of EVCSs, with the ability to recharge the vehicle at a similar time than
conventional vehicle filling stations. Besides, EVs can bring environmental benefits by
reducing greenhouse gas emissions. However, depending on the energy matrix of
the country in which the EVs fleet circulates, there may be indirect emissions of
polluting gases. Therefore, the development of this technology must be combined
with the growth of renewable generation. Thus, this proposal aims to develop a
mathematical model that includes EVs integration in the distribution system. To this
end, a mixed-integer linear programming (MILP) model is proposed to solve the
allocation problem of EVCSs including renewable energy sources. The model
addresses the environmental impact and uncertainties associated with demand
(conventional and EVs) and renewable generation. Moreover, an EV charging forecast
method is proposed, subject to the uncertainties related to the driver's behavior, the
energy required by these vehicles, and the state of charge of the EVs. The proposed
model was implemented in the AMPL modelling language and solved via the
commercial solver CPLEX. Tests with a 24-node system allow evaluating the
proposed method application.

Keywords: Allocation of electric vehicle charging stations, Electric vehicle charging
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Introduction
Concerns about climate change and initiatives like the Paris agreement motivate many

sectors of the economy to reduce CO2 emissions. CO2 emissions (the main greenhouse

gas) in the transport sector are higher than those in other sectors. Still, these numbers

are beginning to show a decline in regions with higher electric vehicle (EV) penetration

rates (Canizes et al. 2019; Coignard and Macdougall 2019; Energy Information Admin-

istration (EIA) 2020). EV is the key to transport efficiency and sustainability. These

technologies are being developed to reduce dependence on oil for transportation and

limit CO2 emissions. Similarly, renewable energy sources are being adopted to promote

alternatives to fossil fuel-based electricity generation (Cai et al. 2017; Richardson 2013).

Mass adoption of electric vehicles will provide many benefits, such as the incentive to

integrate renewable energy sources (RES) into the electrical distribution system (EDS).

However, a large increase in EVs can harm the EDS, causing an increase in power

losses, voltage degradation, and overloads, thus compromising the electric power qual-

ity (Etezadi-Amoli et al. 2010; Richardson 2013). Therefore, EDSs must be prepared for

the demand requirements and the particularities of EVs.

The main obstacles for the integration of EVs are their high acquisition cost, limited

cruising range and the lack of an infrastructure prepared to supply their demand. Thus,

to contribute to the integration of this technology, it is necessary to invest in the sys-

tem’s infrastructure, which can be done in two ways: by expanding/reinforcing the grid

and by installing EV charging stations (EVCSs) (Cai et al. 2017; Mauri and Valsecchi

2012).

Different methods have been used to solve the allocation problem of EVCSs such as

classic optimization techniques (Neyestani et al. 2015) and metaheuristics (Amini and

Islam 2014; Moradijoz et al. 2013). A mixed-integer linear programming (MILP) model

to solve the allocation problem of EVCSs, aiming to minimize system costs, is proposed

in (Neyestani et al. 2015). To this end, a two-stage model was developed. The first stage

models the EVCS behavior considering market interactions (reserve and energy mar-

kets), aiming to maximize profit. In the second stage, the allocation problem of EVCSs

is solved. Therefore, the method proposed in (Neyestani et al. 2015) is treated as an

EVCS operation planning problem. Specialized methods using the genetic algorithm

have been proposed in (Amini and Islam 2014; Moradijoz et al. 2013) to solve the allo-

cation problem of EVCSs.

The uncertainties associated with EV demand must be addressed in the allocation

problem of EVCSs, aiming to obtain a solution more committed to reality. A probabil-

istic approach based on the point estimate method has been proposed in (Mirzaei et al.

2016) to determine the optimal allocation of EVCSs, considering the driving patterns of

EV owners. In that work, the allocation problem has been formulated as a two-stage

stochastic programming model. Uncertainties based on the behavior of EV users are

also considered in (Zeng et al. 2020). The allocation problem has also been formulated

as a two-stage stochastic programming model. The first stage defines the planning ac-

tions, while the second stage evaluates the system operation. An important aspect that

was not considered in any of the previously cited proposals is the allocation of EVCS

integrated with RES investment.

The combination of EVs and RES offers a transformative impact on the world, mak-

ing it possible to reduce the dependence on fossil fuels in the energy and transportation
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sectors and, consequently, reduces greenhouse gas emissions (Richardson 2013). There-

fore, it is important to address EVCSs and RES allocation simultaneously (Bagherzadeh

et al. 2019; Mozafar et al. 2017; Shaaban et al. 2019). In this context, a salp swarm algo-

rithm has been proposed to solve joint planning of EVCSs and RES (Bagherzadeh et al.

2019). Multiobjective approaches have also been used to solve this optimization prob-

lem, such as (Mozafar et al. 2017; Shaaban et al. 2019). A non-dominated sorting Gen-

etic algorithm (NSGA-II) was used in (Shaaban et al. 2019), while (Mozafar et al. 2017)

proposed a genetic algorithm-particle swarm optimization hybrid to solve the allocation

problem of EVCS and RES. Alternatively, some studies consider the presence of these

technologies into the allocation problem of EVCS but without addressing the allocation

of RES (Pashajavid and Golkar 2013).

Among the works cited, only (Shaaban et al. 2019) takes into account the environ-

mental aspects associated with greenhouse gas emissions. Moreover, about the uncer-

tainties addressed, only (Pashajavid and Golkar 2013) includes the uncertain behaviour

of conventional demand. Thus, this work proposes a simultaneous approach for opti-

mal allocation of EVCSs and RES, including environmental issues. A two-stage stochas-

tic programming MILP model is used to solve the problem, which considers stochastic

behavior of conventional demand, EV demand, and renewable generation.

Table 1 provide a comparison of previous related approaches with the proposed

method in which the main contributions are highlighted and described as follows:

� A two-stage stochastic programming model for the simultaneous allocation of

EVCSs and RES that deals with uncertainties of renewable generation (wind turbine

(WT) and photovoltaic (PV) generator) along with environmental issues related to

CO2 emissions.

� A mixed linear programming model (MILP) formulation for the addressed problem

that can be optimally solved by efficient commercial solvers.

� A method for forecasting EV charging demand based on uncertain user behavior.

� An enhanced representation of active/reactive power limits of WT according to

their capability curves and power factor limits.

Problem formulation
The joint allocation problem of EVCSs and RES is formulated in this section as a MILP

model in which the uncertainties are handled through a two-stage stochastic program-

ming model. In the first stage, the investment decisions related to EVCSs and RES are

carried out before the uncertainties are realized (here and now decisions). In the second

Table 1 Comparison of the proposed model with existing approaches in the literature

Reference Method EVCS
Investment

RES
Investment

CO2

emission

(Neyestani et al. 2015) 1 ✓ x x

(Amini and Islam 2014; Mirzaei et al. 2016; Moradijoz et al.
2013; Pashajavid and Golkar 2013; Zeng et al. 2020)

2 ✓ x x

(Bagherzadeh et al. 2019; Mozafar et al. 2017) 2 ✓ ✓ x

(Shaaban et al. 2019) 2 ✓ ✓ ✓

Proposed model 1 ✓ ✓ ✓

1: Mathematical-programing-based; 2: Heuristic methods and Metaheuristics; ✓ Considered; x: Not considered
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stage, the expected operation cost of the EDS is calculated according to the realization

of the uncertainties (wait-and-see decisions). The proposed MILP model is based on

(Tabares et al. 2016) and assumes that: the operation of the EDS is represented by a

balanced AC linearized power flow model and the loads are modeled as constant pow-

ers; CO2 emissions are penalized in the objective function with an emission cost; and

the RES that will be allocated belong to the distribution system operator. Similar to

(Tabares et al. 2016), the original non-linear model is transformed into an equivalent

linear model using the piecewise g-function for the square calculation of a given value

(Wolsey 1998).

Objective function

The objective function aims the minimization of the present value of investment and

operational costs. Thus, the total cost (1) considers the investment costs in EVCSs (2)

and RES (3), jointly with the operational costs related to the energy imported by the

substation (4), RES maintenance costs (5), and CO2 emissions costs (6). The function

f(τ, λ) = 1 − (1 + τ)−λ/τ allows the calculation of present value of the annualized cost.

The description of sets, indices, parameters, and variables used in the model is available

in the Nomenclature at the end of this paper.

min TC :
X
p
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Constraints

The proposed model has the following types of constraints: Steady state operation, op-

erational limits, investment limits, RES model, and EVCS model.

Steady state operation

Expressions (7)–(10) set the steady-state operation of the EDS and are based on

(Franco et al. 2014). The active and reactive power balances are expressed by (7) and

(8). The voltage drop is determined by (9), while (10) represents the relationship be-

tween the voltage at node i, the current and the active/reactive power flow through cir-

cuit ij in scenario ω and period p. Function g(Pij, ω, p,Qij, ω, p, Γ) in (10) approximates
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the sum of the squares of variables Pij, ω, p and Qij, ω, p, using Γ blocks in a piecewise

representation (Wolsey 1998).

X
mi
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X
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Operational limits

Expressions (11)–(17) define the operating limits in the EDS. Thus, voltage limits are

guaranteed by (11), while (12)–(14) limit the current, active and reactive power flows

through circuit ij. The square of the apparent power supplied in each substation is de-

termined by (15) and limited by (16). Finally, (17) ensures that there is only a single dir-

ection of flow through circuit ij.

V 2 ≤V sqr
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Investment limits

Constraints (18) and (19) guarantee that only one investment decision is carried out for

EVCSs and WT units, at each node. On the other hand, (20) limits the number of PV

units that can be installed at each node during the planning horizon, while (21) limits

the number of EV chargers in each node. Expressions (22) and (23) refer to the binary

characteristic of the investment variables (EVCSs and WT/units) and integer (PV units

and EV chargers) of the components that can be added to the EDS.
X
p

xEVr;p ≤1 ∀r ð18Þ

X
p

xwtk;p≤1 ∀k ð19Þ
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RES model

The operation of the WT units is represented by limiting the injected active/reactive

power according to the capability curves and power factor restrictions (Rueda-medina

et al. 2013). Thus, WT units are modeled using the capacity curve of a double-fed in-

duction generator. To establish the generation limits, the points ðPwt
k;1;Q
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k;1Þ; ðPwt

k;2;Q
wt
k;2Þ;
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k;3;Q
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k;4;Q
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k;4Þ were defined. Capacity curve is linearized using constraints

presented in (24)–(28). The details of this formulation can be found in (Rueda-medina

et al. 2013). The operational limits of active and reactive power by RES are shown in

(29) and (30) for WT units, and (31) and (32) for PV units.
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EVCS model

The EVCS model is based on (De Quevedo et al. 2019). Constraint (33) ensures that

the charging demand in EVCSs does not surpass the capacity of the stations, while (34)
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determines that the charging demand in EVCS corresponds to the EV demand obtained

with the method presented in the following section “Uncertainty modelling”.

DEVCS
r;ω;p ≤

XP
t¼1

X
c

NEV
r;c;pP

EV
c ∀r;ω; p ð33Þ

X
r

DEV
r;ω;pCS ¼ DEV

ω;p ∀ω; p ð34Þ

Uncertainty modelling
The uncertainties brought by intermittent renewable generation, future demand

growth, and EV charging demand represent challenges to the reliable operation and

planning of power systems (Zhou et al. 2017). Thus, a proposal for the allocation prob-

lem of EVCSs and RES that is more appropriate and committed to reality must include

these uncertainties. In this work, the uncertainties related to consumer demand, EV de-

mand, and renewable generation are considered.

Method for forecasting EV charging demand

Electrical system operators are interested in forecasting the EV charging demand to as-

sess the impacts and needs for updating the EDS infrastructure (Knezović et al. 2017).

To quantify the EV charging demand, a method to model its uncertainties is proposed

here, based on (De Quevedo et al. 2019), that comprises seven steps described as

follows:

1. For each EV, randomly select an initial state of charge (SOC) value.

2. For each EV v and day d, randomly (uniform distribution) assign a total daily travel

a (from 10 km to 200 km).

3. If the SOC of the EV is enough to make the travel a, the SOC is updated and we

go to step 5. Otherwise, go to step 4.

4. The EV should be charged with at least the SOC necessary to carry out the travel.

After charging the vehicle, the SOC and the charging demand (kW) are updated.

EV arrival times are selected based on the user behavior of the fuel vehicles

presented in (Federal Highway Administration 2009).

5. If the last day was evaluated, go to step 6. Otherwise, evaluate the next day and go

to step 2.

6. If the last EV was evaluated, go to step 7. Otherwise, evaluate the next EV and go

to step 1.

7. Repeat steps 1 to 6 until each EV completes all daily trips. Finally, calculate the

total demand (kW) for all EVs, for each hour and day.

The algorithm above was implemented in MATLAB (Mathworks 2017) considering

two types of EVs with 40 kWh (Nissan leaf) and 60 kWh (Chevrolet Bolt) batteries. An

analysis to obtain the charging profiles is carried out for the planning period of 1 year.

As mentioned earlier, for each vehicle, a random SOC within the interval [0.2, 1.0] is

initially selected; note that this happens only on the first trip of each vehicle. Eq. (35)
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determines the SOC of the vehicle v on day d, while (36) calculates the remaining bat-

tery capacity. Finally, (37) is used to determine the energy used by vehicle v on day d.

SOCv;d ≤
CPv;d

CNv
∀v; d ð35Þ

CPv;d ¼ CNv−CUv;d ∀v; d ð36Þ

CUv;d ¼ da;v;dCONv þ CUv;d−1∀a; v; d ð37Þ

The simulation was performed considering 1000 vehicles (half with 40 kWh and half

with 60 kWh). After its execution, the EV charging demand for each hour of the year

was obtained. Figure 1 illustrates the obtained EV average daily demand profile as well

as the demand profile calculated for day 235; this day was chosen because it has the EV

charging peak demand along the year: 4650 kW at 19:00. Note that there is a variation

in the demand profiles, and the maximum demand registered on day 235 is about 20%

higher than the average demand profile.

The SOC is separated into ten different categories (see Table 2) to facilitate the ana-

lysis. Figure 2(a) and (b) show the probability distribution function (PDF) of the initial

and final SOC of the vehicle, respectively. Figure 4(a) shows that the vehicle is more

probable to be charged when the SOC is below 0.5 (Categories 1–5). On the other

hand, after charging (see Fig. 2(b)), the SOC is more likely to be larger than 0.5

(Categories 6–10).

Figure 2(c) and (d) show the cumulative distribution function (CDF) of the initial and

final SOC, respectively. The probability of the initial SOC to be between 0 and 0.5

(Categories 1-5) is 85.6% (Fig. 2(c)), while the probability of the final SOC being above

0.5 (Categories 6-10) is 91.4% (Fig. 2(d)). The information provided by the calculated

profiles will be used to represent the power related to EV charging in the proposed

model. Finally, the proposed method to forecast EVs demand is summarized in Fig. 3.

Scenario generation method

The set of scenarios is created from annual historical data of stochastic parameters

using historical demand data (ONS 2019), solar irradiation data (Renewables 2021),

wind speed data (Renewables 2021), and the EV charging demand previously provided.

Since a high number of scenarios can be obtained, the k-means scenario reduction

method is applied to achieve computational tractability. The hourly data are divided

E
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Average annual EV demand
EV demand recorded on day 235
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Fig. 1 EV charging demand profile
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Table 2 SOC categories

Categories Value

1 0.0 ≤ SOC ≤ 0.1

2 0.1 <SOC ≤ 0.2

3 0.2 <SOC ≤ 0.3

4 0.3 <SOC ≤ 0.4

5 0.4 <SOC ≤ 0.5

6 0.5 <SOC ≤ 0.6

7 0.6 <SOC ≤ 0.7

8 0.7 <SOC ≤ 0.8

9 0.8 <SOC ≤ 0.9

10 0.9 <SOC ≤ 1.0

Fig. 2 a PDF of the initial SOC, b PDF of the final SOC, c CDF of the initial SOC, and d CDF of the final SOC
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into 2 seasons; each season has 2 sub-blocks (day and night). Moreover, each sub-block

is reduced to 10 clusters using k-means (the number of clusters was arbitrarily defined).

The adopted process can be described in the following steps:

1 Historical data on demand, solar irradiance, and wind speed are normalized by

their corresponding maximum values.

2 The annual duration curve for each stochastic parameter is classified into two

seasons (blocks of time): winter and summer. The data contained in the time

blocks are classified into two sub-blocks (night and day).

3 The number of required clusters is defined. The k-means method is applied to

each sub-block. Thus, the data contained in each sub-block is categorized

according to the number of clusters previously established. At the end of the

process, centroids of each cluster are determined.

4 The set of scenarios is stored in a matrix that represents 40 operating conditions

with four columns for the uncertain parameters (10 clusters x 2 seasons x 2

sub-blocks).

5 The probabilities for each scenario are calculated by dividing the number of hours

in the respective scenario by the sum of hours within a block of time.

Renewable generation profiles are obtained following the method in (Montoya-Bueno

et al. 2015). The power profiles of the WT units are obtained, for each scenario,

through linearization of the power curve, which is a function of the wind speed (38).

Fig. 3 Flowchart of the proposed method to forecast EVs demand
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Moreover, power profiles of the PV units are obtained in (39), depending on the cell

junction temperature (40).

Pwt ¼

0;
PR

vR−vI
vþ PRð1− vR

vR−vI
Þ;

PR;

0;

8>>>>><
>>>>>:

v < vI

vI ≤v < vR
vR≤v < vO

v≥vO

ð38Þ

Ppv ¼ PSTC
G

1000
1þ δ Tcell−25ð Þ½ �

� �
ð39Þ

Tcel ¼ Tamb þ ðNOCT−20
800

ÞG ð40Þ

Tests and results
The proposed approach was implemented in the mathematical language AMPL (Fourer

et al. 2003) and solved using the commercial solver CPLEX (IBM 2019), in a computer

with an Intel Xeon E5-2650 processor and 64GB of RAM. The proposed model is vali-

dated using the 24-node EDS adapted from (Tabares et al. 2016), which has 20 load

nodes, four substations, a nominal voltage of 20 kV, and the horizon of 10 years is

divided in two periods (5 years for each one). The upper and lower voltage magnitude

limits are 1.05 and 0.95 pu. The EVCS operational cost is considered to be 10% of the in-

stallation cost and is included in the investment cost (Banol Arias et al. 2017) Further-

more, it is assumed that the EVs demand grows 10% in the second period of the planning.

The energy supplied cost in the substation is 0.1 USD/kWh and the interest rate is 10%.

Data associated with demand, substation capacity, scenarios used, EVCSs, and RES are

available in (De Lima et al. 2021).

Table 3 Main results for Cases I and II

Investment costs ( millions of USD)

Case I II

EV charging stations - 1.81

Photovoltaic generator 6.28 5.94

Wind turbine 14.40 14.40

Total investment cost 20.68 22.15

Operational costs (millions of USD)

Substation energy 93.16 88.00

RES Operation & Maintenance 1.66 1.58

CO2 emissions 21.44 20.25

Total operational cost 116.26 109.83

Total cost 136.94 131.98

CO2 emissions (ktons)

RES emissions 14.24 13.5

Substation emissions 521.67 492.85

Total emissions 535.91 506.30
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The results for the planning were analyzed according to the following case studies:

Case I) The allocation problem of RES is optimized without investments in EVCSs;

Case II) Joint optimal allocation of EVCSs and RES; Case III) Sensitivity analysis with

different CO2 emission rates; and Case IV) Sensitivity analysis with EV penetration

levels.

The investment plan for Case I determined the following actions: (1) First period: al-

location of eight WT units at nodes 3, 4, 5, 9, 11, 14, 16 and 19; and installation of one

hundred one PV units. (2) Second period: Allocation of six PV units at node 10. On the

other hand, the investment plan for Case II defined the following proposals for each

period: (1) First period: allocation of eight WT units at nodes 3, 4, 5, 9, 11, 14, 16 and

19; installation of eighty nine PV units; and allocation of five EVCSs 12 at nodes 3, 6, 8,

14, and 15. (2) Second period: Allocation of sixteen PV units (three at node 6, eight at

node 10, and five at node 13). A summary of the main results for Cases I and II is

shown in Table 3. It is possible to note, that the total cost for Case I (without invest-

ments in EVCSs) is higher than the cost related to Case II, with a difference of approxi-

mately 3.62 %. Moreover, Case II, which simultaneously optimizes the allocation of

EVCSs and RES, resulted in lower emissions than Case I (a difference of 5.53%). The

best expansion plan (Case II) is illustrated in Fig. 4.

A sensitivity analysis was performed with different CO2 emission rates (Case III).

The results of this analysis are summarized in Table 4. The first and the last solutions

(1 and 9) represent the extreme solutions, with solution 1 presenting the lowest cost

and maximum CO2 emission value and solution 9 the opposite. The first solution

represents Case II, in which the problem is optimized without directly restricting CO2

emissions, aiming to minimize investment and operational costs (including emissions

costs). Moreover, it is noted in Table 4 that to reduce CO2 emissions, investment in RES

increases. Figure 5 shows the conflict between minimizing costs and reducing emissions.

Fig. 4 Topology of the expansion plan (Case II)
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It is noted that the decrease in emission values leads to an increase in the total planning

cost.

A sensitivity analysis was performed varying the EV penetration level. Figure 6 illus-

trates how the total cost increases as the EVs demand increases, with vehicle penetra-

tion ranging from 60% to 140%, emphasizing the importance of adequately forecasting

the EVs charging demand.

Conclusions
A two-stage stochastic programming model for the simultaneous allocation problem of

EV charging stations (EVCSs) and renewable energy sources (RES) in electrical distri-

bution system (EDS) has been proposed in this paper. The proposed mixed-integer lin-

ear programming model aims to minimize investment and operational costs (including

CO2 emission costs). Additionally, uncertainties related to conventional demand, EV

demand, and renewable generation were considered.

Results showed that the installation of EVCSs has a positive impact on the EDS, redu-

cing the expansion plan costs, despite the investment costs in this technology. More-

over, the integration of EVCS with RES contributes to the reduction of CO2 emissions,

showing that the simultaneous allocation of these technologies can bring both eco-

nomic and environmental benefits. A sensitivity analysis has been performed with dif-

ferent CO2 emission rates. Results demonstrate that an increase in RES investments

leads to CO2 emission reduction. However, the reduction of CO2 emissions results in

increasing costs, evidencing the conflict between cost and emission reduction.

Table 4 Results for Case III

Solution Total cost (millions of USD) CO2 emissions (ktons) RES Investments
(millions of USD)

1 131.98 506.30 20.34

2 132.03 503.22 21.10

3 133.28 499.75 22.15

4 134.75 496.49 23.37

5 138.41 493.21 24.80

6 141.42 489.97 26.56

7 143.29 486.72 29.18

8 146.43 483.45 33.07

9 151.25 480.20 45.64
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Fig. 5 Efficient frontier for case III
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Future work will consider the uncertainties associated with the penetration of EVs

and RES. Besides, a new proposal would address the robust optimization that has been

little explored in the specialized literature in comparison with stochastic programming.

Nomenclature
Indices:

ω Index of scenarios.

a Index of daily travel distance.

b Index of candidate nodes for installation of ESS.

c Index of alternatives for EV chargers.

d Index of days.

i Index of nodes.

ij Index of circuits.

k Index of candidate nodes for installation of WT units.

p Index of planning periods.

r Index of candidate nodes for installation of EVCSs.

s Index of substation nodes.

u Index of candidate nodes for installation of PV units.

v Index of EVs.

Parameters:
�β
pv
u Limit of PV units to be installed in each candidate node.

δ Power-temperature coefficient.

ζpv Emission rate of PV units.

ζsi Emission rate of energy supplied by substations.

ζwt Emission rate of WT units.

λ Number of years in each period.

πω Probability of the scenario s.

τ Interest rate.

Γ Number of discretization blocks.

Fig. 6 Sensitivity analysis with different EVs penetrations (Case IV)
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Cem Cost of CO2 emissions.

CEV
c Cost coefficients for EV chargers type c.

C
EV
c Maximum number of EV chargers type c.

CINST Installation cost for the EVCS.

Cpv
u Cost coefficients for PV unit investment at node u.

copv Maintenance and operational cost coefficients for PV units.

cowt Maintenance and operational cost coefficients for WT units.

Cwt
k Cost coefficients for WT unit investment at node k.

CONv Electric vehicle consumption

CPv, d Remaining battery capacity for the vehicle v and day d.

CUv, d Used vehicle battery capacity for the vehicle v and day d.

DEV
ω;p Total EV demand in scenario ω and period p.

da, v, d Travel distance a of vehicle v on day d.

dω Duration (hours) of scenario ω.

f Dω Demand factor of scenario ω.

f pvω PV generation factor of scenario ω.

G Solar irradiance.
�Iij Maximum current of circuit ij.

lij Length of circuit ij.
�Npv Maximum number of PV units to be installed.

�Nwt Maximum number of WT units to be installed.

NOCT Nominal operating cell temperature conditions.

PD
i;p Active power demand at node and period p.

PEV
c Capacity of EV charger type c.

Pwt Output power of the WT units.

Pwt
k;h h-th point of the capability curve of WT unit k.

�Pwt
k Active power capacity of WT units at node k.

Ppv Output power of the PV units.
�Ppv
u Active power capacity of PV units at node u.

PSTC Power under standard test conditions.

QD
i;p Reactive power demand at node and period p.

�Qwt
k Upper reactive power limits of WT unit at k.

Qwt
k

Lower reactive power limits of WT unit at k.

Qwt
k;h h-th point of the capability curve of WT unit k

RL Conductor resistance.

SDi;p Apparent power demand at node i at period p.

SISi Apparent power capacity of the existent substation at node i.

SOCv, d State of charge EV v on day d.

Tamb Ambient temperature.

Tcell Cell temperature.
�V=V Upper and lower voltage limits.

v Wind speed.

vI Cut-in wind speed.
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vO Cut-off wind speed.

vR Rated wind speed.

XL Conductor reactance.

ZL Conductor impedance.

Variables:

βpvu;p Investment variable for a PV unit at node u and period p.

DEVCS
r;ω;p Charging demand in EVCS at node r, scenario ω and period p.

EMp CO2 emissions costs at period p.

ESp Operational costs related to the energy imported by the substation at period p.

IEVC Sp Investment costs in EVCSs at period p.

IRESp Investment costs in RES at period p.

Isqrij;ω;p Square of the current through circuit ij in scenario ω and period p.

NEV
r;c;p Number of EV chargers at node r, type c and period p.

ORESp RES maintenance costs at period p.

Pij, ω, p Active power flow through circuit ij in scenario ω and period p.

Ppv
u;ω;p Active power injected by the PV units at node u, scenario ω, and period p.

Ps
s;ω;p Active power supplied by the substation at node s, scenario ω, and period p.

Pwt
k;ω;p Active power injected by the WT units at node k, scenario ω, and period p.

PR Rated electrical power.

Qij, ω, p Reactive power flow through circuit ij in scenario ω and period p.

Qpv
u;ω;p Reactive power injected by the PV units at node u, scenario ω, and period p.

Qs
s;ω;p Reactive power supplied by the substation i at node s, scenario ω, and period p

Qwt
k;ω;p Reactive power injected by the WT units at node k, scenario ω, and period p.

Sgsqri;ω;p Square of the apparent power supplied by substation at node i, scenario ω, and

period p.

V sqr
i;ω;p Square of the voltage at node i, scenario ω, and period p.

xEVr;p Investment variable for installing an EVCS at node r and period p.

xwtk;p Investment variable for installing a WT unit at node k and period p.

y−ij;p Operational variable related to the forward direction of circuit ij and period p

yþij;p Operational variable related to the backward direction of circuit ij and period p.
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