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Abstract

Non-convex scheduling of energy production allows for more complex models that
better describe the physical nature of the energy production system. Solutions to
non-convex optimization problems can only be guaranteed to be local optima. For
this reason, there is a need for methodologies that consistently provide low-cost
solutions to the non-convex optimal scheduling problem. In this study, a novel
Monte Carlo Tree Search initialization method for branch and bound solvers is
proposed for the production planning of a combined heat and power unit with
thermal heat storage in a district heating system. The optimization problem is
formulated as a non-convex mixed-integer program, which is incorporated in a
sliding time window framework. Here, the proposed initialization method offers
lower-cost production planning compared to random initialization for larger time
windows. For the test case, the proposed method lowers the yearly operational cost
by more than 2,000,000 DKK per year. The method is one step in the direction of
more reliable non-convex optimization that allows for more complex models of
energy systems.

Keywords: Mixed integer non-linear optimization, MINLP, District heating scheduling,
Modeling, Tree search, Initialization, Non-convex optimization

Introduction
Scheduling of district heating production is a well-studied problem in literature (Deng

et al. 2017; Lésko et al. 2018; Gopalakrishnan and Kosanovic 2015; Rong and Lahdelma

2007). It is vital to the daily operation of district heating systems in order to keep oper-

ational costs low and ensure proper functioning to meet demand at all times. Add-

itionally, the optimal scheduling problem is used for techno-economic assessment of

new potential investments and when building new District Heating (DH) systems
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(Elsido et al. 2017a). Generally, there are four formulations of the optimal scheduling

problem, linear programming (LP) (Lozano et al. 2009; Rong and Lahdelma 2005),

mixed-integer linear programming (MILP) (Söderman and Pettersson 2006; Arcuri

et al. 2007), non-linear programming (NLP) (Bindlish 2016) and mixed-integer non-

linear programming (MINLP) (Deng et al. 2017; Lésko et al. 2018). The advantage of

MILPs and LPs is that they can be solved with commercially available solvers for a glo-

bal optimum. Despite this feature, using linear models to describe physical systems that

typically are highly non-linear introduces error into the model, as a linear model of a

non-linear system can at best only be a good approximation. Non-linear models on the

other hand, while allowing better systems descriptions are inherently more difficult to

solve. For non-linear models that are also non-convex, the problem is even worse, be-

cause a solution to a non-convex problem can only be guaranteed to be locally optimal.

A common technique for dealing with mixed-integer non-linear models is to approxi-

mate the models as mixed-integer linear programs via linearization in order to guaran-

tee that the solution is globally optimal (Lésko et al. 2018; Elsido et al. 2017b). The

accuracy of a linear approximation is dependent on how many linear segments a non-

linear function is divided into. This introduces a trade-off between the complexity and

the accuracy of the approximation. The more segmented the piece-wise linearization is

the better the accuracy. However, each segment introduces additional variables to the

model which makes the model bigger and more complex.

As an alternative to linear approximation, several methods exist for solving mixed-

integer non-linear programs which do not rely on linearizing the problem. The

methods can generally be divided into two groups, derivative-based and derivative-free.

Derivative-free algorithms for mixed-integer non-linear programs include evolutionary,

genetic, swarm intelligence algorithms (Elsido et al. 2017b; Boukouvala et al. 2016; Luo

et al. 2007). Derivative-based methods employed in commercially available software for

MINLP include cutting planes, branching and bounding (Boukouvala et al. 2016). As

the solution of non-convex optimization problems is not guaranteed to be globally opti-

mal, a common technique to find a good local solution is to repeatedly solve the

optimization problem (Tveit et al. 2009; Savola et al. 2007). The employment of this

method benefits from computationally efficient solvers and methods that consistently

yield solutions with a low optimality gap.

In a recent study (Makkonen and Lahdelma 2006), the authors propose the use of the

Power Simplex branch-and-bound algorithm to solve the non-convex scheduling prob-

lem of a combined heat and power unit operation. The problem is divided into hourly

subproblems, which can be solved sequentially. This is a feasible choice in part because

the systems do not have a thermal energy storage unit. The authors emphasize that the

Power Simplex branch-and-bound algorithm is efficient because of its capability to re-

use parent nodes to calculate child nodes. Rong and Risto (Rong and Lahdelma 2007)

proposes an envelope-based branch-and-bound algorithm that employs a pruning tech-

nique to improve the computation speed of solving non-convex non-linear mixed-

integer program for production planning of a combined heat and power plant. Similar

to Simo and Risto (Makkonen and Lahdelma 2006) the problem is formulated as on

hourly optimization. The authors succeed in decreasing the computation time signifi-

cantly compared to ILOG CPLEX 9.0 MIP solver and the Power Simplex branch-and-

bound solver. Gopalakrishnan and Kosanovic (Gopalakrishnan and Kosanovic 2015)
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proposes a hybrid genetic algorithm for the solution of the non-convex optimal sched-

uling problem of a combined heat and power plant. It combines genetic algorithms for

exploring the integer solutions space and employs a gradient-search for exploiting iso-

lated regions of the solution space. The authors highlight that the proposed algorithm

outperforms classical branch-and-bound algorithms in terms of capability to find inte-

ger feasible solutions and moreover that the optimality gap of solutions with the pro-

posed method is lower than with branch-and-bound. Lastly, the authors emphasize that

the proposed methods are computationally more efficient than classical branch-and-

bound algorithms.

In two studies (Tveit et al. 2009; Savola et al. 2007), the repeated initialization of the

non-convex solver is based on random initial solutions. This method is intuitively good

at probing the solution space, but its speed can be questioned. To improve the compu-

tational efficiency of solving non-convex mixed-integer non-linear problems, (Soares

et al. 2015) proposes a warm start method in combination with the Differential Search

and the Quantum Particle Swarm Algorithms. The warm start methods are based on

the solution of the convex relaxation of the non-convex problem. The authors found

that the warm start method combined with evolutionary and swarm intelligence algo-

rithms is capable of drastically reducing computation time.

This paper proposes a new warm start initialization procedure based on a stochastic

discrete tree search, called Monte Carlo Tree Search (MCTS), which constructs initial

feasible solutions for a multi-period steady-state scheduling problem in a DH system

with a combined heat and power unit and thermal storage. The authors are not aware

of any other studies where tree search has been used as an initialization method. The

proposed method is more consistent in finding good solutions than random

initialization when the problem size grows. Therefore, the method constitutes an im-

provement over random initialization when planning for longer periods (12–14 h),

which enables smarter storage use and lower operational cost.

The paper is structure as follows; 1) a mathematical model is first presented which

describes the district heating system for which the scheduling problem is solved, 2) an

optimization problem is defined based on the developed model, 3) the new Monte

Carlo Tree Search initialization methods is introduced, 4) the experimental setup is de-

fined, 5) the results are presented and discussed and 6) a conclusion is made.

District heating system model development
In this section, a mathematical model of a DH system consisting of a combined heat

and power unit (CHP) with Thermal Energy Storage (TES) is developed. The model

will briefly be presented, but not explained in detail as the model is simply regarded as

a test suite for the optimization methods tested. The system is modeled as a quasi-

dynamic system with a time step of 1 h and it is illustrated in Fig. 1.

The production-side is located on the upper half of the figure where the plant sup-

plies thermal energy ṖH to the system given by 1). The plant operator then has the op-

tion to either charge or discharge the TES resulting in the thermal energy flow Q̇flow1 to

or from the pipe node given in (2). The node has been marked with a blue ring on the

figure. The direction of the flow depends on the binary variable xi. (3) gives the thermal

energy supplied to the transmission line while (4) and (5) are the energy and mass
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balance equations for the node respectively. Lastly, (6) describes the temperature of the

water flowing to or from the storage, which also depends on the flow direction.

ṖH;i ¼ ṁv;iCp1 Tv;i−Tr2;i
� � ð1Þ

PH ;i−Qflow1;i−Qflow2;i ¼ 0 ð2Þ

Q̇flow2;i ¼ ṁ f ;icp;1 T f 1;i−Tr2
� � ð3Þ

Q̇flow1;i ¼ ṁx;icp 2xi−1ð Þ Tx;i−Tr2;i
� � ð4Þ

ṁv;i−ṁx;i 2xi−1ð Þ−mf ;i ¼ 0 ð5Þ

Tx;i ¼ Tv;ixi þ Ts;i 1−xið Þ ð6Þ

The heat loss per increment pipe is proportional to the temperature difference be-

tween fluid temperature and ground temperature. For simplicity, it is assumed that the

fluid temperature is constant during the whole pipi segment and only drops at the out-

let. This gives the forward and return heat loss expressed in (7) and (8) respectively.

Eqs. (9), (10) and (11) describe the temperature of the water flow in terms of the for-

ward heat loss Φ̇ f;i the heat demand ḊH and the return heat loss Φ̇r;i respectively. The

UparL factor has been derived empirically to match data for one of the transmission

lines of an actual CHP plant. Lastly, the pump work of the system is given in (12) as a

third-order polynomial, which also has been derived empirically from data for a trans-

mission line at a district heating company.

Φ̇ f ;i ¼ T f 1;i−Tsoil
� �

UparL ð7Þ

Φ̇ f ;i ¼ Tr1;i−Tsoil
� �

UparL ð8Þ

Fig. 1 Illustration of the district heating system modeled showing the production side at the top and the
demand side at the bottom
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T f 2;i ¼ T f 1;i−
Φ̇ f ;i

mf ;icp1
ð9Þ

Tr;i ¼ Tr2;1−
ḊH;i

ṁcp
ð10Þ

Tr2;1 ¼ Tr1;i−
Φ̇r;i

ṁ f ;icp
ð11Þ

Ẇp ¼ α3ṁ
3
f ;i þ α2ṁ

2
f ;i þ α3ṁ f ;i ð12Þ

The TES is modeled as a lumped body meaning that the temperature is assumed uni-

form across the entire volume. The energy balance of the storage Qs, i is expressed in

(13). The thermal energy added or removed from the storage Q̇s;pipe;i is given by (14)

and the heat loss is given by Newtons Law of Cooling in (15) where the heat-

conducting surface area As, i is varying with the mass as given in (16). The mass balance

of the storage is given in eq. (17) and the temperature of the storage is expressed in

(18).

Qs;i ¼ Qs;i−1 þ Q̇s;pipe;i−Q̇s;loss;i

� �
Δt ð13Þ

Q̇s;pipe;i ¼ ṁx;icp 2xi−1ð Þ Tx;i−TR
� � ð14Þ

Q̇s;loss;i ¼ hAs;i T s;i−Ta;i
� � ð15Þ

As;i ¼ As; max
ms;i

ms; max
ð16Þ

ms;i ¼ ms;0 þ
Xi

j¼1

ṁx; j 2x j−1
� �

Δt ð17Þ

Ts;i ¼
Qs;i

ms;icp2
þ TR ð18Þ

The electricity produced by the CHP unit is modeled as shown in Fig. 2. The model

is a simplified version of an actual CHP unit at a Danish district heating company. The

figure shows that the plant has two modes of operation; ṖH; min1≤ṖH ≤ṖH; max1 and

ṖH ; min2≤ṖH ≤ṖH ; max2. This is expressed mathematically in (19) by introducing the bin-

ary variable z.

ṖE;i ¼ zi a1ṖH ;i þ b1
� �þ 1−zið Þ a2ṖH ;i þ b2

� � ð19Þ

Optimization problem
The hourly cost of production is defined in (20), where the pump work, ẆP;i , and the

electricity production, ṖE;i , is given in (12) and (19) respectively. EPi is the spot market

electricity price and the second term, therefore, accounts for the revenue from the sale

of electricity while the first term, accounts, for the fuel cost, where FPi is the fuel price

and Ḟi is the fuel consumption given by (21). The objective function of the MINLP is

thus defined by summing the costs for each time step in (22).
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f c;i ¼ Ḟ i FPi þ ẆP;i−ṖE;i
� �

EPi ð20Þ

Ḟ i ¼ ṖE;i þ CvṖH ;i

ηE
ð21Þ

Minimize
XN
i¼1

f c;i ð22Þ

In (21) an equivalent electricity production is calculated from the heat production by

multiplying the heat production with the ratio between electricity and heat production

at constant fuel consumption, Cv (The Danish Energy Agency and Energinet 2019).

The production is then divided by the electrical efficiency ηE. The constraints for the

optimization problem are:

ms; min≤ms;i≤ms; max;ms;i ℝ

T f 2; min≤T f 2;i≤T f 2; max;T f 2;i∈ℝ

Tr1; min≤Tr1;i≤Tr1; max;Tr1;i∈ℝ

Tv; min≤Tv;i≤Tv; max;Tv;i∈ℝ

ṁv; min≤ṁv;i≤ṁv; max; ṁv;i∈ℝ

ṁx; min≤ṁx;i≤ṁx; max; ṁx;i∈ℝ

0≤x≤1; x∈ℤ

0≤z≤1; z∈ℤ

z˙PH; min1 þ ð1−zÞ˙PH ; min2≤˙PH;i≤z˙PH; max1 þ ð1−zÞ˙PH; max2; ˙PH;i∈R

The authors have decided to use a Branch-and-Bound solver named Apopt which is

implemented in the APMonitor Optimization Suite. The optimization suite is free to

Fig. 2 Illustration of the two line-segments used to model the electricity production as function of heat
production. The binary z-variable controls which line is used
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use, offers free cloud computing services, and is compatible with Matlab and Python

(APMonitor 2020a). The Apopt solver uses a combination of an active set method and

Branch-and-Bound to manage the integer variables (John et al. 2014; APMonitor

2020b). As steady-state optimization of large problems can be time-consuming, the au-

thors have chosen to adopt a sliding time window method for dividing the optimal

scheduling problem into smaller more manageable problems which can be solved in se-

quence. The framework for the optimization can be seen in Fig. 3. In this framework,

the optimization of each window is solved Trymax times and the best solution to each

subproblem is kept for the construction of the final solution.

The sliding time window method introduces two new hyperparameters, namely the

length of the sliding window, WL, and the stride, WS, where WS ≤WL. If the stride is

less than the window length it means, there is an overlap between every pair of adjacent

windows. If this is the case, the suboptimization of the latter window takes precedence

over the region of overlap. Another important consideration is that the minimum look

ahead at any discrete time step is given by WL −WS. As an example, consider a sliding

time window optimization with WL = 5 and WS = 5, in this example the planning of the

5th hour will not have accounted for any subsequent hours. If WS = 1 instead, the

scheduling at each discrete time step will have considered the subsequent 4 h.

Fig. 3 Flowchart of the optimization framework
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Monte Carlo tree search initialization method
The implementation of MCTS in this work requires a static set of actions. This set of

actions is composed of several layers, one for each discrete time step in the

optimization period. Each layer consists of a number of actions, which are sets of deci-

sion variables. E.g. for the optimization problem presented in this work, there are 5 de-

cision variables chosen as Tv, ṁv , ṁx , x, z, which means an action could be defined as

e.g. a = {60, 3, 1, 1, 0}. Given some state of the system s0 = {ms, 0, Ts, 0}, defined by the

mass contained and the temperature of the storage, the action would then transition

the system into a new state. Figure 4 visualizes an exemplified version of the actions

available at each discrete time step. In the figure, each horizontal row is a layer consist-

ing of several actions, shown as grey dots. The number of actions per time increment

may be varied across time steps. Additionally, uniform noise is added to each action to

ensure variance in the initial solution. It was found that increasing the number of dis-

cretizations for the variable ṁx improved the overall tree search for this problem. The

static set of actions can be seen as a discrete mapping of the solution space. The task of

the MCTS algorithm is therefore to search this set of actions to find good feasible can-

didate solutions in the discrete solution space.

When the set of actions for each hour has been created, it is deployed in an

MCTS algorithm. The algorithm developed in this work is based on the Upper

Confidence Bounds applied to Trees-algorithm (UCT) from (Kocsis and Szepesvári

2006) and the implementation in (Maddison et al. 2016). In this algorithm, each

state-action pair (s, a) at simulation time t is associated with an expected reward

Qt(s, a) and an exploration bias ut(s, a). Typically, the expected reward Qt(s, a) is

calculated by averaging over all the backpropagated rewards that have passed

through the node. Each reward is found in the selection phase when a leaf node is

encountered. When this happens, random simulation is initiated from the selected

leaf node until a terminal state is reached, determining the reward. The random

simulation thus acts as a state evaluation function and is advantageous in situations

where domain-specific evaluation functions are not available. This method was

proved to guarantee an optimal policy when simulation time goes to infinity in

(Kocsis and Szepesvári 2006). However, as argued in (Ramanujan and Selman

2011), in cases where a domain-specific evaluation function does exist, the search

can be made more efficient and less time-consuming by replacing the random

simulation with an evaluation function.

Fig. 4 Visualization of available actions for each discrete time step i
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In the case of an optimization problem, an objective measure already exists in the

form of an objective function, which justifies the before-mentioned replacement. For

the implementation in this study, Qt(s, a) will also not represent a reward, but rather a

cost as the problem solved is formulated as a minimization problem. Additionally, pre-

liminary experiments in this work confirmed, that calculating Qt(s, a) based on the

minimum value among the child nodes of state-action pair (s, a), instead of averaging

over backpropagated values, yielded better results as also discussed in (Ramanujan and

Selman 2011). Therefore, Qt(s, a) is defined as shown in (23) while the exploration bias

ut(s, a) is kept in the original form presented in (Kocsis and Szepesvári 2006), as given

by (24).

Qt s; að Þ ¼ min
b∈M sað Þ

Qt sa; bð Þ½ � ð23Þ

utðs; aÞ ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln ½Pb∈MðsÞ Nt ðs; bÞ �

Ntðs; aÞ

s
ð24Þ

πðsÞ ¼ argmin
b∈MðsaÞ

½ Qtðs; bÞ−utðs; bÞ � ð25Þ

In (23), the expected cost Qt(s, a) of taking action a in state s is found by finding the

minimum value among state-action pairs (sa, b) for the resulting child state sa. The set

of actions available in state sa is given by M(sa). In (24), M(s) is the set of actions avail-

able in state s and Nt(s, a) is the visit count of taking action a in state s. The equation,

therefore, compares the total visit count of the parent state s to the child state resulting

from action a. The function is designed such that it grows when an action is picked less

than the alternatives and therefore encourages exploration. c is a hyperparameter con-

trolling the trade-off between exploration and exploitation. The action selected in each

state, called the olicy π(s), is given by (25) based on both how promising the action

looks; Qt(s, b), and the degree of exploration; ut(s, b). Figure 5 summarizes the algo-

rithm in a flowchart.

To exemplify how the algorithm works, an illustration has been made in Fig. 6. The

nodes drawn represent the system states while the edges represent actions transitioning

the system from one state to another. As seen in Fig. 6a, where two nodes have already

been expanded, the tree is traversed by iteratively selecting the best candidate among

child nodes using (25). Each node stores two values in memory, Qt(s, a) and Nt(s, b)

which are updated each time backpropagation passes through the node. The selection

is repeated until a child node is observed to also be a leaf node. In this case, a random

child leaf node is then selected and expanded as shown in Fig. 6b. In this expansion,

the feasibility of the chosen child node is first evaluated after which the scaled average

objective value Qt, leaf is calculated and backpropagated through the parent nodes using

(23). If the node is evaluated as infeasible, all child nodes can be pruned.

The average objective value is defined as the average objective of all the nodes tra-

versed, including the frequently expanded node. This set of nodes is given as the set I

in (26), where n is the number of nodes traversed. This is done to ensure comparability

of the objective value when it is propagated back through the search tree.

f c ¼
1
n

X
i∈I

f c;i ð26Þ
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Fig. 6 Exemplification of the MCTS algorithm with two available actions per discrete time step

Fig. 5 Flowchart of the MCTS algorithm
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Qt;leaf ¼
f c− f c; min

f c; max− f c; min
ð27Þ

When the average f c has been calculated, it is scaled to a value between 0 and 1 ac-

cording to (27). Here, fc, min and fc, max are the pre-determined lower and upper bounds

for the objective function. They are found by treating (20) as a linear program with the

variables WP, i, PE, i, and PH, i. The linear program is minimized and maximized separ-

ately for each of the two production modes in (19) for each hour i ∈ {1. . N}. This re-

sults in 4N linear programming solutions among which the minimum and maximum

values, fc, min and fc, max, are extracted. This scaling makes it more convenient to tune

the hyperparameter c in (24), as most use-cases of MCTS are within the domain of

board-games where an outcome often is represented by 0 and 1 - loss and win. When

the backpropagation reaches the root node, the selection starts over as shown in Fig.

6c, followed by expansion and backpropagation as shown in Fig. 6d.

Experimental setup
In order to test the effectiveness of the MCTS initialization method, it is incorporated

in the optimization framework described in Fig. 3 as the “Find feasible initial solution”-

step. It is bench-marked against random initialization using the Apopt Branch-and-

Bound solver (BB). Additionally, the MCTS initial solution will be fed to the Apopt

Non-Linear-Problem solver (NLP), which is the local solver used for each subproblem

in the branch and bound algorithm. The three methods are tested on an optimization

period of 48 h with a high variance in electricity price EP and a low variance in heat de-

mand ḊH as shown in Fig. 7. As explained earlier in Fig. 3, this period is divided into

several smaller optimization problems which are solved sequentially using the sliding

time window approach. A stride of 5 is used for all simulations while the window

Fig. 7 Electricity price (top) and heat demand (bottom) of the problem
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length WL is varied from 5 to 14. Because of the stochastic nature of both MCTS

initialization and random initialization, each sub-optimization is solved for 5 different

initial solutions before moving the time window, i.e. Trymax = 5. The hyper-parameter c

is initially set to 0.1 and is decreased by a factor of 0.9 for each 5e+ 4 iteration until a

solution is found after which c is held constant for additional 5e+ 5 iterations. This is

done to ensure that a solution is found within reasonable time and memory limits while

still allowing for exploration. The whole framework illustrated in Fig. 3 is repeated 5

times for each time window length WL, and for each of the 3 methods.

Results
Figure 8 shows the best operational schedule for each of the three methods. It is evi-

dent, that all methods yield operational plans that work to mitigate and or take advan-

tage of fluctuations in the electricity spot price by using the TES to allow for

overproduction of heat in hours with high electricity price and conversely to underpro-

duce in hours with low electricity price, covering the heat deficit with stored thermal

energy. Even though the best scheduling is markedly different for the three methods,

the relative difference in the total cost is only approximately 2%. The best solution is

found by the MCTS+BB method which gives a total cost of 1098 TDKK over the 48 h

period. Comparing this solution with the worst obtained solution of 1199 TDKK,

among all 45 simulations, instead gives a relative difference of approximately 9%. This

gives a difference of 18.25 mDKK/year, which shows the importance of choosing a

method that consistently produces low-cost operational plans.

To study the ability of each method to consistently produce low-cost operational

plans, Fig. 9 is introduced, which shows boxplots of the cost and computation time of

each method as a function of the size of the sliding time window. A key indicator of

the consistency of a method in this presentation is the placement of the quartiles and

the interquartile range. The interquartile range shows the spread in the operational cost

of and time of the solutions of each method. The interquartile range of Random + BB

Fig. 8 Best scheduling for each method. The MCTS+NLP solution was found with WL = 13 and a cost of
1120 TDKK. The MCTS+BB solution was found with WL = 12 and a cost of 1098 TDKK. The Random+BB
solution was found with WL = 14 and a cost of 1099 TDKK
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increases as the time window increases, which is likely caused by the increase in the

size of the solution space that makes it more difficult for the method to consistently

yield low-cost solutions. Large time windows enable scheduling methods to make better

use of the thermal storage to take advantage of fluctuations in the electricity price and

heat demand, which is seen as the total cost decreases as the size of the sliding time

window increases for all methods. A weakness of the Random+BB method is therefore

that the consistency decreases with the time window size. MCTS + BB does not exhibit

the same tendency, which indicates that it provides better consistency when the size of

the solution space increases. This is more evident from Fig. 10, where the simulation

results for windows in range 12 to 14 have been merged for the three methods. Here,

the interquartile range is shifted down for MCTS + BB compared to Random + BB in-

dicating that it is more feasible to use MCTS+BB for larger time windows. In fact, if

the yearly cost is calculated assuming that the median cost of each method is applicable

for the entire year, the cost of scheduling with MCTS+BB would be 2,182,700 DKK

lower than Random+BB corresponding to 1.7 DKK/MWh.

Fig. 10 Boxplot of objective function value for time windows in range 12 to 14. Each boxplot contains
15 samples

Fig. 9 Boxplot of objective function value (top) and simulation time (bottom) as a function of time window
across 5 simulations for each method
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The improved consistency that MCTS + BB provides over Random + BB comes at

the cost of computation time. The computation time is a vital factor in the

optimization framework as the optimization of each time window is repeated to combat

the non-convex nature of the MINLP. Figure 9 shows that the computation time of

MCTS + BB is shifted upward by a somewhat constant amount compared to Random

+ BB. As the initialization is the only difference between the methods, the shift must be

attributed to the MCTS algorithm. Despite of the longer computation time, MCTS +

BB is a feasible method for scheduling district heating production. With the Nordic

electricity market as a reference, the hourly spot price is only known 24 h in advance,

which means that it is only feasible to plan for a total of 24 h ahead. This gives a com-

putation time in the range of 1.5 to 2.0 h for the MCTS + BB method. This computa-

tion time can be lowered by parallelizing the optimizations of each time window. Also,

the MCTS algorithm can be implemented more efficiently in a compiled language like

C++ instead of Matlab to increase the speed of the algorithm. For improving the

consistency of the method even further, the hyperparameter Trymax can be increased,

so that the optimization of each time window is run more times. Implementing this

change, it will be possible to get consistent low-cost production schedules while only

running the overall framework of Fig. 3 once. The MCTS initialization in combination

with a branch and bound solver thereby provides a concrete and effective tool for non-

convex scheduling of district heating production.

Conclusion
This paper proposes an initialization method for branch and bound solvers to schedule

district heating production with storage optimally. The method uses a tree search strat-

egy to search a discretized solution space to find a low-cost region, used as an initial

solution for the solver. The paper finds that the MCTS initialization method success-

fully improves the consistency of solutions compared with random initialization for lar-

ger window sizes under the application of the sliding time window approach. Making it

a more scalable solution. MCTS lowered the per-unit cost of energy by 1.7 DKK/MWh

compared to random initialization under the assumption that the difference between

the median solutions of each would be constant throughout the year. This saving would

amount to more than 2 mDKK/year for the case system. The improvements provided

by the proposed method are a step towards making non-convex optimization more reli-

able, which will allow for more complex models describing energy units and the rela-

tions between them in complex energy systems.

The authors suggest several points of improvement, namely running the optimiza-

tions of each time window in parallel to decrease computation and increasing the num-

ber of runs to further improve the consistency of the method. Other improvements

should focus on creating heuristic rule sets to dynamically grow the search tree instead

of searching a predefined set of actions. This is expected to increase the efficiency of

the tree search considerably. Further research should focus on comparing the proposed

method for non-convex optimization to methods involving convex approximation of

the optimization problem.

Nomenclature
α1 First order coefficient in pump work equation
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α2 Second order coefficient in pump work equation

α3 Third order coefficient in pump work equation

Φ̇ f Thermal power loss from return path of transmission line

Φ̇r Thermal power loss from return path of transmission line

ḊH Sum of heat demand at consumer and distribution

Ḟ Fuel consumption

ṁv Outgoing mass flow rate at combined heat and power plant

ṁx Mass flow rate to/from thermal storage

ṁ f Forward mass flow rate in transmission line

ṖE Electricity production at combined heat and power plant

ṖH Thermal power production at combined heat and power plant

Q̇flow1 Thermal energy flow from node to the thermal storage

Q̇flow2 Thermal energy flow from node to the transmission line

Q̇s;loss Thermal heat loss from thermal storage

Q̇s;pipe Thermal energy flow in/out of the thermal storage

Ẇ p Pump work

ηE Electrical efficiency of combined heat and power plant in condensing mode

π(s) Policy state s

a action

As Area of heat conducting surface in thermal storage, which varies with contained

mass

cv Constant relating heat and electricity production at a constant fuel consumption

Cp1 Constant pressure specific heat of water with unit MJ
ton°C:

Cp2 Constants pressure specific heat of water with unit MWh
ton°C

EP Electricity price

i Subscript, hour

M(s) Action set of state s

ms Contained mass in thermal storage

MC Marginal cost of fuel consumption

Qt(s, a) Expected cost of action a in state s

Qs Energy content of thermal storage

s State

Ta Ambient temperature used to calculate storage heat loss

Ts Soil temperature used to calculate transmission heat loss

Tv Temperature of outgoing water flow at combined heat and power plant

Tx Temperature of water flow in pipe connecting to thermal

Tf1 Forward temperature in transmission line from node 1

Tf2 Temperature of district heating water at forward transmission line outlet

Tr1 Temperature of district heating water at return transmission line inlet

Tr2 Temperature of district heating water at return transmission line outlet

ut(s, a) Exploration bias of action a in state s

UparL Thermal power loss coefficient of transmission line

WL Length of the sliding time window

WS Stride of the sliding time windows
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x Binary variable describing whether the thermal storage is charging or discharging

z Binary variable describing the mode of operation of the combined heat and power

plant

Abbreviations
LP: Linear programming; MILP: Mixed integer linear programming; MINLP: Mixed integer non-linear programming;
NLP: Non-linear programming; MCTS: Monte Carlo Tree Search; TDKK: Thousand danish kroner; mDKK: Million danish
kroner; BB: Branch and bound; TES: Thermal energy storage; UCT: Upper confidence applied to trees-algorithm;
CHP: Combined heat and power
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