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Abstract

Mass adoption of battery electric vehicles (BEVs) and their associated charging
requirements introduce new electricity demand, which needs to be managed to
minimise electricity grid upgrades. Management of BEV charging requires coordination
and communication between various mobility and energy entities. Communication
protocols provide a set of rules and guidelines to facilitate the communication and
data exchange between two or more entities to ensure successful charging demand
management and electricity grid integration of BEVs. A key challenge is that companies
are currently developing and implementing several proprietary protocols to manage
BEV charging, which could risk losing or vastly under-utilising BEV charging demand
flexibility, and consequently hindering proper grid integration. This work presents the
status quo on communication protocols and standards for vehicle grid integration and
it is targeted for industries and governments. The objectives of the work are to review
current protocols, present some of the advantages of open protocols, identify
challenges and additional efforts required to develop, implement, and standardise
these protocols to ensure that charging infrastructure for electric vehicles is synergistic
with the operation of the electricity system.

Keywords: Electric vehicle, Charging infrastructure, Vehicle grid integration, Smart
charging, Open communication protocols, Standards, OCPP, ISO 15118, OpenADR, Third
party operator

Background
Battery electric vehicles (BEVs)1 can break our dependence on fossil fuels in both

transport and electricity sectors.

BEV mass adoption and the associated battery charging requirements introduce new

electricity demand, which needs to be managed to minimise electricity grid2 upgrades

(Fernandez et al. 2011; Calearo et al. 2019). Managing charging demand include shift-

ing BEV charging from existing electricity demand peak, avoiding creating new local

electricity demand peaks, and aligning BEV charging with renewable energy generation

(e.g. daytime workplace charging using solar energy).

© The Author(s). 2020 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

1Compared to a conventional liquid-fuel car, a BEV uses an electric motor and electricity stored in an on-
board battery, instead of an internal combustion engine and fossil fuel to transport people and light goods
around.
2Electricity grid; power grid; or electricity network is an interconnected network for delivering electricity
from producers to consumers.
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There is an inherent flexibility in BEV charging demand that facilitates management strat-

egies to reduce reinforcement needs and increase renewable energy integration into electri-

city systems. This flexibility is due to cars being typically parked for long periods of time and

BEVs’ battery capacity is in excess of most daily driving requirements (Neaimeh et al. 2015;

Idaho National Lab 2016; Kempton 2016; Hardman et al. 2018; Quiros-Tortos et al. 2018).

Cars are routinely parked for most hours at home and the workplace, where the ma-

jority of battery charging demand could be met (Fig. 1). Therefore, home and the work-

place are key locations at which charging management is required to ensure successful

electricity grid integration of BEVs.

It must be noted that the parking time of BEVs can only be exploited under certain circum-

stances when charging equipment is present, the duration is sufficient for the charging process

to be flexible and that the BEV is actually plugged in (which may require a user incentive).

Communication requirements for BEV charging management- data,
protocols, entities
The focus in this work is on the integration of BEVs into electricity grids and the im-

mediate communication links that need to be established to facilitate BEV charging

management strategies. Protocols facilitating electric mobility roaming- allowing EV

drivers to charge their vehicles at all non-private charging stations (Ferwerda et al.

2018) are not in scope of this work.

Management of BEV charging at residential and workplace locations requires increasing

need for coordination and communication between various mobility and energy entities

(Fig. 2, Table 1). Specifically, informational and control objects need to be exchanged be-

tween BEV chargers and entities to allow electricity system support, such as electricity de-

mand peak reduction. Information such as car identification; battery state of charge (SoC);

battery size; energy required for next trip would flow up across entities. Based on that infor-

mation, and on information collected from the electricity system infrastructure (e.g. fre-

quency, current, and voltage data)(Zhang et al. 2018), chargers’ power set points are

determined and sent down to control the charging process, ensuring proper integration of

vehicles into the electricity grid. Such control should be dynamic so that a change in set

points can be executed within seconds and ultimately as a sub-second response as required

by some grid services (COTEVOS White Book 2016; Andersen et al. 2019).

Fig. 1 Typical charging locations for private passenger BEVs. Home (i.e. residential) charging locations include
private locations such as garages and off-street parking, and public locations such as on-street parking. When
charging infrastructure at home and work (typically <= 22 kW) is neither available nor practical to meet charging
demand, quick and fast chargers (50–150+ kW) located at “Other” locations such as supermarkets, and filling
stations in urban areas and along long-distance travel corridors can be used to meet charging needs (Neaimeh
et al. 2017; Nicholas and Hall 2018; Danish Electric Vehicle Alliance and DTU 2019)
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Communication protocols provide a set of rules and guidelines to facilitate communi-

cation and data exchange between two or more entities. A protocol would define the

interface between two or more interacting entities to ensure compatibility between

these different systems (Krechmer 2008; Ferwerda et al. 2018).

Communication protocols linking various entities in the electric vehicles (EVs)’

ecosystem can be divided into front-end and back-end protocols (Schmutzler

et al. 2013). Front-end protocols define the link between car and charge point

and specify requirements for plugs; charging topologies (on-board/off-board char-

ging equipment; conductive/inductive charging); communication; safety and

cyber-security. Back-end protocols, emphasising communication and cyber-

security requirements, define the link between charge point and a third party

operator.

Communication protocols can be proprietary- developed by private consortia; or they

can be open- developed by public standard development organisations, or open

alliances.

Fig. 2 Various EV ecosystem entities connected by communication protocols. Information and control
objects must flow through entities to ensure proper grid integration. A direct communication link
between a third party operator and charge points (referred here as BEV supply equipment) is
specifically applicable for public charging infrastructure such as residential on-street chargers. For
private charging infrastructure, we argue that communication to the charger would go through an
EMS to optimise multiple resources co-located with BEVs (i.e. heat pumps, solar energy systems) at
home or a workplace campus
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Review of communication protocols for vehicle grid integration
A review of communication protocols for vehicle grid integration is presented in

Table 2. The protocols are briefly described and their location in the grid integration

protocol structure is indicated. Specifically, a front-end protocol is a protocol covering

the communication link between EV and EVSE and a back-end protocol is a protocol

covering the communication link between EVSE and a third party operator (e.g. charge

point operator). For back-end protocols, EV-domain specific protocol or a generic

protocol covering distributed energy resources including EVs is indicated. Table 2 also

includes some examples of protocol implementations and indicates some gaps in the

protocols.

Moreover, the protocols are assessed using properties of openness, interoperability,

maturity and market adoption. The specification of these properties and their assess-

ment are mostly based on a previous protocol study, published by ElaadNL, where

more detail can be found (Elaad 2016). Openness indicates if a protocol has been devel-

oped by an accredited standards organisation; whether it is subject to intellectual prop-

erty (IP) rights; and if it is publicly accessible at no (or minimal) cost (Elaad 2016).

Openness can also facilitate the possibility for different e-mobility entities to participate

in protocol development process (Krechmer 2008).

Interoperability is the ability for multiple systems to work together without restriction

(EPRI 2019). It can be captured by the amount of effort required when replacing one of

the entities (e.g. charging station) in a communication link. This encompasses aspects

such as technical interoperability (syntax and semantics); definition of the expected

Table 1 Description of EV ecosystem entities as illustrated in Fig. 2

Entity Description

Car manufacturer Complying with electric mobility (e-mobility)
protocols.

Battery Electric Vehicle (BEV) Implementing various e-mobility protocols.

Electric Vehicle Supply Equipment (EVSE) Enclosing charge controller (microcomputer)
implementing e-mobility protocols. A charge
point could contain one or more EVSEs.

Energy Management System (EMS) Monitoring, controlling and optimising energy
consumption and generation at a location such
as home.

Third party operator Container of various mobility and energy entities
as illustrated in Fig. 2 and described in Advantages
of open communication protocols.

Electric Mobility Service Provider (eMSP) An entity which holds a contract with the BEV user
for all services related to charging.

Charge Point Operator (CPO) Central system entity which operates and manages
charge points.

Energy Supplier An entity selling electricity to consumers in compliance
with regulations for electricity market organisation.

Balance Responsible Party An entity which is financially responsible for the
real-time net balance of electricity supply and demand.

Electricity (distribution and/or transmission)
Network Operator

An entity operating, maintaining and investing in
electricity networks, in compliance with regulations
and standards on electricity supply quality and security.

Aggregator An entity responsible for aggregating many distributed
energy resources, including BEVs, to provide power
system services to various third-party entities.
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behaviour of a protocol (e.g. detailed description vs generic description making it less

interoperable); and clarity of specifications. Maturity indicates number of releases, time

in use, certification possibility (at an official test laboratory); availability of a testing

tool. Finally, market adoption is based on current numbers of users of the protocol.

Scoring different properties of the protocols is done using low/medium/high scale.

Maturity and market adoption are considered within the context of EV market adop-

tion, which is still low. Consequently, a high market adoption of an EV communication

protocol can’t be compared to the market adoption and maturity of other protocols

such as WiFi. In addition, the emerging EV market means that extensive statistics on

utilisation of protocols is not possible, especially that many of the protocols don’t have

yet an official certification in place (Elaad 2016).

Advantages of open communication protocols
While market share of electric vehicles is low and before they enter mass market (IEA

2019), there is a window of opportunity to shape charging infrastructure, norms and

regulations so that BEVs can meet drivers’ needs and support power system operation.

A building block for a fit for purpose and future proof charging infrastructure is the

adoption of protocols that score high on interoperability and openness (characteristics

defined in Review of communication protocols for vehicle grid integration).

Fig. 3 Open protocols are a building block for a fit for purpose and future proof BEV charging infrastructure
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Interoperability and openness facilitate an integrated infrastructure of compatible en-

tities; seamless data exchange; freedom of choice; cost savings; better services; competi-

tion; innovation; and scalability (Fig. 3). These possible outcomes of interoperability

and openness, described by some examples below, are intrinsic to properly defined and

implemented open protocols and facilitate widespread BEV adoption and appropriate

vehicle grid integration.

Interoperability of front-end and back-end entities warrants that the interface be-

tween these interacting entities is compatible and support an open path from third

party operators down to the charger to ensure seamless flow of information and control

commands facilitating grid integration strategies (Fig. 2).

Moreover, interoperability enables freedom of choice. For example, a fleet manager is

not limited to purchasing certain types of charging stations because of the car brands

in their fleet. Interoperability also enables freedom of switching products, companies or

operators, while ensuring that a charging system/strategy would function as intended,

without necessarily having to replace relevant equipment or undertake significant pro-

gramming to re-establish the compatibility of the interface between interacting entities.

This would avoid situations where controllability of charge points could be disabled if a

third party operator implementing a proprietary protocol is changed. As such, inter-

operability would lead to cost savings and better services and charging experience by

helping prevent vendors’ lock-in, fragmented charging infrastructure; and minimise

wasted investment in stranded assets (Ghatikar 2016).

Openness sets a level playing field for all EV ecosystem players and enable cost sav-

ings, competition, and quicker innovation.

Companies can save costs by collaborating to develop the bulk of grid integration

protocols, removing competition for shared groundwork, then use their resources to

customise their customer offerings and compete to provide better services to cus-

tomers. An example of openness related to the car industry is the development and

adoption of Automotive Grade Linux (AGL) by some of the largest car companies.

AGL is a joint effort between automakers, their suppliers and technology compan-

ies to develop an open platform for infotainment and connected car systems. The

aim of the open platform is to provide a bulk common groundwork for all partici-

pants and enable them to focus their resources on customizing their unique prod-

uct (Linux Foundation 2019).

Openness allows for quicker innovation by opening up the market to new agile and

disruptive entities (e.g. aggregators) and allowing existing energy and car companies to

evolve and re-invent their roles to catch-up up and survive in a changing environment

(Hughes 1987). Some examples of change include consumers producing and selling en-

ergy; and energy suppliers and network operators exploring greater controllability of

what could be the new biggest source of electricity sales (i.e. electrification of road

transport).

To consider new and evolving roles supporting innovation, a third party operator of a

charge point is represented in Fig. 2 by a container of various mobility and energy en-

tities. This is in contrast to considering current market players that could control char-

gers as separate entities. A third party operator could be one entity, which is assuming

new roles of several different entities. Some examples include a UK energy supplier

who is assuming additional novel roles of charge point operator and aggregator (OVO
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Energy 2019); and network companies in California who are investing in BEV charging

infrastructure programs made possible by recent regulation changes (California Public

Utilities Commission (CPUC) 2018). Moreover, a third party operator could be consti-

tuted by one or a combination of several entities collaborating to optimise charging

events (e.g. a collaboration between a car company and an energy supplier). Openness

is key for quicker innovation by facilitating collaboration between entities and enabling

new roles and responsibilities to adapt to the changes in the energy and transport

sectors.

As opposed to proprietary protocols for BEV charging, open communication proto-

cols- scoring high on openness and interoperability seem to be already the norm in the

Netherlands. The Dutch experience can provide insights on the importance of open

protocols from real world implementations. For example, open communication proto-

cols were used to control 800 charge stations in the Netherland to minimise the impact

on local electricity networks. Adopting open protocols facilitated the deployment of

charge stations from several different suppliers, who implemented OCPP on their

charge stations (Geerts et al. 2019). In addition, while the control signal came from the

distribution network operator, the adoption of open communication protocols would

allow different entities in the future to control the charging, such as an energy supplier

(Geerts 2018; Elaad 2019; Geerts et al. 2019; Zweistra et al. 2020).

Challenges facing open communication protocols adoption for vehicle grid
integration and recommendations for required efforts
Despite advantages of open communication protocols, overcoming challenges is re-

quired to ensure that market adoption of these protocols increases with the increase of

BEV uptake. Some of the challenges and examples are presented below, followed by

recommendations for required efforts.

Adopt open over proprietary communication protocols

A key challenge facing the adoption of open communication protocols for vehicle grid

integration is that companies are currently developing and implementing their own

proprietary communication protocols.

Central to widespread vehicle grid integration is to ensure that any BEV can commu-

nicate with any charge point and participate in advanced (e.g. dynamic) smart charging

strategies (i.e. strategies going beyond stopping/starting the charger). Consequently,

BEVs and charge points would need to speak a universal language as opposed to di-

verse vendor-specific communication protocols. Currently, front-end communication

protocols allowing advanced charging management strategies are either semi-open (e.g.

CHAdeMO, Table 2), or standards that are not yet implemented outside small scale tri-

als (e.g. ISO 15118 in the Utrecht V2G trial (Elaad 2019)). In addition, most market

implementations of back-end protocols to control charge points for smart charging

strategies are proprietary (Christensen 2018; Astorg et al. 2019; Indra 2019; Octopus

EV 2019; Nissan Energy 2019).

Adopting open front-end and back-end protocols is critical for coordinating BEV

charging demand in local electricity grids where these cars are connected (e.g. residen-

tial and workplace electricity grids). Demand management strategies would need to
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integrate different car makes at a workplace location and/or integrate different charge

point brands of different customers on one street to provide coordinated grid support

to the local distribution network (grid) operator, whose responsibility is to ensure reli-

able and secure electricity supply. If every company is developing and deploying its

own communication protocol as opposed to car and charge points speaking universal

languages, then coordinating charging towards a common goal (e.g. avoid creating a

new peak demand) would be difficult. It would be difficult for an entity coordinating

BEV charging across an area, such as an aggregator, to control charge points from dif-

ferent manufacturers adopting various proprietary communication protocols. Conse-

quently, diverse and proprietary protocols would lead to disjointed charging control

strategies by managing different subsets of BEVs separately and could risk losing or

vastly under-utilising charging demand flexibility.

To minimise or avoid disjointed charging management strategies, it is recommended

that various EV ecosystem entities would need to implement standardised open proto-

cols. An example relating to front-end protocols is that car companies and charge point

manufacturers would both implement ISO 15118 and facilitate the exchange of re-

quired data to benefit from the provisions of the protocols.

Tackle protocol-specific and in-between protocols gaps

While some companies might not be aware of open protocol developments or choose

not to adopt them to retain first mover market advantage, there are technical gaps in

the open protocols that might justify why some innovative companies won’t wait for a

common technical-ready protocol to emerge to develop products. Some open protocols

are at an early stage of development (e.g. IEC 63110), and other mature protocols in-

clude gaps preventing them from supporting innovative use cases. Furthermore, some

gaps relate to how protocols link together. Examples of gaps followed by the recom-

mendation are included below.

OCPP, a back-end protocol, doesn’t yet define a use case for bidirectional power

transfer and several companies are carrying out proprietary modification on OCPP to

allow this innovative use case (Christensen 2018; Astorg et al. 2019). Instead of devel-

oping their own proprietary language, these companies could provide input to the

Open Charge Alliance, which develops and maintains the protocol, on what is required

to enable bidirectional charging in a future version of the publicly available OCPP.

Some additional work is required to align front-end and back-end protocols to

facilitate implementing them together; for example, additional work is required to

be able to combine ISO 15118 - OCPP and ISO 15118 - IEC 63110. In some in-

stances, work is required to be able to combine two complementary back-end

protocol such as OCPP, used between a charge point operator and chargers; and

OpenADR used between a utility company (e.g. DSO or an energy supplier) and a

charge point operator (de Leeuw 2019; Bienert 2019).

Some alignment work required include adding or configuring message exchange be-

tween the protocols to ensure that neither protocol act as a bottleneck from the neces-

sary information and control needed for dynamic charging. Moreover, there are no

definitions for gateways between protocols and these should be defined to ensure reli-

able performance of the BEV ecosystem. For example, certain power system services
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require real time communication and control; yet, communication latency for a mes-

sage transfer between ISO 15118 and OCPP is not yet defined.

Collaborative effort is required to tackle gaps in some of the described protocols

(Kirpes et al. 2019). Instead of developing proprietary protocols, companies could im-

plement, test and support the development of these protocols and contribute to their

improvement.

Harmonise and converge towards common standards

A third challenge is the development and adoption of several open protocols for same

use cases and functions which, similarly to proprietary protocols, could lead to several

disadvantages hindering vehicle grid integration such as a fragmented charging infra-

structure (Elaad 2019; International ZEV Alliance et al. 2019; Crisostomo 2019).

For example, EEBus or IEC 63110 can be implemented for the same communication

link between an energy management system and a charging station. Similarly, ISO

15118 or IEEE 2030.5 can be implemented for communication between a BEV and a

charging station. While there is an argument for the possibility of adopting different

protocols in different regions, global manufacturers can save costs by implementing the

same protocol in their products worldwide.

Similarly, wasted investment and potentially stranded assets can be minimised while

rolling out charging infrastructure if there is clarity on which protocol to adopt. As an

example of early roll out of charging infrastructure, Norway provided funding to roll

out public Type 1 chargers before the European Commission (EC) introduced legisla-

tion to ensure that charging stations are equipped with at least Type 2 plug for AC

charging (EU 2014; Ferwerda et al. 2018; International ZEV Alliance et al. 2019). Con-

sequently, additional investment in new charging infrastructure would have been re-

quired to comply with the EC directive.

To increase scores of openness (e.g. a protocol has been developed by an accredited

standards organisation) and interoperability of open protocols, additional collaboration

efforts are required to harmonise existing protocols (Andersen et al. 2019), where har-

monisation is the process of minimising redundant or conflicting protocols which may

have evolved independently. Early harmonisation efforts would decrease the complexity

of the task which would be required later on to harmonise several existing protocols

for future convergence towards a common standard, which may ultimately be univer-

sally applied (e.g. at least, a European-wide standard).

Set up a platform for collaboration on vehicle grid integration protocols

Standardisation experts can argue that standards don’t provide interoperability, but

it is a good start. In practice, standards might not be properly implemented and if

there is anything left for interpretation in the specification of the protocol, then

this might create implementation/interoperability conflicts. This raises the import-

ance of specifying the standards in sufficient clarity and detail to ensure correct

implementation. Moreover, conformance testing and official certification of prod-

ucts can indicate if products properly implement the standards; however, with new

market conditions, conformance testing and certification is not common. As such,

an interoperability gap can result from unknown consequences of protocol
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implementation in these new market conditions, if the open protocol is not tested

at scale and negotiated between different entities in the EV ecosystem (e.g. electri-

city network operators and car manufacturers).

In efforts to help overcome some of challenges described in the section including

minimising a possible interoperability gap, it is recommended that a new platform

for collaboration on vehicle grid integration protocols is set up. This platform,

whether sponsored by governments or industrial associations, would bring together

key mobility and energy entities, who typically have limited interaction, to advocate

for the adoption of open communication protocols and facilitate development and

implementation of standardised protocols.

Conclusion and future outlook
Appropriate grid integration is key for successful widespread adoption of electric vehi-

cles, while minimising associated electricity grid reinforcement costs and facilitating in-

tegration of renewable energy sources.

Open communication protocols linking various entities in the EV ecosystem facilitate

compatibility and communication between different entities and equipment, which are

key to ensure universal support for grid integration. In addition, open protocols could

improve customer charging experience, save costs and allow quicker innovation to

achieve our decarbonisation targets.

While in the short term, adoption and collaboration across several entities to develop

open, technically-suitable, standardised communication protocols could be more com-

plicated than developing diverse and proprietary protocols; in the long term, such col-

laboration ensures the roll out of a fit for purpose charging infrastructure.

Governments are recognising the importance of open protocols for electric mobility

and are encouraging their adoption. Open protocols are already the norm in the

Netherlands and advantages from adoption are already being demonstrated. In Califor-

nia, the state led Vehicle-Grid Integration roadmap encourages the use of open proto-

cols to integrate EV charging needs with the needs of the electrical grid (California

Energy Commission 2018). In the UK, secondary legislation following the Automated

and Electric Vehicles Act is being prepared and there is an on-going debate on mandat-

ing the use of open protocols to manage charge points (UK Parliament 2018).

It is yet to be seen if industry realises the significance of open protocols and if some

influential companies would take a leadership approach to steer the market towards

adopting and developing open protocols. Alternatively, additional government interven-

tion might be required to achieve a vision of open and standardised protocols.

Developments in other sectors indicate that over time the requirement to coordinate

efforts become rather obvious and protocols could converge towards one or few stan-

dards voluntarily (Wiegmann 2013; Ferwerda et al. 2018). Consequently, whether such

coordination requires facilitation through government policy might be debatable. Yet,

learnings from the process of converging towards the Type 2 connector in Europe can

be used to argue that legislation might ensure that industry adopt vehicle grid integra-

tion standards more quickly to ensure that charging infrastructure for electric vehicles

is adaptable to future needs, cost-effective, and synergistic with the operation of the

electricity system.
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