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available at the end of the article areas. Various data-driven models can be effective predicting specific time series
one-step-ahead. The aim of this work is to investigate the adequacy of neural network
methodology for predicting the entire load curve day-ahead and evaluate its
performance for a wide-scale application on local loads. To do so, we adopt networks
from other short-term load forecasting problems for the multi-step prediction. We
evaluate various feed-forward and recurrent neural network architectures drawing
statistically relevant conclusions on a large sample of residential buildings. Our results
suggest that neural network methodology might be ill-chosen when we predict
numerous loads of different characteristics while manual setup is not possible. This
article urges to consider other techniques that aim to substitute standardized load
profiles using wide-scale smart meters data.
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Introduction

Following the ongoing transformation of the European power system, it will be neces-
sary to locally balance the increasing share of decentralized renewable energy supply.
Distribution system operation will require a versatile and reliable model to obtain numer-
ous day-ahead load forecasts (DALF) on various levels of load aggregation. Wide-scale
installation of smart meters allows to apply specialized data-driven techniques for local
day-ahead forecasting instead of currently used standardized load profiles (SLP). Among
various machine learning approaches to load forecasting discussed in the literature, arti-
ficial neural networks (ANN) are the most intensively investigated methodology (Ahmad
et al. 2018; Bourdeau et al. 2019).
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There exist multiple models predicting a specific load time series one-step-ahead (e.g.
hourly consumption of a university campus) (Ahmad et al. 2018). Nevertheless, only few
proposals were made to use neural networks for day-ahead (multi-step) forecasts which
will become more important for the distribution system operation. In particular, ANNs
have been applied for predicting day-ahead loads of larger buildings (Bagnasco et al. 2015;
Chitsaz et al. 2015a; Ryu et al. 2016), consumer aggregations (Marinescu et al. 2013) and
microgrids (Amjady et al. 2010; Herndndez et al. 2014). Further, there have been attempts
to forecast a single household load using novel deep learning techniques (Amarasinghe
et al. 2017; Mocanu et al. 2016).

Proposed models allow only limited conclusions about applying ANN for DALF on a
wide-scale'. The well-performing setup required detailed knowledge of the load and was
often found and manually tuned through trial and error. Further, the networks require
large amounts of historic data and are subject to overfitting (Amarasinghe et al. 2017;
Chalal et al. 2016). The accuracy substantially varied depending on the load. While a
proposed model was accurate for a given building, similar setup performed notably worse
when applied on a different consumer (Foucquier et al. 2013).

When deciding on a general methodology to substitute SLPs for wide-scale distribu-
tion system operation, statistical analysis is required to avoid case-based reasoning. In
this work, we provide a comprehensive evaluation of the ANN methodology for local
day-ahead load forecasting. While many existing models forecast the time-series one-
step-ahead, we discuss various strategies to adopt a network for predicting the entire daily
load curve. From the literature, we select and evaluate four different ANN architectures
that appear suitable for a wide-scale application. We provide evidence that the prominent
ANN methodology, as currently implemented, might be ill-suited for predicting local
consumption on a wide-scale, despite being accurate for particular loads.

Background

In this section, we provide theoretical background for our study. We start by describing
the loads we will be predicting and continue with an overview of the ANN methodology as
well as its state of the art applications for local load forecasting. The provided background
allows unprepared readers to comprehend the selection and setup of ANN models that
we describe in the subsequent section.

Local loads

Local loads range from single family homes to a small distribution system area supplied
by an MV/LV substation including microgrids (Dang-Ha et al. 2017). Naturally, their
consumption is very diverse and more volatile than the transmission system load.

A consumption pattern mainly depends on the aggregation size. At a small level, it
highly depends on the consumer behavior which makes it harder to predict. Generally,
load is autoregressive and underlies annual and weekly seasonalities but to different extent
depending on the size (Sevlian and Rajagopal 2014) (Fig. 1).

Artificial neural networks
Neural network methodology is a set of methods used in many machine learning appli-
cations. It can model almost any nonlinear relation between multiple inputs and outputs.

1\Wide-scale application implies predicting separately numerous loads of different size and characteristics ranging from
single buildings to distribution system areas.
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Fig. 1 Load and SLP of an aggregation of 400 households (a) in comparison to a single home (b).
Aggregated load curve is substantially smoother and follows a regular pattern

Assuming existence, the relation is self-learned from historic data by a specialized training

algorithm that solves the regression equation (Friedman et al. 2008)
y=rX)+e€ (1)

where regression function r describes the systematic information about scalar variable
y, and residual error € represents all the uncaptured influences independent of vector
input X.

A network can be seen as an interconnection of single elements called artificial neurons

with an individual output

ny
Yneuron = ¢ (1) , where u = Z Wiv(”. @)
i=1

The n, neuron inputs v € R weighted with w; € R are processed by an activation
Sfunction ¢. If several of such neurons are interconnected into a network, theoretically,
any non-linear relationship can be approximated. For this, neurons are organized in layers
and the data traverses the network from input to output passing through some neurons
in the hidden layers one or several times.

We formalize an ANN as follows. Let ' be a neural network with 7, inputs, 1, outputs,
and n,, interconnections that exists between the neurons. It is fully determined by its
architecture, and the set of weights for each neuron. The network provides a regression

function estimate
Y =tn(X, W) (3)

which maps a multivariate input X € R to the output Y € R™ for a given set of weights
W = [wl, ceo w,,w] € R™ which are determined during the model training. To forecast

with an ANN model we proceed as follows:
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Architectures

We select a network architecture, relevant inputs and set hyper-parameters that can not
be learned directly from the data and are determined prior to training the network. A
network architecture includes inputs, network type, number of neurons in the layers and
their topology. While an extensive overview of different architectures contrasting the
differences can be found in Raza and Khosravi (2015), there are two general types.

Feed-forward neural network (FENN) is the type, where starting at the input, the data
traverses the network without any cycles or loops. The most prominent architecture of
this type is the multi-layer perceptron (MLP). It includes at least one hidden layer where
each hidden neuron has a nonlinear activation function.

Recurrent neural networks (RNN) have feedback loops that allow data to traverse the
network both ways. The connections between the neurons form a directed graph, and
unlike a FENN, a recurrent network has a dynamic internal state.

Deep neural networks (DNN) are those that have at least two hidden layers allowing
complex topology both of FFNN and RNN types. It was shown, that increasing network
size and complexity can often improve the accuracy, but elevates the time and historic
data needed to train the network (Goodfellow et al. 2016).

Each network has a set of hyper-parameters (number of neurons, activation function,
training algorithm etc.) that significantly affect the prediction accuracy. The hyper-
parameters are often manually selected and iteratively fine-tuned given an in-depth
knowledge of the forecasting problem.

Network training

In the training phase, r needs to be estimated finding W that defines the network N so
that ry yields the lowest error on the given training data and is expected to generalize
well - i.e., produce the lowest error on the unseen data. The weights are initialized ran-
domly and calculated with a supervised training algorithm using either a back-propagation
(BP) of training error (Rumelhart et al. 1986) combined with different variants of gradient
descent optimization (Kiefer and Wolfowitz 1952; Kingma and Ba 2017; Riedmiller and
Braun 1993) or Levenberg Marquardt (LM) algorithm (Hagan and Menhaj 1994; Moré
1978).

Evaluation

At last, the forecast Y is obtained with a previously trained network for a given input X*
as ¥ = rpr (X*). The model is evaluated on test data using an appropriate error definition
(Haben et al. 2014).

Setting hyper-parameters and training often requires a vast amount of historic data,
and it is hard to interpret the weights of the resulting network. Nonetheless, for some
applications where a considerable amount of data is available, computation time is not
an issue and there is an extensive problem knowledge allowing manual fine-tuning, ANN
models can be very accurate. Inspired by the advances in machine learning, there are
several applications for local load forecasting that we describe next.

Neural network applications
Numerous researchers applied the methodology described above to predict the load in
microgrids (Herndndez et al. 2014), distribution system areas (Wang et al. 2018) and



Valgaev et al. Energy Informatics (2020) 3:28 Page 5 of 17

buildings with a recent review citing over 90 publications (Runge and Zmeureanu 2019).
The model performance depends fundamentally on the characteristics of time series.
Thus, we focus on applications for short-term forecasting of local loads with (sub-
)hourly resolution. This substantially reduces the number of related works to the ones
summarized in Table 1.

The models have several aspects in common. They were developed for a specific load
- a given building or an area of a distribution grid. The well performing architecture is
setup manually, given explicit knowledge of the problem, researcher experience and intu-
ition combined with trial and error. Model inputs are related to historical load, calendar
features and, sometimes, daily weather. Further, they require large amounts of historic
data. For instance, DNN model convolutional neural network (CNN) (Amarasinghe et al.
2017), restricted Boltzmann machine (RBM) (Mocanu et al. 2016; Ryu et al. 2016), long
short-term memory (LSTM) (Marino et al. 2016; Kong et al. 2017) and echo-state network
(ESN) (Shi et al. 2016) - all required years of data to setup and train the network.

Despite a common preconception, researchers are ambiguous about using weather
related inputs such as outside ambient temperature (OAT) or solar irradiation. Some, do
consider weather modeling electrical heating and PV at the level of MV/LV feeder (Hayes
and Prodanovic 2016) or larger buildings (Pirjan et al. 2017). An in-depth sensitivity anal-
ysis can highlight an existing weather dependency (Llanos et al. 2012). Others, observe
the models that do not use any weather data performing better for disaggregated loads
(Hayes et al. 2015; Marinescu et al. 2013; Herndndez et al. 2014). In Bagnasco et al. (2015),
authors test two networks on the same dataset with and without such data. They observe
no consistent advantage for either model. Alternatively, some researchers assume that the
instantaneous weather changes do not affect the load significantly and consider only the
month and the day arguing that the temperature does not change substantially from day
to day (Herndndez et al. 2014).

Hyper-parameters have a major impact on the performance (Mena et al. 2014; Pirjan
et al. 2017). From the publications in Table 1 and more general review studies on ANN
applications for load forecasting (Humeau et al. 2013; Runge and Zmeureanu 2019), we
see that the models are usually setup and fine-tuned manually. Nevertheless, there have
been attempts for automated trial and error (Amjady et al. 2010; Herndndez et al. 2014).

Yet, despite the increasing interest, the development of fully automated models based
on ANN is in a preliminary stage (Hutter et al. 2019). As of today, the load forecast-
ing models rely on explicit a priori knowledge of the consumer and manual fine-tuning
(Table 1). The well performing network architecture presented in the results is often
found through a trial and error process and requires large amounts of historic data and
computational resources

Methods

In this section, we formulate the day-ahead forecasting problem and describe the model
architectures, their setup and simulation. We will present the simulation results after-
wards.

Day-ahead forecasting requires to predict the entire curve for the next day. The exact
time at which we need the predicted curve depends on the particular application. We
assume that the forecast has to be done shortly before midnight for the upcoming day, as
it is done in other studies (Table 1). We formulate the DALF problem as follows.
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Given a training set T = {(Xl,yl) ey (Xm,ym)} that consists of m observations of
multivariate input X = {Xj,X», - - -} and univariate output y = { Y1, Y2, -+ } time series,
predict the vector

Yar1 = [y 9n] (4)

of n consecutive values representing the next-day load curve. With an input X1, the
prediction Y, 4+1(X441) has to minimize the root mean squared error (RMSE) defined as:

> ek (5)

i=1

RMSE =

where €; = y; — J; is the residual error between actual y; and predicted value ¥; according
to (1).

To find )A’dﬂ we use different model architectures described next in “Model architec-
ture” section. Each model is setup as denoted in “Model setup” and evaluated through the

simulation described in “Simulation” sections.

Model architecture

We use network architectures that are the most common among the load forecasting
applications (Table 1). Studying the literature, we have not seen any fundamental reason
why any of the networks is superior for certain types of loads, given appropriate setup and
vigor at manual fine-tuning (Bourdeau et al. 2019). However, for wide-scale usage, prac-
ticality becomes important. Hence, we do not conisider DNN and other models that rely
on abundant historic data or information from specific sensorial equipment (e.g. occu-
pancy). We adopt two feed-forward and two recurrent networks for day-ahead prediction
as described further in the text.

Day-ahead prediction

In time series forecasting, we often encounter situations where only one-step-ahead pre-
diction is required or considered. For electrical load, such task eventually corresponds to
an intraday forecast. Following the scope of this work, we focus on day-ahead forecasts,
which are multi-step predictions and require forecasting n consecutive points. While #
depends on the time series resolution, there are three general strategies (Ben Taieb et al.
2012) to adopt a one-step-ahead forecasting model for a multi-step prediction (Fig. 2).

Direct strategy is a straight forward approach that requires to setup and train # sep-
arate multi-input single-output (MISO) models with n, inputs. However, such strategy
disregards the dependencies between the predicted points of the curve. Moreover, it is
computationally expensive, since we have to train # networks.

Multi-out strategy sets up and trains one complex multiple-input multiple-output
(MIMO) network with n, inputs and # outputs corresponding to the points of the fore-
cast curve. It allows to consider the dependencies between the predicted time-steps and
avoids the conditional independence assumption made by the direct strategy.

Recursive strategy forecasts one-step-ahead and uses the prediction j; as a new observa-
tion with which forecast is reiterated for i = 2 and so on. The fundamental drawback is the
sensitivity to prediction error, since it is accumulated while advancing the multi-step fore-
cast. Applying a recursive strategy will only be accurate if we have a good representation
of the underlying time series generating process.
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Fig. 2 Network architectures for the day-ahead prediction. a MISO-MLP model using direct strategy; b
MIMO-MLP model using multi-out strategy; € NAR model and d NARX model with external input - both using
recursive strategy. Further description is provided in the text

Feed-forward models
A feed forward network can forecast day-ahead load curve adopting either direct or multi-
output strategy. Given input

X = {x(l), A ,x(n")} and Xd+1 = [JC1, T ’x”x] ? (6)

we use the following multivariate forecasting models:

1 Multiple input single output multi-layer perceptron (MISO-MLP)
2 Multiple input multiple output multi-layer perceptron (MIMO-MLP)

In the first case, a separate MLP is trained to predict each point of Y,;,; (Fig. 2a). For
the ease of exposition, we setup each network with same inputs and hyper-parameters
described further in the text. The training output data is split into #n separate series
y, ...,y 5o that the # networks will have different weights after the training. The
forecast output by the model consists of 1 separate predictions in

?d—i-l = I:rﬁ\lf) (Xd+1) PR ,I'ﬁ\y;) (Xd+1)] . (7)

In the second case, we train one multi-output feed-forward network with #, inputs and
n outputs. For a given X, 1, the multivariate forecast is obtained as

Yar1 =rn (Xag1) - (8)

with one MLP r to train (Fig. 2b).
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Recurrent models

The concept of an RNN where past output values are fed back allows to create non-linear
autoregressive time series models. With it, we apply a recursive strategy to the multi-step
forecasting introducing the following models:

1 Nonlinear autoregressive model (NAR)
2 Nonlinear autoregressive model with exogenous inputs (NARX)

In the first case, we create a univariate autoregressive model with p lags defined as

Vi =1n (Viel -2 Yiep) )

where prediction J; is a a function of the p preceding values y;_1,...,¥;—, of the time
series y (Fig. 2c).

In the second case, NARX model presents an extension of the NAR model that can
consider external inputs to create a multivariate time series model

Ji=rtn (Vie1s- s Yieps Xi) - (10)

Here, a prediction j; is calculated as a function of its p lags y;_1, . . ., y;—p and an exogenous
input X; (Fig. 2d).

Model setup

In Table 2, we summarize the networks used in this study with corresponding number
of inputs, outputs, training data and degrees of freedom (total number of weights). As
in related works, we assume hourly time series resolution (n = 24). We now proceed
explaining the setup and justifying the choice of hyper-parameters.

Inputs
We consider the dependency on past values, OAT and weekly seasonality. For the feed-
forward models, we input the load curve of the previous day while NARX uses 24 lags
(p = 24) recursively. Further, multivariate networks (MISO-MLP, MIMO-MLP, NARX)
model the seasonality and annual temperature cycle explicitly. The weekly seasonality is
considered with a weekday number and a (boolean) public holiday variable. The annual
temperature cycle is modeled as a function of month and day number. In this study, we
assume that short-term weather changes do not notably impact the load (Hernandez et al.
2014). As we will see, the simulation results validate this assumption.

The univariate model (NAR) considers weekly patterns implicitly by using one week of
lags (p = 168). The annual cycle is accounted for by using only two most recent months
of data for training that is repeated monthly.

Table 2 Network setup overview

MISO-MLP MIMO-MLP NAR NARX
Type FENN FFNN RNN RNN
Multi-step direct multi-output recursive recursive
Inputs 28 28 168 28
Outputs 1 24 1 1
Hidden layers 1 1 1 1
Hidden neurons 15 15 15 15
Total weights 79 424 2703 463

Training data 365 365 1440 8760
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Network training is more efficient with normalized inputs(Dan Foresee and Hagan

1997). Following a standard practice, we apply minmax-normalization as follows. Each

separate input /), with j € [1, - - - , n,] is transformed to
- 2 (x(j) - xr?in)
W= g1 (11)
Xmax — ¥pin
where the smallest input value x(r{])m corresponds to ¥ = —1 and the largest input xr({l)ax

corresponds to ¥/) = 1. Herewith, every normalized training input lies in the range of
()

[ —1; 1]. We use the same normalization constants x,; , x,‘{fax for the evaluation.

Outputs
Subsequently, network output must be transformed back into the range of original data.
We provide the network with a pre-processing block that appears before the input layer
and a post-processing block that appears after the output layer (Fig. 3)

Additionally, for recursive models (NAR, NARX) post-processing includes a hold and
release unit. In their case, the output y is a scalar prediction for a single time step. For
those models, post-processing allows to output the entire forecast curve at once.

Training data

For wide-scale prediction of local loads it is important to rely on the smallest viable
amount of training data. In addition to the availability issue, time series can constantly
alter their regime with old data becoming irrelevant (inhabitants change, new equipment
is installed). Multivariate networks (MIMO-MLP, MISO-MLP, NARX) require at least
one year of data to learn the dependency on the month. Currently used SLPs also require
total consumption over a year to scale the profile. In contrast, the NAR model is trained
only on the two months of preceding data.

Hyper-parameters

Activation function of the neurons must correspond to the applied normalization. With
x0) €[ —1;1], each layer should have ¢ () with the same domain and range. Unfortunately,
the majority of related works (Table 1) do not specify the activation function (Amjady
et al. 2010; Herndndez et al. 2014; Hayes and Prodanovic 2016; Marinescu et al. 2013;
Mocanu et al. 2016; Pirjan et al. 2017; Marino et al. 2016). Among the rest, the most
common functions are linear (Amarasinghe et al. 2017; Llanos et al. 2012; Mena et al.
2014; Ryu et al. 2016) and tanh-sigmoid (Bagnasco et al. 2015; Shi et al. 2016; Kong et al.
2017) defined as

. %
E model E y(1)
X E X’ Y’ : 3
— i pre- network post- P LM
: processing processing t Yy
: — >

Fig. 3 Input-output processing for each model
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2
. S
1+ exp(—2u)
and which we use in this study since ¢ (#) €[ —1;1],Vu € R.

¢(u) = (12)

Network size determines the predictive capacity of the model. For this work, we use
networks with one hidden layer consisting of 15 neurons. The optimal number of hidden
layers and neurons depends on the task and there is no theoretical methodology to deter-
mine it. Often, the size is chosen using experience in comparable problems. In related
works, best performing networks also had one hidden layer with a similar number of
neurons (Table 1).

Training algorithm for each network combines LM method with Bayesian regulariza-
tion (Dan Foresee and Hagan 1997). The LM algorithm appears to be much faster than
BP-based approaches for moderately-sized networks (Hagan and Menhaj 1994). Bayesian
regularization does not keep some of the limited training data as a validation set in con-
trast to the commonly used early stopping technique (Friedman et al. 2008). At the same
time, it is effective preventing overfitting and improving generalization of moderately
over-sized networks (Dias et al. 2003).

Simulation

We conduct the following simulations predicting the load day by day and calculating
RMSE for each predicted time series. The loads are taken from the publicly available
smart meter data of Irish Commission for Energy Regulation (Commission for Energy Reg-
ulation (CER) 2012). Given a sample of over 900 homes? at the same location, we select the
loads with no missing data and annual consumption within the interquartile range (IQR).
The resulting data-set consists of 444 single buildings with 17 consecutive months of
data. Each time series was re-sampled equidistantly with a 60 minute resolution and
normalized by its maximum value to allow scale-free comparisons between the loads.
We conduct the simulations using MATLAB-software. The hyper-parameters of the
networks not mentioned explicitly in “Model setup” section were left to MATLAB
defaults.

Simulation A We create aggregated loads of different size for which we predict the
demand curves over one month (August). For each load, we train a network on preced-
ing data 100 times to investigate the effect that random weights initialization has on the
training solution. This gives us a sample of 100 forecast errors for each load and model.

Simulation B We predict the loads of single homes separately during another five
months period (September — December). We retrain the networks every month using the
preceding data for training on a rolling basis.

Results
We have observed substantial stochastic dispersion of the forecast error referable to
random weight initialization (“Forecasting loads of different size” section) and variation

among the households (“Forecasting large sample of households” section). Error distri-

2\We consider only homes of the control group. Other homes in this dataset participated in a trial that affected their
consumption.
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Table 3 Mean RMSE of 100 networks predicting loads of different size (number of homes in the

aggregation). Confidence intervals are denoted in Fig. 4

Load size (homes) RMSE (p.u.)

SLP MISO-MLP MIMO-MLP NAR NARX

0,086 0,104 0,095 0,097 0,188
5 0,077 0,098 0,09 0,084 0,114
25 0,044 0,071 0,049 0,053 0,058
50 0,039 0,06 0,044 0,043 0,043
100 0,032 0,051 0,036 0,039 0,032
200 0,029 0,035 0,029 0,035 0,036
400 0,023 0,03 0,023 0,028 0,033

bution was represented with violin-plots while box-plots helped us to evaluate the range

and statistical significance (p-value 0.05). Irish residential SLPs were used as a reference

forecast (Irish standard load profiles 2014). Stochastic variation of errors had notable

implications described in this section and discussed in the end of the article.

Forecasting loads of different size

We observed that mean RMSE changed drastically with load size and had notable disper-

sion. Average forecast of the biggest aggregation was three to four times as accurate as

for a single home (Table 3). Further, forecast error had variation between 9% and 62% in

terms of relative range (Fig. 4).

The ANN models were setup adequately. Residuals were mostly uncorrelated and

according to Eq. 1 contained no systematic information (Fig. 5 left column). Uncaptured

influence of a further variable would have been manifested in a substantial correlation

which only started to appear for bigger loads (Fig. 5 right column). We attribute it to

weather that began to have a notable effect on the overall consumption.
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Fig. 4 RMSE relative to the error obtained with SLP when predicting load aggregations of different size.
Boxplots and violin plots represent the variation of the obtained error. The boxplot notch denotes the
confidence interval (p-value 0.05). Violins depict a kernel density estimate of the error distribution (Hintze and
Nelson 1998). Absolute error values are denoted in Table 3. All models had a substantial variation due to the

random weight initializations and none was consistently better for all aggregations. Only for the biggest load

Page 12 of 17



Valgaev et al. Energy Informatics (2020) 3:28 Page 13 of 17

1 1
MIMO-MLP (1 home) MIMO-MLP (400 homes)
05} 1 0519
’1)‘
< > i
ER w 0 >
I
o
2 0.5 = 0.5
1 24 1 24
-,% Lag Lag
<
<
g 1 1@
§ NAR (1 home) NAR (400 homes)
< 05t
0 Jm.#&.wb
05 05
1 Lag 24 1 Lag 24

Fig. 5 Residuals of MIMO-MLP and NAR models predicting single home and 400 homes aggregation.
Residuals are almost uncorrelated for single household. Yet, correlation becomes notable for 400 homes

On the other side, the training algorithm failed to provide stable solutions. The disper-
sion could not be explained by the lack of historic data and was observed for each network.
The most consistent training was achieved for the NAR model that is underdetermined
with twice as many degrees of freedom as data (approx. 2:1). Yet, well-determined NARX
(approx. 1:19) had wider IQR. In some cases, outliers indicating eventual overfitting were
observed.

Only for the biggest load was an ANN forecast significantly more accurate than the
reference (Fig. 4). Further, we observed the direct approach being the worst among multi-
step strategies. Apart from this, we could not make any consistent comparisons between
the architectures. While RNNs were accurate for smaller loads, MIMO-MLP delivered
smaller error for bigger loads.

Due to the error dispersion, any meaningful conclusion can only be made using statis-
tics on a relevantly large sample of trained networks. Our results indicated that the
applied networks are only accurate for bigger aggregations (400 homes onwards) while
for smaller loads they failed to infer the inherent patterns.

Forecasting large sample of households

We observed that the forecast error varies substantially depending on the given house-
hold (Fig. 6). The relative range spread between 162% (MISO-MLP) and 127% (NARX
model) among the sample notwithstanding the homes had similar annual consumption
and location.

On average, none of the networks reached the reference accuracy (SLP). As in the
previous simulation, direct forecast (MISO-MLP) was observed to be least accurate
among multi-step strategies while recursive prediction with RNN was the most success-
ful (NARX, NAR). Nevertheless, while for some households NAR substantially improved
the accuracy by up to 25% against the reference, such result was only valid for the specific
load. Still, it had mean error that was 10% above the reference applied on the same sample
of households.
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Fig. 6 RMSE (p.u.) predicting a sample of 444 single homes day by day between September and December.
Median error (red horizontal line), mean error (red cross), 95% confidence interval (notch), IQR and outliers
(red circles) are denoted with box-plots. Estimated distribution is represented using violin plots (Hintze and
Nelson 1998). While the error is approximately normally distributed among the households, no network
architecture was significantly more accurate on average than the SLP forecast (red dashed line)

Discussion

Our results suggest that ANN methodology might be inapt for wide-scale local load fore-
casting. Each of the four architectures produced dispersed forecast errors linked to the
variation among training solutions and simulated buildings. As expected, mean error
rapidly decreased for bigger loads. At the same time, no architecture was consistently bet-
ter for each size. Even more surprisingly, no network was significantly more accurate for
smaller loads than the forecast with an SLP (benchmark).

It is known that network performance depends on the characteristics of the time series
linked to the load size and that ANNs do deliver accurate forecasts for some regular load
curves (Wang et al. 2018). These models are often setup manually for one-step-ahead
predictions using extensive training data (Runge and Zmeureanu 2019). To the best of
our knowledge, ANNs were never applied in context of wide-scale day-ahead predictions
on a statistically relevant sample of local loads where historic data is limited, manual
adjustment is not possible and the loads can be highly volatile.

We have observed that no network architecture evaluated in this work was decisively
superior for all loads (Fig. 4). Moreover, only for the biggest aggregation, there was a net-
work significantly better than the benchmark. While this contradicts many specific cases
where similar ANN models were shown to perform well (Table 1), a comparable conclu-
sion has been reported earlier for small loads where even a naive approach outperformed
an MLP (Hayes et al. 2015).

The accuracy of an ANN-model for wide range of loads can be improved by selecting
the best architecture among a set of candidates for each given consumer. Such idea of an
ensemble model is currently discussed (Ahmad et al. 2018; Bourdeau et al. 2019). However,
we have observed notable dispersion of the forecast error obtained by the same network
due to the random weight initialization which is a fundamental part of network training.
This dispersion makes model selection based on trial and error (Herndndez et al. 2014;



Valgaev et al. Energy Informatics (2020) 3:28 Page 15 0of 17

Amjady et al. 2010) and comparison in general, more difficult requiring to consider a
statistically relevant sample of training solutions for each candidate.

Our results suggest further practical conclusions for using ANN methodology to fore-
cast local loads day-ahead. Firstly, one-step-ahead models, which are more common,
should not be adopted directly. Predicting each point of the load curve separately was
significantly worse than any other strategy described in this work (Fig. 2).

Secondly, a more complex network architecture with additional input and training data
(e.g., DNN) is unlikely to be substantially more accurate. The residual analysis shows that
our simple setups had sufficient modeling capacity (Fig. 5). It also shows that, for smaller
loads, no further inputs are required and it is enough to consider only annual temperature
cycle instead of daily weather changes. Notwithstanding some special cases (e.g. substan-
tial PV share), this counterintuitive observation is consistent with other studies (Hayes
etal. 2015; Marinescu et al. 2013; Herndndez et al. 2014) and contrasts to the transmission
system level where weather explains up to 70% of load variation (Dang-Ha et al. 2017).

Most importantly, stochastic nature of the results becomes apparent when predicting
numerous local loads. The variation among the loads and training solutions urges to con-
sider statistical significance of any result. We have demonstrated substantial relative range
of forecast error which undermines any conclusion based uniquely on mean error and
such like. Related studies rarely consider confidence intervals of errors when evaluating
an ANN model applied for local load forecasting (Table 1). Our statistical analysis shows
that, even when aptly setup, ANNs may fail to reach the accuracy of currently used SLPs
(Fig. 6).

We explain the weak performance of applied architectures by non-stationarity of local
loads. Following the ANN methodology, a trained network forecasts unseen data, assum-
ing that the statistical properties of the process generating the data remain constant. Once
the regression function is estimated, a network does not adapt to the change in data
characteristics which often arrises with local loads. In such case, historic data quickly
becomes irrelevant undermining the network training. The fact that the most accurate
model used the least amount of training data supports this hypothesis (NAR model using
only 2 months of data).

Stationarity assumption is central for any neural network architecture. Hence, it is
unclear how ANN methodology, in general, can become effective predicting local loads
on a wide-scale. Neural networks are known for their black-box character and it is hard
to formulate a theory about their limitations for the given problem. In this situation,
empirical evidence obtained through statistical analysis, as in this work, becomes impor-
tant when deciding on a general approach for replacing SLPs. As currently applied, ANN
methodology might be ill-chosen for wide-scale forecasting of local loads. Future research
should focus on adaptive models (Ditzler et al. 2015; Kuznetsov and Mohri 2015) which
may require an entirely different approach, despite ANNs being successful for other
machine learning problems.

Conclusion

This work investigated neural network methodology for wide-scale day-ahead forecast-
ing of local loads such as single homes and small aggregations encountered in microgrids
or distribution system areas in general. Currently, grid operation relies on standardized
profiles for such forecasts which fail to reflect the volatility and diversity of the loads
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as they become of interest for local energy management. From numerous existing net-
work architectures, we identify and apply several setups that are practical for wide-scale
day-ahead prediction. As exist at present, ANNs do not yield any statistically significant
improvement. Herewith, we provide empirical evidence that a prominent neural network
methodology might be inadequate for wide-scale day-ahead forecasts of local loads.
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