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Abstract
In this paper, a thorough analysis of quantification of the heating appliances’ flexibility
provided by 200 households located in the Sion area (Switzerland) is presented. An
extended evaluation of the available flexibility throughout the year as well as a
correlation analysis between the outside temperature and flexibility is performed. The
influence of pooling households in the prediction process is assessed. The impact of
cutting the power to heating appliances and the incurred rebound effect are also
described.
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Introduction
The increasing penetration rate of new non-dispatchable intermittent renewables (Pho-
tovoltaic (PV), wind) puts at stress the electrical system: balancing production and
consumption becomes more challenging and parts of the grid can become congested at
peak times. Demand management, which aims at shaping consumption to fit needs of
the electrical system, is one of the available means to relieve this stress. The residential
sector represents about 30% of the total electricity consumption in Europe(Bertoldi and
Atanasiu 2007) and is therefore an interesting target for demand management. Demand
management programs are known as Demand Response (DR) programs. Several research
and experimentation projects have investigated and demonstrated demand management
in the residential sector (Fernández Aznar et al. 2019; Garbi et al. 2019; Schröder et al.
2018; Jacobsen et al. 2015).

The first section of this paper describes the state of the art regarding harvesting and
analyzing flexibility in households. The second section presents the results of the quantifi-
cation of available flexibility in households as well as the influence of pooling households
to better predict their flexibility.
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Households flexibility
Flexibility potential in households is usually defined as the capacity to increase, decrease,
or shift the consumption of domestic appliances over a period of time.

Flexibility analysis in households was conducted in Belgium (D’hulst et al. 2015), where
smart appliances were installed in 239 households for three years. The appliances con-
sisted in washing machines, dishwashers, tumble dryers, electric hot water tanks, and
electric vehicles. The project showed that consumption of all wet appliances (e.g. wash-
ing machines, dishwashers, tumble dryers) in Belgium can be increased to a maximum
of 2GW during 30 minutes and decreased to a low value of 300 MW at 10 p.m. in the
weekend for 15 minutes. This represents an average maximal increase of 430 W and a
maximum decrease of 65 W per household. Kaschub et al. (2016) explored the effects of
increasing solar storage on Demand Side Management (DSM) in Germany. This study
showed how a decrease in electricity demand, due to self-consumption, could lead to an
increase in electricity price and negatively affect customers without flexible loads or self-
generation units. Nicholls et al. (2015) studied flexibility in households in a qualitative way
as they showed the influence of having children on the consumption and flexibility poten-
tial of a household. The analysis revealed how a family peak period related to institution
arrangements, such as school times, working hours and outside-school activities.

Several studies focused on modelling the flexibility of building to allow better prediction
and develop control strategies (Chen et al. 2019; Stinner et al. 2016; De Coninck and
Helsen 2016; Finck et al. 2018; Arteconi et al. 2019; Zhou and Cao 2020). Here, we define
flexibility quantification as a statistical overview of flexible energy in households based
on real data.

Quantification of flexibility
Within the framework of the H2020 GOFLEX project, The local Distribution System
Operator (DSO) Enérgies Sion Réégion (ESR) has teamed up with the Institute of Sus-
tainable Energy of the University of Applied Sciences and Arts Western Switzerland
(HES-SO) to deploy an integrated solution, which contributes in the cost-effective use
of demand response in distribution grids and increase of the available flexibility of
loads/generation included in demand response schemes. The solution deployed in the
area of Sion aims at using DSM to minimise the imbalance for the ESR’s sub-balancing
group, thus lowering corrective costs, and to reduce peak loads on the distribution grid,
thus reducing the need of upgrading the infrastructure in areas where decentralized PV
production is increasing.

The possibility of storing energy in the form of heat makes space heating and hot water
systems particularly interesting for flexibility purposes. A given volume of water is stored
in a tank and preheated for later use. There is therefore a high potential for such loads in
terms of consumption shift over time. Flexibility is defined by two aspects: the quantity
of energy that could be shifted and for how long it would be possible.

In this section, the flexibility of heating appliances in 194 households, where the
GOFLEX solution was installed, is assessed. The consumed power is quantified and the
share of both heating needs, namely space heating and hot water heating, is computed.

The consumption profiles of households are computed using data collected between
October 2018 and May 2020, which allows a data based quantification of the available
flexible energy. They are then confronted to outside temperatures to better understand
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the correlation between these two measures. The quantification is conducted over
pools of different sizes. Having bigger sized pools allows a better prediction accuracy,
whereas working with smaller pools enables more spatial separation to help solving local
congestions.

The DSO’s business case, due to local market restrictions, is to be able to get advantage
of the available flexibility within a period of 1 to 2 hours. Here, cut tests of 1 and 2 hours
were conducted on heat pumps to evaluate the restart behavior, while making sure not to
alter the consumer’s comfort.

Available energy

Figure 1 shows the average total consumption per week and per quarter of hour of 194
households from October 2018 to May 2020. For the same households and the same time
window, Fig. 2 shows the average space heating consumption, Fig. 3 shows the average hot
water consumption, and Fig. 4 shows the average consumption of all the other appliances.

The power consumption for heating and hot water represents a big share of the total
consumption during winter season. We observe two major peaks of consumption in the
morning and afternoon where household activities (morning/evening showers, heating)
are taking place while around the middle of the day this consumption drops as people are
less likely to be in their homes in addition to the compensation of PV panels.

In Valais(Switzerland), there are strong seasonal temperature fluctuations which is the
reason why consumption habits in summer are very different from those in winter. The
resulting average consumption is thus greatly varying, from close to 0W in the summer up
to more than 1.6 kW during the cold night of the winter season. The daily average temper-
atures range from -4°C in January to 27°C in July. During the heating season, the heating
systems are used to keep the room temperature at around 22°C. The period depends heav-
ily on the location of the buildings, but usually lasts from September to May. During the
heating season, electricity consumption increases in a brutal fashion as shown in Fig. 2.
This means more loads can be used for DSM.

Fig. 1 Weekly average total consumption per quarter of house of 194 households from October 2018 to May
2020. The heating and lighting influence in winter is clearly visible, as well as cooking at noon
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Fig. 2 Weekly space heating consumption per quarter of house of 194 households from October 2018 to
May 2020. Influence of the cold season can clearly be identified. Moreover, we can observe that winter 18-19
was colder as 19-20

The power required for hot water supply follows the hot water requirement. In the
morning and in the evening, when most people are taking showers, a higher consumption
is recorded. There is also a small increase during the lunch break. During the spring sea-
son of 2020, there is an increase in terms of consumption compared to the same period
during the previous year, which could be explained by the Covid-19 health crisis. People
were mostly working remotely and children were off school during this period, which led
to a shift in consumption behavior with regard to hot water as shown in Fig. 3.

Figure 4 shows the behavior of consumers outside of heating appliances. There is a con-
stant behavior all year around midday, which corresponds to lunch break: cooking, dish

Fig. 3 Weekly average hot water consumption per quarter of house of 194 households from October 2018 to
May 2020. Consumption is quite regular, even if morning, evening, and cold induces an increase of the
consumption
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Fig. 4 Weekly house appliances consumption per quarter of house of 194 households from October 2018 to
May 2020 minus heating devices. Effect of more lighting in winter in the morning and evening can easily be
spotted, as well as cooking at lunch time

washing. During winter, there is a higher consumption in early morning and evening,
which corresponds mostly to lighting. The evening consumption is higher due to the
concentration of activities requiring electricity: light, TV, cooking, etc. This part of the
consumption is considered as too complicated to be shifted and as to be put in compari-
son with the heating appliances consumption These four Figs. (1, 2, 3, 4) clearly show the
energy potential of heating appliances, even if this potential is greatly varying during the
seasons and during the day.

Heating vs temperature

The energy consumption of space heating and hot water appliances depends on numerous
factors. In particular, seasonal changes have a large impact on the energy consumption
of space heating appliances. Space heating appliances show their maximum consumption
between December and February, but are mostly switched off between May and October.

Figure 5 shows the weekly average consumed power of both space heating and hot
water appliances between October 2018 and May 2020. Figure 5 also shows the weekly
average outdoor temperature in Sion for the same period. The temperature of the
weather station of Sion (482 m a.s.l.) was used as a reference, even if the households
are located in a broader area with some of them being located at more than 1000 m
a.s.l.. The power consumed by hot water appliances is not constant but only ranges from
about 60 W in summer to almost 200 W in Winter. As expected, the maximum power
consumed by space heating appliances happens between December and February, corre-
sponding to the lowest recorded temperature in the area. Between June and September,
the hottest months of the year, Fig. 5 shows a non-zero minimal power consumption
(slightly over 100 W).

Outside this hot period, the space heating power curve and the outdoor temperature
curve seem well anti-correlated. Figure 6 shows the average power consumption of the
hot water and space heating appliances are as a function of the outdoor temperature
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Fig. 5 Weekly average outdoor temperature in Sion and weekly average consumed power of both space
heating and hot water appliances between October 2018 and May 2020

for every day between October 2018 and May 2020 and illustrates this anti-correlation.
Figure 6 shows a clear decrease of space heating power with increasing outdoor temper-
ature. Above 20°C, the space heating power becomes constant but not null. This could
be explained by the fact that the measured power also include the power required by cir-
culation pumps or other non-heating components of the heating systems that were not
shut down for the summer. It could also be explained by the fact that some of the moni-
tored households are located in higher altitude and are thus experiencing lower outdoor
temperatures. Their heating systems are still running and therefore consuming energy in
summer.

Figure 6 also shows the slight decrease of hot water power with increasing outdoor tem-
perature mentioned above. This could be explained by the fact that the cold water entering

Fig. 6 Average power consumption of the hot water and space heating appliances as a function of the
outdoor temperature for every day between October 2018 and May 2020
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the system is colder in winter than in summer and therefore requires more energy to be
heated up. It could also be explained by the simple fact that people might take warmer
showers or baths in winter.

Influence of pooling households on the predictability of the load

Given their high power consumption (a few kW), space heating and hot water appliances
are extremely interesting candidates for flexibility purposes. However, the energy con-
sumption of space heating and hot water appliances depends on numerous factors such
as the residents’ habits and behaviour, the weather and the control systems. Indeed, these
appliances are typically consuming high power levels a few times a day, and are off the
rest of the time. This consumption is therefore very sporadic and its prediction for a given
time is definitely not an easy task.

To fully benefit from the flexibility, we need to be able to predict with reasonable accu-
racy the power consumption at a future point in time. Pooling the households together
should benefit the prediction of the load, in line with the Central Limit Theorem estab-
lishing that, in some situations, the normalized sum of independent random variables
tends toward a normal distribution even if the original variables themselves are not nor-
mally distributed. The following part will thus focus on the analysis of the influence and
benefit of pooling.

The power consumption of space heating and hot water appliances in a single household
is zero most of the time. However, when combining several households, the likelihood of
a null consumption for a given time is decreasing. Figure 7 shows the distributions, using
bins of 50 W, of the average heating (space and hot water) power consumption (over 15
minutes) of 180 households grouped in pools of different sizes for January 2020, where

Fig. 7 Distributions (bins of 50 W) of the average space heating and hot water power consumption (over 15
minutes) of 180 households grouped in pools of different sizes in January 2020. All histograms were cut at a
maximal power of 3 kW to facilitate the comparison. However, for really small pools, it results in part of the
distribution not shown
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consumption is dominated by space heating consumption. The households were grouped
in pools of 1, 2, 4, 9, 18, 36, 45, 90 and 180, respectively.

Since all 180 households are considered for each histogram, all histograms on Fig. 7
share the same mean value, respectively. Indeed, let us consider m pools of n households
each. The product m × n equals 180 and the mean power of pool k is given by:
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The mean value of all pools is therefore independent of both the number of pools and
the number of houses per pool.

Figure 7 shows that when the 180 households are considered individually (180 pools of
1 household), the average power during a quarter of an hour is zero most of the time. On
the contrary, when increasing the size of the pools, the distribution progressively tends
towards a normal distribution with a decreasing variance. This is detailed in Fig. 8 show-
ing the average and standard deviation of the distributions of the average space heating

Fig. 8 Average and Standard Deviation of the distributions of the average space heating and hot water
power consumption (over 15 minutes) of 180 households in January 2020
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and hot water power consumption (over 15 minutes) of 180 households for January 2020.
The households were grouped in pools of 1, 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 20, 30, 36, 45, 60,
90 and 180, respectively. Figure 8 shows the constancy of the mean values with an increas-
ing number of households per pool, about 0.95 kW for January 2020 (domination of space
heating). Figure 8 shows a rapid decrease of the standard deviation with an increasing
number of households per pool.

Based on the distributions of Fig. 7, the prediction of the consumption of a large pool
of households will be more accurate than the prediction of the consumption of a single
household. Considering pools of a sufficient number of households rather than individual
households also guarantees that a minimum level of power is consumed at any given time.
A minimum of 45 houses is needed in this case to have good quality estimation.

Shifting potential and effects

Cut tests of heating appliances were conducted in early spring 2020 for 73 households.
The purpose of these tests is to better describe the potential of residential buildings flex-
ibility via studying the behaviour of the loads to be controlled if reacting to flexibility
orders. Figure 9 shows the average consumption of heating appliances for all households
over a day where cut phases of 1 hour each were executed repeatedly with a two hour
resting period versus an average consumption profile of a very similar day (same week)
without any cuts. Figure 10 shows the same results while the cut phases are two hour
long with a four hour resting period. It should be noted that these cuts of 1 or 2 hours
had no impact on the comfort of the inhabitants. Longer periods of cuts (> 2h) could be
implemented, but do not seems to be required by the current grid flexibility needs.

When switched off for one hour, heating appliances tend to consume a lot more than
usual in the first following hour, to compensate for the removed energy consumption.
The consumption gradually decreases for the following hour until reaching the usual con-
sumption. These expected rebound phases tend to be higher in early morning and in the

Fig. 9 Average heating appliances power of 73 households during a reference day and during a day when
regular 1 hour cuts of the appliances were implemented. The rebounding effect is clearly visible as well as a
slight oscillation induced by a synchronization of some of the appliances after the cut. The respite period of 2
hours between the cuts seem also to be fitting to restabilize the system after the cuts
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Fig. 10 Average heating appliances power of 73 households during a reference day and during a day when
regular 2 hours cuts of the appliances were implemented. It can be noted that the rebounds are bigger than
with one hour cuts and that the induced oscillations are also more visible

evening, when the average consumption is higher. Their height depends on the erased
energy in the previous hour. During the afternoon, when consumption is usually moder-
ate, the rebound effect is shorter in time. It can also be noted that an oscillation is also
visible after the first peak. As a good number of appliances will restart exactly at the
same time and their on-off period is similar, this synchronization has an impact after the
first peak. It is clearly visible in Fig. 10 with the last cut inducing a second peak at 22-23
PM. This oscillation can also be observed after the other cuts in a reduced way. The two
hour cuts show that heating appliances consumption tends to stabilize at the reference
value after a longer resting period. It should be noted that the rebounding effect could be
attenuated by gradually turning appliances back on.

Conclusion
In this paper, we presented results of tests to quantify households flexibility. They showed
that there is a high potential for heating appliances especially in winter for space heat-
ing. Hot water heating appliances have a small potential, but more regularly spread over
the year. Cut tests showed the possibility to shift heating consumption without altering
the comfort of consumers. Flexibility potential was predicted using a model based on
temperature and is expected to include more weather parameters in order to have more
accurate results. The effect of pooling households on the flexibility prediction was also
demonstrated. Further research is conducted to validate this new solution and enhance
the flexibility prediction models. The results are expected to be deployed among more
households in future years.
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