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Oldenburg, Germany influence of information and communication technology. This influence comprises all
processes, functional, and non-functional aspects like functional correctness, safety,
security, and reliability. An example of a process is the data acquisition process.
Questions focused in this paper are, first, how one can trust in process data in a data
acquisition process of a highly-complex cyber-physical power system. Second, how
can the trust in process data be integrated into a state estimation to achieve estimated
results in a way that it can reflect trustworthiness of that input?

We present the concept of an anomaly-sensitive state estimation that tackles these
questions. The concept is based on a multi-faceted trust model for power system
network assessment. Furthermore, we provide a proof of concept by enriching
measurements in the context of the IEEE 39-bus system with reasonable trust values.
The proof of concept shows the benefits but also the limitations of the approach.
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Motivation

Modern power systems are cyber-physical systems (CPSs). The need for information and
communication technology (ICT) and the dependency of power systems on ICT is grow-
ing. A major driver for this development is the energy transition implicating an increasing
distributed generation based on renewable energy sources. This leads to the need to
include more (end-) devices and their data into the data acquisition process to still be able
to supervise and control the highly-complex CPS (Nijhuis et al. 2015; Pillitteri and Brewer
2014).

Better penetration of ICT in power systems gives us some advantages. We can gain
more flexibility, efficiency, and sustainability (Nijhuis et al. 2015; Pillitteri and Brewer
2014). But it also comes along with some drawbacks. First, the ICT that helps to handle
the increasing complexity leads itself to increased complexity. Second, interdependen-
cies between the classical power system and the ICT can occur and are, potentially, hard
to identify. Third, issues from ICT like cybersecurity become more important in a CPS
(Pillitteri and Brewer 2014).
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Against this background, the trustworthiness of process data, e.g. measurements from
the field, is not given any more by definition. Process data could be manipulated by
a cyberattack, provided by a non-credible data source, or not reliable because of the
complexity of the CPS or interdependencies.

Cyber security issues are one example. In traditional power systems, cyber security is
still often achieved through obscurity (Pillitteri and Brewer 2014). But modern power
systems use standardized protocols, interfaces, and software to achieve better interop-
erability (Greer et al. 2014). Furthermore, security mechanisms like encryption often
interfere with real-time constraints, limited resources, and costs (Pillitteri and Brewer
2014). Coordinated false data injection attacks (FDIAs) (Liu et al. 2011), for example, have
been proven to be potentially undetectable by state-of-the-art state estimation and bad
data detection. The idea behind coordinated FDIAs is to hide the manipulation of process
data with knowledge about the system, i.e. to change the process data in a coordinated
way so that it gives the impression of reasonable values (Liu et al. 2011).

And security is just one aspect. One can question, whether the devices function
correctly or whether they are still reliable. Therefore, we propose to use the terminolo-
gies “trust” and “trustworthiness” as an umbrella for the different aspects like security,
reliability, and credibility.

The question, whether measurements are trustworthy, is closely linked to the ques-
tion, whether a state estimation result, i.e. the estimated complex voltages at the buses,
is trustworthy. The reason is that they are estimated based on the input measurements.
Therefore, we present in this paper an approach to estimate the trustworthiness of state
variables based on the trust assessment of the input measurements.

The contributions in this paper are the following:

e amodel to assess trust in the power system network assessment (PSNA) process,

e an anomaly-sensitive state estimation (ASSE) that considers the trustworthiness of
input measurements for an trust estimation of the state variables, and

e a proof of concept by enriching measurements in the context of the IEEE 39-bus

system with reasonable trust values.

Related work

Trust is a well-known concept in the field of organic computing (OC) but there exist also
adaptions for the field of power systems. This section gives an overview of research on
trust in both fields.

Trust in organic computing

Steghofer et al. (2010) propose a trust model, named OC-Trust, where agents interact
with each other and with humans. The authors state that trust is context-dependent and
multi-faceted. Concrete, they define six different trust facets:

e functional correctness as “the quality of a system to adhere to its functional
specification under the condition that no unexpected disturbances occur in the
system’s environment” (Steghofer et al. 2010),

o safety as “the quality of a system to be free of the possibility to enter a state or to
create an output that may impose harm to its users, the system itself or parts of it, or
to its environment” (Steghofer et al. 2010),
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e security as “the absence of possibilities to defect the system in ways that disclose
private information, change or delete data without authorization, or to unlawfully
assume the authority to act on behalf of others in the system” (Steghofer et al. 2010),

e reliability as “the quality of a system to remain available even under disturbances or
partial failure for a specified period of time as measured quantitatively by means of
guaranteed availability, mean-time between failures, or stochastically defined
performance guarantees” (Steghofer et al. 2010),

e credibility as “the belief in the ability and willingness of a cooperation partner to
participate in an interaction in a desirable manner. Also, the ability of a system to
communicate with a user consistently and transparently” (Steghofer et al. 2010), and

e usability as “the quality of a system to provide an interface to the user that can be
used efficiently, effectively and satisfactorily that in particular incorporates
consideration of user control, transparency and privacy” (Steghofer et al. 2010).

The authors of this paper adapt in Brand et al. (2019) OC-Trust to PSNA. The main differ-
ence in the context of PSNA to OC is that it is in terms of PSNA about trust in a process

variable several devices (or agents) had an influence on.

Trust in power systems
In the context of the research project SmartNord, a trust model based on OC-Trust
(Steghofer et al. 2010) has been developed (Rosinger et al. 2013; Rosinger et al. 2014).
Rosinger et al. (2014) define a trust tuple that contains the trust of an agent in another
agent in a certain context and timeframe. The timeframe can be regarded as a special
aspect of a context. The drawback of that approach for PSNA is the same as of OC-Trust.

Other research focuses on an increased trust by a distributed state estimation. Matei et
al. (2012) assume agents in the field performing a distributed state estimation and assign-
ing trust values to neighboring agents. The use of high trustworthy nodes, e.g. highly
secured, is proposed by Zheng et al. (2010). Both work assume trust to be unidimensional
in difference to OC-Trust, Smart Nord, and us. Furthermore, we focus on a centralized
state estimation without the possibility to integrate secured nodes.

Many other measures against attacks like FDIAs focus on security and have drawbacks
when the origin of a compromization is not a cyberattack (cf. Cui et al. (2012) and Liang
et al. (2016) for an overview of detection schemes).

Trust in power system network assessment
Based on OC-Trust (Steghofer et al. 2010) (cf. Trust in power system network assess-
ment), we define PSNA-Trust as follows:

Definition 1 Trust is a subjective, context-dependent, and multivariate sense about an
entity with respect to its functional correctness, safety, security, reliability, credibility, and
usability.

The PSNA-Trust model, which is developed in the research project “Smart Grid Cyber-
Resilience Laboratory” (OFFIS 2017) at OFFIS (cf. also Brand et al. (2019)), is visualized
in Fig. 1 in the shape of a trust assessment pyramid. On the bottom level are objects of
investigation that can be categorized into domains. Objects of investigation are processes,
functions, or components, for which the trust shall be assessed. An example object of
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Fig. 1 The trust assessment pyramid

investigation can be the data acquisition process with metering devices, remote terminal
units (RTUs), and routers as contained sub-objects of investigation. The metering devices
can be classified into the power domain and the RTUs and routers into the ICT domain.
Other examples for domains are the market and the cognitive domain. The latter becomes
relevant when it is about humans and their behavior.

Trust inputs are located above objects of investigation in Fig. 1. They define the infor-
mation that is used to assess the trust in the objects of investigation. Examples for trust
inputs are quality-of-service information about components or network traffic. Trust
inputs are provided by trust sources that can be represented by any tool, technique, or
person that provide information about the object of investigation. Examples for trust
sources are information technology (IT) monitoring tools that provide quality-of-service
information and intrusion detection systems (IDSs) that collect information about the
network traffic. The trust assessment pyramid abstracts from the concrete tools and tech-
nologies by only describing the trust inputs. Each trust inputs must be transformed into
a single trust value ¢ which domain is [0,1] (¢ € R,0 < ¢ < 1). In other words, single
trust values reflect the probability that the object of investigation is trustworthy or not
from the perspective of the source of the single trust value. The transformation is done by
transformation functions and their output can contribute to several trust facets that are
collections of single trust values mapped to their source. Transformations can include but
are not limited to normalization, aggregation, and weighting.

Target application: state estimation

The PSNA-Trust model can be used for any purpose, where the trustworthiness of pro-
cesses, components, or process data in a power system is of interest. An example purpose
is the state estimation. The state estimation (Abur and Exposito 2004) estimates state
variables, i.e. the complex voltages at the buses, based on, in most cases redundant, mea-
surements. Typically, bad data detection (Abur and Exposito 2004) is added to the state
estimation to detect, identify, and eliminate gross, independent measurement failures. If
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bad data is detected and could be identified and eliminated, state estimation is run again.
This iterative procedure ends when there is no bad data any more detected or if it can’t
be eliminated. It is important to make clear that bad data detection can only handle gross
and independent measurement failures. Coordinated attacks like coordinated FDIAs can
bypass the bad data detection as research on FDIAs (Liu et al. 2011) has proven.

Against this background, the use of the trustworthiness of input measurements in a
state estimation can be of significance. It can give hints about a potential FDIA and other
events in the system that compromise measurement data. This is a benefit compared to
solutions that tackle only FDIAs or other cyberattacks. We propose in this context a so-
called anomaly-sensitive state estimation (ASSE). The idea is to use anomaly detectors
to estimate the trustworthiness of the input measurements for a state estimation and to
include the trust data in the state estimation. An anomaly is in this context an event that
reduces the trust in a process variable. Anomaly detectors are based on trust inputs such
as alerts from an IDS or information from an IT-monitoring system. The complex trust
value of an input measurement is aggregated to a single trust value ¢ €[ 0, 1] and converted
to a standard deviation. The state estimation result contains an uncertainty for each state
variable, calculated based on the standard deviation of the input measurements. These
uncertainties represent the trustworthiness of the state variables.

Proof of concept

The purpose of the proof of concept is to validate certain hypotheses about the effects of
the reduced trustworthiness of measurements on the estimated state variables and their
uncertainties. The hypotheses are the following:

Hypothesis 1 The trustworthiness of measurements from a single bus influences the
trustworthiness of state variables in most cases not noticeable.

Hypothesis 2 The trustworthiness of measurements from multiple buses influences the
trustworthiness of state variables in most cases noticeable.

Hypothesis 3 The trustworthiness of measurements from a single bus influences the
estimation of state variables in most cases not noticeable.

Hypothesis 4 The trustworthiness of measurements from multiple buses influences the
estimation of state variables in most cases noticeable.

The definition of the term “noticeable” depends on the state variable of investiga-
tion. Typically, the uncertainty of voltage magnitudes u(V},) is negligible, i.e. u(V,,) <
0.001 p.u. The uncertainty of voltage angles u(V/,) is typically higher if no measurements
from phasor measurement units but only from RTUs are available. Therefore, we con-
sider an uncertainty for a voltage angle as noticeable if #(V,;) > 0.03° holds. For voltage
magnitude values, the standard deviation of the metering devices is used as a thresh-
old for the term “noticeable’, i.e. the estimated voltage magnitudes should not vary more
than the maximum standard deviation of the metering devices compared to a scenario
with full trustworthiness. This approach is not feasible for voltage angles because we
neither have metering devices nor standard deviations for them. We consider triple the
maximum standard deviation of the metering devices compared to a scenario with full
trustworthiness as the threshold for the term “noticeable”

The reason for the hypotheses is that the state estimation should be able to use other

measurements from buses in the neighborhood if only measurements from one bus are
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affected. If a complete neighborhood is affected, the deviations (errors) of the measure-
ments are no longer independent as expected in the state estimation process (Abur and
Exposito 2004). In the remainder of this section, information about the setup is provided.
Afterward, the results of the proof of concept are presented and discussed.

Setup
The setup for the proof of concept is divided into the setup of the CPS and the setup of
the trust assessment.

Cyber-Physical system

The physical part of the CPS of investigation is the IEEE 39-bus system (Pai et al. 1989).
It consists of 29 PQ buses, i.e. buses for which active (P) and reactive (Q) power mea-
surements are available, 9 PV buses, i.e. buses for which P and voltage magnitude (V)
measurements are available, and a slack bus, i.e. a bus for which a V,, measurement
is available and the voltage angle (V) is defined as 0°. We assume one RTU per bus
transmitting the measurements of the respective bus. The ICT system is assumed to be
structured as the power system, i.e. 39 routers, one per RTU, connected according to the
branches of the power system. The router at bus 16 is assumed to be connected to the
router of the control room. The configuration of the state estimator is the following. It
stops the iterative process if the improvement compared to the last iteration is less or
equal than € = 0.001 or if it needs 50 iterations.

Trust assessment
Figure 2 shows an instantiation of the trust pyramid (cf. Fig. 1) for the proof of concept.
The object of investigation is the data acquisition process with three relevant types of

Trust
Functional Securit
Correctness ¥
StdDevAD DevLoadAD NetSecAD
Standard Network
Deviation CPU Load Traffic
MDegflir(':’;g RTU Router
| .
— /
Acquisition
Power ICT
Fig. 2 An instantiation of the trust assessment pyramid for the proof of concept
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components: metering devices, RTUs, and routers. Trust inputs are the standard devi-
ations of the metering devices, CPU load information of the RTUs and routers, and
network traffic information. Accordingly, three anomaly detectors (transformation func-
tions) are used. The first is a static one that transforms the standard deviation of the
metering devices into a trust value for the functional correctness facet: g pe,(y) =
1 — stdDev,y,,. y is a measurement, m, the device metering y, and stdDev,,, the standard
deviation of that metering device. The second anomaly detector is named “network secu-
rity anomaly detector” and provides a trust value for the security facet. It is based on alerts
from an IDS. The calculation of a trust value based on alerts for potentially several devices
that are involved in the data acquisition of measurement is based on Liu et al. (2015).

Q= 1+ Z b ) (1)
kea(i)

The so-called network impact factor (Liu et al. 2015) 2 of alerts for a specific device i is
calculated as shown in Equation 1. a(i) is the set of alerts for i, p(k) the priority of an alert
k, and m a weight coefficient for the threat priority (Liu et al. 2015). Q increases with the
amount and severity of alerts. It’s boundaries are 1 for |a(i)| = 0 and lim;(;)|— 00 $2; = 00.

7]
Zie[ Q;

Based on the network impact factor, we define the trustworthiness £,¢sse.(y) of a mea-

LyetSec O’) = (2)

surement y as in Equation 2. [ is the set of devices involved in the data acquisition of y.
The boundaries of £,e¢5e.(y) are 1 for Q = |I] and limg_, ¢ fyesec(y) = O.

The third anomaly detector is named “device load anomaly detector” and provides a
trust value for the functional correctness facet. It is based on CPU load information
(Lewis 2019) for devices from an IT monitoring system.

0 lcpuy5 >5.¢
025 ¢ <lcpys <5-c¢

3)

t ) =
devLoad (1) 05 0.7 -c<lcpus <c

1 else

The trustworthiness of a single device y based on the average CPU load of the last five
minutes (/cpy5) is calculated as shown in Equation 3. ¢ is the number of available cores.
The calculation of a trust value based on average load information is based on Lewis
(2019). We chose the average of the last five minutes because the average of the last minute
is too volatile and the average of the last fifteen minutes is too long-running in our sce-
nario, where we get measurements every fifty milliseconds. The thresholds of 5 - ¢, ¢, and
0.7 - ¢ are based on the rules described in Lewis (2019). They are configurable and, in
general, all anomaly detectors and the choice of the anomaly detectors are configurable.

1

I Z LdevLoad (i) (4')

iel

LdevLoad ()’) =

Based on the device load metric for single devices, we define the trustworthiness
taevioad(y) of a measurement y as in Equation 4. [ is the set of devices involved in the data
acquisition of y. The boundaries of ¢ .1 044(y) are 1 for tep1044(i) = 1 Vi € I and O for
tdevLoad(i) =0Viel
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Scenarios

In our proof of concept, we want to investigate seven scenarios. In the scenarios, we inves-
tigate the influence of a high priority IDS alert, of a high average device load, or both.
Furthermore, we investigate the behavior if the reduced trustworthiness is for an RTU,
concrete at bus 26, or for a router that is involved in the data acquisition of measurements
from several RTUs, concrete the router at bus 26. The scenarios are the following:

Scenario 1 no anomaly detectors except the static standard deviation of the metering
devices (baseline),

Scenario 2 an IDS alert for RTU 26,

Scenario 3 a high device load average for RTU 26,

Scenario 4 a combination of Scenario 2 and 3,

Scenario 5 an IDS alert for router 26,

Scenario 6 a high device load average for router 26, and

Scenario 7 a combination of Scenario 5 and 6.

tuetsec(y) is calculated based on Equation 1 and 2 with m = 2, p(k) = 3 for a single alert,
_6
549
by RTU 26 in Scenario 2. In Scenario 5, |I] is 6, 7, 8, and 9 for measurements provided by

RTU 26, 28, 29, and 38, respectively. tje,1044(y) is calculated based on Equation 3 and 4
with ¢ = 1 and an average load of the last five minutes of ¢ < Icpy;5 < 5-c. The trust value
iS tgevioad (V) = % = 0.875 for all y provided by RTU 26 in Scenario 3. In Scenario
6, |I| is on the lines of Scenario 5. For Scenario 4 and Scenario 7, the multiplication of all

and five routers involved. The trust value is fyesec(y) = = 0.75 for all y provided

single trust values (fszgpey (V) * tuetsec(V) - LdevLoad (V) is used to aggregate the complex trust
values to a single one.

Results

Table 1 gives an overview of the key findings on a grid-wide scale. The number of used
iterations in the state estimation process and even whether it converges or not differs
for the particular scenarios. In Scenario 1, six iterations are needed. For a decreased
trustworthiness of measurements of a single bus (Scenario 2—Scenario 4), the state esti-
mator converges and the used iterations increase with a decrease of the trustworthiness
of the measurements. The state estimator does not converge when the trustworthiness of
measurements from several buses is decreased (Scenario 5—Scenario 7). This shows the
influence of changing the trustworthiness in terms of standard deviations of the input
measurements on the state estimation behavior.

The Vj,, and V, values are always compared to the baseline while the #(V},) and u(V,)
values are absolute. The amounts of buses with noticeable deviations or uncertainties
are calculated based on our assumptions of noticeable values (cf. Proof of concept). The
results do not comply with Hypothesis 1 (no noticeable uncertainties in Scenario 2—
Scenario 4). There are noticeable values for up to four V,, and thirty-eight V, values. The
uncertainties for V}, values are low (max. 0.004 p.u.) but can be high for V, values (max.
0.82°). For Hypothesis 2 (noticeable uncertainties in Scenario 5-Scenario 7), the results
are as expected. There are noticeable uncertainties for up to thirty-one Vj, and thirty-
eight V,, values. The uncertainties for V;, and V, values can be high (max. 0.146 p.u. and
4.011°, respectively). The results do also comply with Hypothesis 3 and Hypothesis 4 (no
noticeable value changes).
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Table 1 Overview of the results for the respective scenarios compared to the baseline Scenario 1

Scenario 1 2 3 4 5 6 7
# iterations of state estimator 6 8 6 24 50 50 50
minimum V,, dev. [p.u] - 0 0 0 0 0
maximum V,, dev. [p.u] - 0.001 0 0.001 0.001 0.001 0.001
average V/;, dev. [p.u] - ~ 0 ~ ~ ~ ~0
# buses with noticeable V,, dev. - 0 0 0 0 0 0
minimum u(V,) [p.u] 0 0.001 0.001 0.001 0.001 0.001 0.001
maximum u(Vy,) [p.u] 0.001 0.003 0.002 0.004 (AN 0.051 0.146
average u(Vpy) [p.ul ~0 0.001 0.001 0.001 0.013 0.006 0.0171
# buses with noticeable u(V,) 0 3 1 4 31 28 30
minimum V, dev. [°] - 0 0 0 0 0 0
maximum Y, dev. [°] - 0.002 0.002 0.002 0.003 0.001 0.003
average /, dev. [°] - 0.001 0.001 0.001 0.002 ~ 0.002
# buses with noticeable V/, dev. - 0 0 0 0 0 0
minimum u(V,) [°] 0.001 0.001 0.001 0.001 0.001 0.001 0.001
maximum u(V,) [°] 0.036 0592 0313 0.82 3.13 1.694 4.011
average u(V;) [°] 0.024 0.391 0.206 0.541 0.754 0.537 0.977
# buses with noticeable u(,) 3 38 38 38 38 38 38

The content of Table 2 is focused on the buses with measurements for which the

trustworthiness has been reduced in the different scenarios. It can be seen that the

value differences and uncertainties match the maximum values in Table 1. In other

words, the state variables, related to buses to which also the measurements with reduced

trustworthiness are related to, and their uncertainties are affected most.

Discussion

The results comply with three of four hypotheses. The fact that the data does not comply

with Hypothesis 1 is not a bad result either. It shows that, at least in this setup, also the

reduced trustworthiness of measurements from a single bus influences the uncertainty of

the related state variables.

Table 2 Results for specific buses and the respective scenarios compared to the baseline Scenario 1

Scenario 1 2 3 4 5 6 7
bus 26: V,, dev. [p.u] - 0 0 0 0 0 0
bus 26: u(V;)) [p.ul 0.001 0.003 0.002 0.004 0.042 0.019 0.055
bus 26: /; dev. [p.u] - 0.002 0.002 0.002 0.003 0.001 0.003
bus 26: u(V,) [p.ul 0.026 0.592 0312 0.82 1.045 0.763 1.346
bus 28: V/,, dev. [p.u] - 0 0 0 0 0 0
bus 28: u(V,) [p.ul 0.001 0.002 0.001 0.002 0.082 0.038 0.108
bus 28: V/, dev. [p.u] - 0.001 0.001 0.002 0.002 0 0.003
bus 28: u(V,) [p.ul 0.027 0.591 0313 0818 1.543 1.034 1.963
bus 29: V,, dev. [p.u] - 0 0 0 0 0 0
bus 29: u(V,)) [p.ul 0.001 0.001 0.001 0.002 0.093 0.043 0122
bus 29: V/; dev. [p.u] - 0.002 0.001 0.002 0.003 0 0.003
bus 29: u(V;,) [p.ul 0.029 0.59 0313 0.817 1.892 1177 24
bus 38: V,, dev. [p.u] - 0.001 0 0.001 0.001 0.001 0.001
bus 38: u(V,) [p.ul 0.001 0.001 0.001 0.001 0.11 0.051 0.146
bus 38: /, dev. [p.u] - 0.002 0.001 0.002 0.002 0 0.003
bus 38: u(V,) [p.ul 0.036 0.59 0313 0817 313 1.694 4.011
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Another key finding is that the state estimator does not converge when the trustwor-
thiness of several data sources is reduced. This is an unintended issue. The reason is
most probably that, in a typical state estimation, the measurement errors are assumed to
be independent. Our results show that for dependent measurement errors, expressed by
reduced trustworthiness, the convergence of the state estimation is not given any more
in all scenarios. Therefore, we are convinced that it is not an optimal solution to convert
complex trust values to standard deviations of measurements. We should rather inves-
tigate on a solution that reflects the trustworthiness of the measurements but does not
affect the convergence of the state estimation.

Future work

The convergence behavior of the state estimator is one of the key findings of the proof of
concept. We plan to investigate on how to enhance the state estimation by a calculation
of complex, multi-faceted trust values based on complex, multi-faceted trust values of the
measurements. Another aspect of future work is a comprehensive evaluation. The proof
of concept is meant to test the concept and to identify conceptual errors (cf. the already
mentioned aspect of future work). With an improved concept and realization, a more
comprehensive evaluation with more anomaly detectors and events that compromise the
measurements is planned. A third aspect is a further development of the information
model of the trust assessment. With a more comprehensive information model, it shall be
possible to model the trust assessment for different components, processes, and power
systems in general.

Conclusion

With the ASSE, we proposed in this paper a special kind of state estimation. It calculates
uncertainties of estimated state variables based on the trustworthiness of measurements.
The trust in measurements and process data, in general, is founded on PSNA-Trust, a
multi-faceted trust model. A proof of concept showed the benefits but also the limitations
of the approach. On the one hand, we saw how the reduced trustworthiness of measure-
ments from a single bus and multiple buses influences the uncertainty of the estimated
state variables. But, on the other hand, we also found out that the state estimator does not
converge in all scenarios. That is the case if measurements from more than one bus are
affected by reduced trustworthiness. A solution for this is the main goal of future work.
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