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Dear readers,
In this supplemen of the proceedings of the DACH+ Energy Informat-
ics 2020, we present the poster abstracts, including 10 from the main
conference submission and 6 from the co-located Energy Informatics
Doctoral Workshop. It is an important aspect to provide a space for
the debate about the most recent developments in the field and also
its transfer to the real world, making an impact on our community.
Therefore we are happy to share with you, the reader, the most re-
cent developments, which we could discuss at the conference, and
which gives us confidence that also in the following years we will
have interesting and relevant insights to be presented in future edi-
tions of the DACH+ Energy Informatics. The innovative ideas come
from a variety of topics within the field, such as network security,
electric mobility, load forecast, etc.
We hope you find the poster abstracts informative and inspiring for
future collaboration.
Sincerely,
René Schumann
General Chair
Michael Brand
Poster Chair
Khoa Nguyen
Publication Chair
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Summary
A successful deployment and operation of smart grids depends on
the reliability and security of the protocols used to gather data from
the various components. This work evaluates a technique called fuzz-
ing to investigate the security of smart grid communication proto-
cols. Based on a structured process for fuzzing in this specific
domain we develop a fuzzer that has been made publicly available
to ensure repeatability of the results and ease further security assess-
ments of protocols and implementations. By applying this process to
a well-known implementation of the IEC 61850 protocol, several bugs
have been found and reported to the developers.
Keywords: computer network security; IEC standards; industrial
power systems; power system control; fuzzing
Introduction
Today’s energy grids are on the verge to become smart. The main
difference between a common grid widely used today and a smart
grid, aimed at in the near future, is the high level of digitization
which helps to handle more complex tasks in an efficient and effect-
ive way [1]. The gathering of information from diverse components
in the smart grid using well-defined communication protocols is im-
perative. Consequently, several protocols have been proposed such
as IEC 61850, IEC 60870–5–104 or Modbus.
A long-lasting blackout can have a severe impact on our daily lives.
Therefore, a reliable operation of an energy grid is crucial. However,
the increasing digitization of smart grids imposes a new threat — at-
tacks on the digital infrastructure. Thus, information technology se-
curity for smart grids is becoming an important factor.
This work explores the security of the IEC 61850 protocol standard
using a technique called fuzzing. So called fuzzers provide unex-
pected (i.e. random) data to a program and monitor its behavior. De-
pending on the state of the input parser of that program, undesired
events may be triggered such as crashes, built-in assertions or
memory-leaks. Such bugs are often used as a commencement for at-
tacks and should be reported and fixed quickly.
There are several studies that deal with fuzzing of the IEC 61850
standard [2, 3, 4, 5, 6]. However, to the best of our knowledge, the
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fuzzing tools of these studies were not published. Therefore, we or
other researchers are unable to reproduce or build-upon the previ-
ous results.
In this work, we use fuzzing to reveal further unknown weaknesses
in a frequently used implementation of the IEC 61850 protocol stand-
ard. The fuzzer we developed will be made publicly available to im-
prove future security analysis of communication protocols used in
the digital energy sector. In addition, we provide a description of our
methodology to facilitate further experimentation.
Methodology
The generative fuzzing approach we propose is applied to an exist-
ing open-source library of the IEC 61850 standard [7]. This library of-
fers implementations of a Manufacturing Messaging Specification
(MMS) server and Generic Object Oriented Substation Events
(GOOSE) and Sampled Values (SV) subscribers. Since the library is
publicly accessible, regularly maintained, and a commercial license
with support is offered, we assume that it is used in real hardware
and commercial projects.
As fuzzing only reveals errors that cause the program to crash or
hang, it would not detect internal software errors that might occur
without resulting in a crash. To find such memory specific bugs we
compile the library with AddressSanitizer (ASan) [8, 9]. ASan is a
memory error detector for C/C++ projects. By using it, the program
under test will crash whenever a memory bug is triggered. However,
a certain trade-off exists. By using ASan the execution of the program
is slowed down, which therefore also impacts the fuzzing
performance.
Procedure for protocol fuzzing
A protocol fuzzing procedure can be divided into several steps as il-
lustrated in Figure 1. These steps can be used as a simple guideline
to lower the entry barrier for other researchers outside the security
domain.
Obtain Message Specifications When fuzzing protocol implementa-
tions, the fuzzer must generate packets that comply with the proto-
col specifications. To determine these specifications there are two
general possibilities. Study the official documentation of the protocol,
or read and analyze packets using a network protocol analyzer like
Wireshark [10]. Wireshark sniffs packets directly from a network inter-
face and displays a detailed analysis of the packet using various
build-in dissectors. We use Wireshark to analyze the structure, fields
and contents of IEC 61850 packets and to check whether the packets
generated by our fuzzer match this format.
Create own packets Having captured and analyzed packets of the re-
spective protocols, the next step is to create artificial packets. For this
task we use Boofuzz, which is a well-known open-source network
protocol fuzzing framework [11, 12]. It simplifies the creation of a fuz-
zer by taking care of crash detection, target reset after failure, record-
ing of test data and also simplifies the definition of packets. To
create messages, we copy the message in hex representation from
Wireshark as an escaped string and paste it into the fuzzing script.
Afterwards, the message is divided into any desired level of detail ac-
cording to the individual fields. Dividing the message into blocks has
the advantage that the code is more legible and that single blocks
may be directly addressed by their corresponding name. This allows
for example calculating a checksum for a certain block, if this is ex-
pected by the protocol.
Decide what should be mutated To realize the mutation we use the s
random function of Boofuzz. This function creates a random data
chunk using a byte-wise mutation while keeping a copy of the ori-
ginal data [12]. The function parameter num mutations specifies the
amount of mutations. In addition, a random length range can be
specified by altering min length and max length. The decision which
fields of the message should be mutated is incumbent to the re-
searcher. In this work, we mutate almost every field, set the random
length range to 0–100 and set the number of mutations to 100000
per data chunk. Only essential attributes like destination, source or
ethertype remain unchanged.
Start fuzzing Before starting the actual fuzzing, it has to be ensured
that the program being fuzzed is observed and checked for crashes.
For this purpose, Boofuzz offers a process monitor which must be
started before the fuzzing process. We analyzed all three imple-
mented sub-protocols and fuzzed the MMS server as well as the
GOOSE and SV subscribers. The fuzzing processes terminated when
the number of defined mutations was reached.
Found Crash? To determine whether a crash was found, the output
of the fuzzer or process monitor can be examined and searched for
messages that report a crash. Alternatively, the fuzzing logs stored in
SQLite databases created by Boofuzz can be used. If the fuzzing does
not lead to any crashes, it should be double-checked if the packets
sent by the fuzzer correspond to the required format. In addition, it
is advisable to mutate other fields or to create additional types of
messages.
Analyze Crash Having found a crash, it has to be analyzed manually.
Not every crash is equal to a new software bug, because often one
bug is triggered multiple times during fuzzing. To determine whether
the crash is unique and what caused it, the source code must be an-
alyzed. A first aspect that should be checked is whether the crash
can be reproduced without fuzzing. If this is the case, the next check
is whether it occurs without ASan. This would indicate that the pro-
gram crashes with a standard compilation when it receives the input
and that the fuzzer would have detected it without further help. To
understand and possibly fix the bug, a deeper analysis of the in-
volved code is necessary. A first indication to find the source of error
is to see which part of the packet has been mutated. An additional
starting point, if available, is the crash documentation of ASan. It
traces the crash through all instructed files and also presents the line
number of the file where the error is located. At this point, it is pref-
erable to investigate and navigate through the code and to under-
stand the exact procedure that causes the error using a debugger.
Report Bug If a crash has been found and a security researcher is able
to reproduce and explain the bug, it should be reported to the soft-
ware developer or maintainer. This ensures that the bug can be fixed
before attackers can find and exploit it.
Results and Future Work
Using the simple process illustrated in this work, we fuzzed an open-
source project implementing the IEC 61850 standard. Thereby we
found crashes that could be traced back to four different errors —
one in the MMS server, one in the GOOSE subscriber and two in the
SV subscriber. All four errors could be reproduced without the usage
of ASan and led to segmentation faults in form of illegal read mem-
ory access where the program tries to read from the zero page. They
could be exploited by an attacker to conduct a Denial-of-Service at-
tack and thus, should be fixed urgently.
All bugs found during our research were reported to the project
maintainer via GitHub issues and will hopefully be fixed in the near
future.
Future Work
In addition to the server/subscriber implementations of the protocols
used in the IEC 61850 standard, we plan to analyze the client/pub-
lisher side in future work.
Furthermore, we want to extend the spectrum of protocols and
analyze for example the IEC 60870–5–101 and IEC 60870–5–104 pro-
tocols. Since there are only few open-source implementations of
such protocols, we plan to apply fuzzing on real hardware. This
would ensure an analysis of software that is used in a real
environment.
Another goal for the future is to work towards a smarter fuzzer,
which could possibly take into account a feedback based on code
coverage.
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Summary
Our research investigates the usage of multi agent reinforcement
learning (RL) based electric vehicle (EV) charging strategies to im-
prove the photovoltaic (PV) energy self consumption share of a small
energy community. Our RL agents were faced with the task of balan-
cing local energy demand and supply with their minute-by-minute
charging set point decisions. To test the two different versions of our
algorithm, we simulated a year’s worth of energy community activity
with high fidelity stochastic models of residential energy consump-
tion and EV usage habits. A local PV generation source was also
modeled using real PV data measurements. The results suggest that
RL methods can improve an energy’s self consumption share relative
to a “business as usual” charging strategy. The version of our algo-
rithm that was only permitted to perform charging actions improved
the self consumption share by 6.4%, while our charging-discharging
algorithm improved the self consumption share by 16.7%.
Keywords: electric vehicle; charging; expected SARSA; reinforcement
learning
Introduction and Related Work
A self sufficient local energy community (micro grid) benefits from el-
evated energy security [1]; autonomy in deciding the generation
source of their energy; and having an economic alternative to pur-
chasing energy from their local distribution company [2]. Nonethe-
less, balancing local generation and demand is challenging in an
energy community that contains non-controllable energy generation,
e.g. photovoltaic power sources. A promising solution to improving
the flexibility of local energy dispatch is the use of the energy com-
munity’s EVs as storage devices that can consume intermittent local
renewable energy generation surpluses and then re-inject this en-
ergy at a later time when needed by the community [3].
We are currently studying the application of RL based methods to
this distributed, EV-enabled load balancing problem by investigating
the performance of RL-based controllers that decide EV charging/dis-
charging power flow set-points on a minute time scale.
In recent years, RL based approaches to EV charging have begun to
be investigated. However, the time resolution of the decision making
processes characterized by most works are usually very coarse, i.e. on
the order of hours or days [4, 5, 6, 7], or rely on tabular methods that
have inherently low scalability [8, 9, 10, 11]. Shin et al. [12] is perhaps
the first to attempt using RL to control the charging/discharging ac-
tions of multiple battery storage system agents on a minute-
resolution time scale.
Because of this, the problem Shin et al. is trying to solve is similar to
ours. However, our agents attempt to leverage the intermittently
available energy storage potential of EVs while they are parked for a
charging session. Also, our approach relies on less information ex-
change between the agents present in the system; the simplest ver-
sion of our algorithm does not require any communication beyond
the use of smart meters. Moreover, we use a simpler action value ap-
proximation approach, and leverage action preference functions in
our policy to inject hard operation constraints into the decision mak-
ing process of the RL agent.
System Model and Problem Statement
The energy community model we use for our experiment consists of
five apartments, four electric vehicles, and one communal PV plant.
The consumption of both the non-controllable loads of the apart-
ment dwellings and the controllable loads of the EVs are influenced
by realistic behaviour models (see [13, 14] for model details) of each
apartment’s tenants. Moreover, a local PV generation source based
on the 2013 generation output of a real PV plant in Freiburg is in-
cluded in this energy community; is assumed that the cost of con-
suming its energy is significantly lower than consuming energy from
the power grid. The energy consumers also have access to an exter-
nal power grid.
Two different scenarios for our energy community are considered,
which differ in the availability of smart grid technology. In the first
scenario, infrastructure is such that it prohibits EVs from discharging
energy into the community. In the second scenario, we postulate in-
frastructure capable of facilitating EV energy discharging.
The self consumption share of an energy community is the percent-
age of energy consumed sourced from their own energy generation
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sources relative to their overall consumption, which includes both
local and grid sourced energy. The only controllable parameters that
can influence the self consumption share in the modeled energy
community are the charging/discharging set point values of each EV
chosen at each time step. Thus, we can formulate our problem as
the maximization of the average self-consumption share experienced
over some period of time via the optimization of EV charging/dis-
charging set-points.
Reinforcement Learning Enabled EV (Dis)Charging
The EV charging agents must maximize the energy community’s self
consumption share while meeting the charging requirements of EVs
before they depart. Every minute, the EV charger must decide a new
rate of charge (i.e. the charging “set point”) for the EV in a manner
that provides a feasible solution to this problem. From a Markov De-
cision Process (MDP) perspective, the environment is the EV and
power system, while the agent is the charging controller. The agent’s
action space is characterized by the finite charging set point deci-
sions that can be made at each time step. The state of the environ-
ment has been characterized with four state dimensions based on
time remaining in the charging session, past PV consumption,
current EV energy demand, and the time of day. Reward is character-
ized as the net amount of local energy that the agent consumes as a
consequence for the past minute’s charging set point decision. Thus,
if the agent consumes more grid energy than local energy, it receives
negative reward, and vice versa.
The agent uses Expected SARSA as its RL method, which is an off-
policy, model free, temporal difference (TD) based method [15]. To
handle the moderately large dimensionality and continuous state
variables present in this MDP, the action values for a state are being
approximated by a four-dimensional tile coder. Tile coders are a
computationally efficient means to representing continuous states as
a binary vector with a size equal to the number of “tilings” times the
number of “tiles” per tiling used to partition a continuous state space
[15].
To avoid needing to design a reward that can incentivize the agent
to meet the charging needs of the EV, an action preference function
[15] was designed to limit actions that are guaranteed to result in a
failed charging objective given the current state. Moreover to en-
force the operational constraints of the battery, the action preference
function was also designed to restrict actions that would either satur-
ate the battery when its SOC is high, or reduce the SOC to a critically
low level. We have defined the policy of our agent (the probability
distribution used by the agent to decide which action to take) using
a soft-max function that transforms action preference values into a
valid probability distribution.
Results
For both smart grid scenarios, we trained EV charging agents over
one year’s worth of simulated energy community activity, and then
tested the agents’ ability to operate over a year’s worth of previously
unseen activity. For the charge only scenario, the self consumption
share of the energy community increased from 28.4% to 34.8%.
When considering the EV activity only, their collective self consump-
tion share increased from 21.5% to 43.0%.
For the charging-discharging experiment, the community self con-
sumption share increased from 28.4% to 45.1% when the RL algo-
rithm was used instead of the baseline “business as usual” approach.
As with the charge-only experiment, this figure of merit was calcu-
lated over the course of the simulated activity where at least one EV
agent was connected to the micro grid.
Interestingly, the self consumption share of the EVs only increased
from 21.5% to 37.1%, which is less than the charge-only experiment
despite the overall self consumption share of the charging-
discharging experiment being higher. This is caused by EVs dischar-
ging energy into the non-controllable loads, and increasing their self
consumption share at the expense of making the EVs have to charge
more often to meet their own needs. It appears that the resultant de-
mand increase of the EVs reduced their self consumption share, but
the overall respective increases and decreases in PV consumption
and grid consumption in the energy community made up for it.
Currently, neither the reward function nor action preference function
of our algorithm enforce grid operation constraints such as rapid
charging/discharging cycles and demand fluctuations. Nonetheless,
now that promising self-consumption share metrics have been
achieved, we can focus on incorporating these technical constraints
into our algorithm in future work.
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Summary
To ensure a safe energy supply with fluctuating renewable energies,
large storage systems for all sectors - electricity, transportation, and
heating - are essential. In this work, a possible sector-coupled long-
term storage system for Germany as a whole is modeled on an ab-
stract level. The energy demand of the transportation sector is calcu-
lated in three scenarios, considering propulsions that are run mainly
on batteries, hydrogen, or synthetic fuels. The need of storage sys-
tems is calculated by an optimized operation with scaled historic
data of PV and wind power feed-in and energy demand at the same
time (2015-2017). As a result of the optimization, the most efficient
and economic scenario is the one with a focus on battery-electric
transport, which also leads to a large capacity of second-life batteries.
Hydrogen and methane are by far the largest storages in all
scenarios.
Keywords: transportation; electric mobility; storage; hydrogen; sector
coupling; power-to-X; second-life batteries; energy system analysis
Introduction
Currently, nearly the whole energy demand for transportation is
based on fossil fuels. In order to shift the whole energy system to-
wards renewable energies, all means of transport somehow need to
powered by renewable energies as well. To achieve that, mainly
three propulsion technologies are discussed: Battery-electric propul-
sions (BEV), electric propulsions powered by fuel cells (FC) and con-
ventional internal combustion engines (ICE) which are run by
synthetic fuels. Each of those options has basically two impacts on
the energy system: Firstly, because of different efficiencies, the total
energy demand for transportation changes significantly and sec-
ondly, the storage medium - batteries, hydrogen and methane - can
be used to balance fluctuating renewable feed-in. There are a lot of
scientific estimations about how a renewable energy system could
look like in the future, based on assumptions on efficiency improve-
ments and cost development of storage technologies. For example,
[1] models a possible energy system in the year 2050 in detail, but
the authors assume the transportation sector to be run to 30 % by
BEV in 2050 and don’t discuss it further. [2] discusses different pro-
pulsion technologies for 2040, including assumed efficiency improve-
ments and energy imports, but doesn’t examine the impacts on the
storage system. In this work, we didn’t try to make a future progno-
sis, but examined the variation of propulsion technologies given to-
day’s end energy demand of Germany, which is completely met by
renewables in our model.
Energy demand
Electricity demand today (that is not used for residential heating and
transportation) makes up only 19 % of the end energy demand of
Germany which had an average annual value of 2495.4 TWh in the
years 2015 - 2017 [3]. The highest share of 51 % accounts for heat-
ing, followed by the transportation sector which sums up to 30 % of
the energy demand. We assume that most of the thermal energy de-
mand can be stored in thermal storage systems, e.g. hot water tanks.
In the model, we distinguish between low-temperature demand,
which is warm water and space heating (except district heating) that
can also be provided by heat pumps, and high-temperature demand,
which is district heating and industrial process heat. Heat power de-
mand for industrial heat is assumed to be constant while residential
low and high temperature heat depend on the daily temperature.
Therefore, daily temperature data [4] in the examined years is used
together with the standard load profile (P0) to generate the residen-
tial load profile. The electricity demand and PV and wind supply is
taken from [5] whereby latter is scaled to meet the total energy
demand.
To calculate the end energy demand for transportation, current en-
ergy demand for transportation is changed by efficiencies of fuel
production found in [6] and [7], including hydrogen compression or
liquefaction where necessary. Based on [8] and [7], energy demand
of different modes of transport is reduced by efficiency factors com-
pared to ICEs today. We set up three scenarios with different shares
of propulsion technologies, based on discussions about the potential
of each technology. For each scenario, the total energy demand for
the transportation sector can be calculated. Furthermore, the total
capacity of all BEVs is calculated based on assumed capacities of
each vehicle. According to [9], it is assumed that 80 % of that cap-
acity can be used as second-life batteries.
In the model, the electrical power demand for charging battery-
electric cars follows a standardized 15-minute load curve that con-
siders the weekday, supplied by the institute KIT-IEH. Dynamic char-
ging is not considered here. The time-dependent fuel demand and
the charging power for all other BEVs are assumed to be distributed
equally over the year.
Storage and conversion technologies
Storage and conversion technologies are modeled by their currently
stored energy et and their current power pt at a certain time-step t.
Second-life batteries, pumped storage hydro power, hydrogen (eH2)

and methane and low and high temperature heat storages are taken
into account as storage technologies. To convert energy between
those storages, battery periphery, pumps/turbines, electrolysis (pEly),

metha-nation, fuel cells (pFC), combined heat and power plants
(CHPP), heat pumps and heating resistors for low (RLT) and high
temperature (RHT) applications are considered. To describe the rela-
tionship, the efficiencies of all conversion technologies (ηEly, ηFC),
coefficient of performance of heat pumps, and cooling losses of ther-
mal storages are needed. Except batteries and pumped hydro stor-
age, all storages also reduce their energy by the current demand for
fuels (dH2trans), and heating applications. Equation 1 shows the model-
ing of all storages exemplary for hydrogen.

eH2; t þ 1 ¼ eH2; t

þ Δt ηEly � pEly; t − 1
ηFC

� pFC; t
� �

− dH2trans; t

ð1Þ
Optimization
The optimization problem minimizes the quadratic investment costs
for the storage and conversion technologies in all time-steps. The
quadratic form is chosen to avoid high peaks if power and capacities
over time, since actually only the extreme values have to be
minimized.

min x!T
H x!þ f

!T
x!

� �
: ð2Þ

The vector x~ contains the stored energy and conversion power for
all time-steps. The Hessian H is a sparse diagonal Matrix that contains



Table 1 (abstract P3). Shares of propulsion systems in 3 scenarios

Scenario 1 Scenario 2 Scenario 3

Cars 100 % BEV 50 % BEV, 50 %
FCEV

50 % ICE, 40 % FCEV, 10 %
BEV

Trucks 100 % BEV 10 % BEV, 90 %
FCEV

70 % ICE, 30 % FCEV

Busses 100 % BEV 10 % BEV, 90 %
FCEV

70 % ICE, 30 % FCEV

Airplanes 10 % BEV, 90 %
H2

100 % H2 100 % synfuel

Inland vessels 100 % FCEV 100 % FCEV 100 % ICE

Trains (no
wire)

100 % BEV 100 % FCEV 100 % ICE

Table 2 (abstract P3). Results

Scenario
1

Scenario
2

Scenario
3

Energy demand for transportation [TWh]
Second-life batteries [TWh]

488.3
2.469

614.0
1.437

965.1
0.283

Storage capacity

Batteries [TWh] 1.3 1.4 0.3

Hydrogen [TWh] 25.3 29.8 30.3

Methane [TWh] 58.2 54.3 57.1

High temp. heat [TWh] 23.7 18.4 22.8

Low temp. heat [TWh] 5.1 5.3 6.1

Conversion power

Batteries [GW] 193 139 148

Electrolysis [GW] 226 238 255

Methanation [GW] 220 195 276

Fuel Cells [GW] 26 29 66

CHPP [GW] 135 131 84

RHT [GW] 354 335 420
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the investment prices per MWh of every storage technology and in-
vestment prices per MW for every conversion technology. Vector f
contains the loss of every conversion technology calculated by (1−
η). The value of the objective function is not of interest and must not
be understood as the costs of the storage system. The goal of the
optimization is only to find a cost- and energy efficient usage of the
storage system to find out the demand for the investigated tech-
nologies. Energy in storages can become negative in the
optimization, since we don’t know their starting levels and set them
to zero. After the optimization, the highest delta between the lowest
and the highest storage state is the used storage capacity that would
be necessary in the examined years. Pumped storage is limited to 10
GW/60 GWh due to ecological limits and heat pumps and RLT are
limited to 44 GW to respect distribution grid limits which is com-
pletely used in all scenarios.
Results
Conclusion
It can be seen that the energy storage system becomes very large in
the given approach that assumes neither efficiency improvements
nor energy imports. That distinguishes this work to the studies men-
tioned in the introduction. Regarding the transportation sector, en-
ergy demand in Scenario 1 is by far the lowest. Storage demand is
not significantly higher than in the other scenarios, so the usage of
chemical fuels seems not to lower the demand for stationary storage.
That can be explained by the higher energy demand. On the other
hand, in Scenario 1, the availability of second-life batteries could be
higher than the demand for stationary battery storages if the given
assumptions will turn out to be correct, which. Therefore, battery-
electric transport is likely to have the most beneficial impacts on a
sector-coupled energy storage system.
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Summary
Activities of daily living (ADL) are activities of individuals performed
on a daily basis which are necessary for independent living at home.
ADLs are often used as a reliable indicator of the health of a person
but manual assessment of ADLs is time consuming and labor inten-
sive. That’s why the field of automatic ADL detection has seen an in-
crease in popularity in recent years. Here, we report on a developed
ultra-low power sensor platform for ADL detection. We performed
field trials in the residential setting to validate the sensor system and
translated the knowledge to the domain of office buildings to enable
user-centric building control. To that end, we tested the capability of
the sensor platform to estimate the number of people present dur-
ing meetings. The results show that our sensor platform is able esti-
mate the number of people with a mean absolute error of 1.3.
Keywords: activities of daily living; ADL; sensor platform; user centric
control
Introduction
Activities of daily living (ADL) refer to all activities related to self-care
and independent living of an individual. Since the first publications
of a standardized assessment protocol for ADLs by Katz et al. [1] in
1963, many health professionals use ADLs to assess a person’s ability
to care for themselves. Since then, many more scales have emerged
which have found application ranging from general geriatric assess-
ments, dementia, stroke, development disorders and rehabilitation
and provide reliable indicator for a persons health [2, 3].
Celler et al. [4] introduced one of the first systems for tele-monitoring
of ADLs in 1995. Since then, the field of automatic detection of
ADSs has gained significant traction. One reason lies in the simple
fact that the manual assessment of ADLs is time consuming and
labor intensive. Another reason for this trend lies in the advances
and miniaturization of sensors and the emergence of IoT [5, 6]. A
major benefit of automatic ADL detection systems is their ability
for constant monitoring. Tracking a patients behaviour patterns
over long periods of time increases the chance for early detection
of emergency situations [7].
A literature review by Peetoom et al. [8] showed that most systems
for ADL detection use simple passive infrared (PIR) motion sensors to
measure activity levels at different locations. The assumption hereby
is, that there is a simple mapping from room activity to ADL. For ex-
ample, PIR motion activity in the kitchen is mapped to cooking, activ-
ity in the bathroom to showering, bathing or personal hygiene. In
our project we translate the knowledge in the field of ADL detection
to the commercial sector. We make the following contributions: 1)
We built a ultra-low power sensor platform to measure the most im-
portant physical variables related to the most important activities. 2)
We tested the reliability of the system in residential and office envi-
ronments. 3) We built a machine learning model to estimate the
number of people present in a meeting rooms.
Sensor platform
In order to decide, which ADLs provide the most relevant informa-
tion, we analyzed the frequency of occurrence of activities in the
most used ADL assessment scales. In total, we analyzed 16 Scales
(Katz ADL Index, Barthel, DS, Lawton IADL, Lawton PSMS, RLT, FAQ,
FIM, DAFS, NOSGER, CSADL, FAM, BADLS, ADCS-ADL, DAD and W-
ADL). Based on this evaluation, we decided to focus on the activities
cooking, eating, toileting and showering because those are among the
most frequent. Additionally, we decided to include sleeping because
recent research suggests that sleep is a good predictor for cognitive
impairment [9, 10, 11]. For the office environment, we decided to
focus on the activities meeting, opening / closing of windows, use of
electrical appliances and desk work because they are most closely
connected to Heating, Ventilation and Air Conditioning (HAVC) sys-
tems. We then analyzed which physical parameter we have to meas-
ure to detect those activities. Table 1 provides the resulting mapping
between physical parameters and activity.
The final sensor platform is shown in Figure 1. It included 9 ambient
sensors which measure variables such as Temperature, Humidity,
Light intensity, VOC (Volatile Organic Components), Sound pressure,
3D Acceleration, Magnetic field strength, Motion and Distance (via
Time of Flight). Additionally, the sensor platform includes a multipur-
pose IO connector which provides standard communication
interfaces such as I2C, SPI as well as GPIOs, ADCs and Power. The
connector enables the sensor platform to be expandable with add-
itional, highly specialized daugh-terboards. One such daughterboard
was built to estimate the power consumption of appliances by meas-
uring the residual magnetic AC field at the surface of power cords.
As the main goal of our sensor platform is to provide an easy and re-
liable tool for detecting and tracking daily activities in the residential
and office environment, we optimized the sensor platform according
to the following constrains:
Power consumption: The sensor platform was optimized for ultra-
low power. The mean current consumption was measured to be
around 90μA which provides a battery life of about 2 years. Unobtru-
siveness: The sensor platform was designed to be small, lightweight
and unobtrusive. The final dimensions are 80x40x25mm. Simplicity:
The sensor platform uses Bluetooth 5.0 (Low Energy) to transmit sen-
sor data to a base station. We use non-connectable advertisement
packets to simplify the setup process. No pairing is required and mul-
tiple sensors can be installed in a short amount of time. Reliability:
Sensor data are transmitted via Bluetooth 5.0 (Low Energy) with a re-
pletion rate of 4 every 30s. Events from PIR and accelerometer are
transmitted immediately when they occur. Security: Sensor data is
encrypted via 128-bit AES before transmission.
Validation
To validate the ability to detect ADLs in a residential environment,
we installed a set of 13 sensor units in two apartments of two
healthy participants. During a period of 6 and 8 weeks the partici-
pants were instructed to keep a journal of their daily activities. A sim-
ple random forest classifier was trained on the dataset using a 7-fold
Cross Validation methodology. The resulting classifier achieved a
mean precision and recall over all tested activities of 0.97 and 0.96
respective.
To validate the sensor platform in an office environment, we con-
ducted another two field trials in two meeting rooms where we
analyzed the reliability of the system and its performance detect-
ing the number of people. Room-1 had a floor space of 3.5m x
6m (21m2) and a height of 3.5m (73.5m3) and was used to test
the data logging system and to develop machine learning
models. Room-2 had floor space of 4.2m x 6.4m (26.9m2) and a
height of 3.5m (94m3) and was used to test the transferability of
the machine learning models to unseen locations. We compared
multiple neural network architectures such as GRU, LSTM and
Deep separable 1D Conv-Nets. For model selection, we monitored
the mean absolute error (MAE) for the estimated number of
people on the validation data. We found good agreement with
few people in the room and high deviation where several people
occupied the room. The MAE of room-1 was 0.069±0.045 over all
data. The MAE calculated only for time frames with presence
amounted to 1.31 ± 0.75. To test the transferability of the model
we used it to predict the number of people using date of room-
2 where we got a MAE for time-frames where people were
present of 1.4.
Conclusion and Outlook
In this poster abstract, we report on the design of an ultra-low power
sensor platform for the detection of daily activities in residential and
commercial sector. The sensor platfrom has proven to be a reliable
tool for collecting sensor date in resi-dential and commercial set-
tings. The developed model for people count estimation suggest
some ability to generalize to similar rooms. Never the less, the vari-
ability in the predictions is high which poses some limitations on the
applicability of the predictions as an input to building control sys-
tems. Further improvements are required.
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Fig. 1 (abstract P4). Developed sensor platform. Front PCB (center)
and backside (right) show the location of the most important
sensors and controllers. For adequate protection of the sensors, a
custom 3D printed case (left) was designed
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Table 1 (abstract P4). Summary of our mapping of measurement
parameters to activities we wish to detect. Sl=Sleeping, To=Toiletting,
Sh=Showering, Co=Cooking, Ea=Eating, Me=Meeting, Wi=Windows, El=
Electrical Appliances, De=Desk work

Activity

Measurement parameter Sl To Sh Co Ea Me Wi El De

Motion x x x x x x x

Temperature x x x x

Humidity x x x x

Light intensity x x x x

Sound pressure x x

Door state x x

Vibration x x x x

Power x x x x
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Summary
More and more prosumers will penetrate the power grid. But how
do prosumers affect the accuracy of the day-ahead load forecast? In
contrast to related research on prosumers and load forecast, this
paper addresses the impact of different shares of prosumers on the
load forecast for areas with several households. In order to answer
this research question, the load forecast accuracies for a dataset
without prosumers is compared to the ones of datasets with differ-
ent shares of prosumers in an experimental setup using neural net-
works. A sliding window approach with lagged values up to seven
days is applied. Apart from electricity consumption data weather and
date data are considered. The conducted tests show, that the mean
absolute percentage error increases from about 8% for a dataset
without prosumers up to about 39% for a dataset with a share of
prosumers of 80%. It can therefore be concluded that prosumers de-
crease the accuracy of the day-ahead load forecast with neural
networks.
Keywords: load forecast; neural network; prosumer; sliding window
approach
Prosumers are households, which consume their self-produced elec-
tricity [1]. A normal household’s load is driven by various factors like
for example socioeconomic factors as the daily, weekly or yearly
rhythms or physical factors like the temperature [2]. A prosumer’s
electricity requirement could be assumed in general the same as the
one of normal households, in case of similar behaviour. But in
addition, pro-sumers produce electricity on their own1. A main prob-
lem of electricity produced from renewable sources is the intermit-
tency [3]. In general, renewable energies have been regarded as
non-controllable and unpredictable electricity sources [4]. This causes
additional costs as operating reserves need to be planned and
backup capacity for short term electricity production need to be
available. For prosumers the electricity production from renewable
sources and their electricity consumption from the grid are linked.
They combine the uncertainty of the electricity production from re-
newable energy sources and the uncertainty of the behaviour of
households with respect to their electricity consumption. This leads
to the hypothesis that it is more difficult to forecast the load for
areas with a higher share of prosumers.
1The produced energy may be used “internally”; the grid may not see the
produced energy.
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This paper aims to answer the research question how much the day-
ahead load forecast accuracy with neural networks is deteriorated or
improved with an increasing share of prosumers. To simplify the load
is predicted for a period of 24 hours.
This paper distinguishes two ways to analyze. On the one hand, load
forecast for prosumers can be done with neural networks, which
have been trained on a dataset without prosumers. This assumes
that current load forecaster based on neural networks are used to
forecast also in future when more and more prosumers may appear
in the grid. On the other hand, neural networks can be trained spe-
cifically for the load forecast for prosumers. This simulation answers
the question if grids with a higher share of prosumers are in general
more difficult to forecast.
Datasets
The non-prosumer dataset was provided by a power utility of a city
in Switzerland.2 The dataset contains 15 minutes measurements of
469 households from the whole year 2015 with an overall consump-
tion of 1’325’267 kWh.3 The prosumer dataset was provided by an-
other power utility of another city in Switzerland2. It contains 15
minutes measurements in kWh of the net electricity consumption
and production of 146 objects from the year 2017. After a data selec-
tion process, 100 objects were left. They have a yearly electricity con-
sumption of 712’330 kWh.
Further inputs are the timestamp consisting of date and time, the
weather including temperature, global radiation and precipitation
downloaded from IDAweb from MeteoSwiss. Additional inputs are
the weekday, calendar week, month and the holidays. The paper is
following a sliding window approach as it is proposed by [5, 6, 7].
The train label and further input variables are derived from the ori-
ginal dataset. The train label comprises the current kWh value of a
point in time and the previous 95 15-minutes kWh values in order to
predict the kWh values of 24 hours. Further input variables are
lagged. The best combinations of lagged variables are shown Table
1.
For having different shares of prosumers, the electricity consumption
of prosumer and non-prosumer households are merged resulting in
five new datasets with shares of prosumers of 0%, 20%, 40%, 60%
and 80%. The shares are calculated based on the annual electricity
consumption in kWh of the households, not the number of house-
holds. Further, measurements of two different locations and years
are combined. Because weekday impacts the load [8, 9], the data
from the two dataset are not merged based on the date but based
on the weekday. The weather data is always taken from the location
of the prosumers, as their electricity production depends stronger on
weather data, especially the global radiation, than the electricity con-
sumption. The holiday is taken from the dataset with the higher
share in the merged dataset (e.g. for the dataset with 60% prosumers
load and 40% non-prosumer load, the holidays of the city of the pro-
sumers were considered).
Neural network
Feedforward neural networks consist of an input layer, one or several
hidden layers and one output layer [10]. The input shape or number
of neurons of the input layer is given by the number of input vari-
ables. The number of input variables can vary according to the
chosen size of the sliding window. The output shape of all the neural
networks of this paper is 96 as this is the number of 15-minutes kWh
values within 24 hours (corresponding to day-ahead load forecast).
The definition of the number of neurons in the hidden layers is sub-
ject of the various tests performed to parametrize the neural net-
works. The number of hidden layers varied between three and ten
and the number of neurons per hidden layer varied between 300
and 1’000. In the network, the various layers of the model are fully
connected [11].
Further the two related optimizers RMSprop and Adam algorithm are
used. The loss function is either mean squared error (MSE), mean ab-
solute error (MAE) and mean absolute precentage error (MAPE).
These three performance measures are also used to measure the
2City not mentioned for reason of confidentiality.
3Missing values have been completed using the average of the values of
the same time the previous day/hours and the following day/hour.
accuracy of the load forecast, i.e. for having meaningful optimization
goals (especially MSE and MAE) and results that are on a comparable
scale (MAPE). The used network parameterisation is shown in Table
2.
Evaluation
Comparing the load forecast accuracy for datasets with different
shares of pro-sumers, there are two ways how the load forecast was
performed on these datasets. In the first experimental setup the
datasets with different shares of prosumers are used to perform the
load forecast with the neural network that has an optimal
parameterization to perform load forecast for non-prosumer datasets.
Afterwards, the trained neural network was tested with the data of
the whole year of the four datasets with different shares of
prosumers.
In the second experimental setup, the neural networks have been
trained and tested on the datasets with different shares of prosu-
mers. Thereby, once the neural network parameterization with
the best results for the prosumer dataset and once the
parameterization with the best results for the non-prosumer data-
set were used.
It can also be observed that the load forecast accuracy is better
when the neural network is trained and tested on the datasets with
different shares of prosumers (second and third row in Table of Fig-
ure 1) compared to the first setup, where the neural network was
trained on non-prosumer data (first row in Table of Figure 1).
Figure 1 illustrates the MAPE. The blue graph (A) represents the first
setup. It can be observed that with this setup MAPE increases dispro-
portionally fast with an increasing share of prosumers compared to
the other two tests where the neural networks were trained and
tested on datasets with different shares of prosumers (orange (B)
and grey graphs (C)).
The comparison of datasets with different shares of prosumers has
shown that the load forecast accuracy decreases with an increased
share of prosumers. Independent from the experiments the load
forecast accuracy for prosumer datasets is lower than for non-
prosumer datasets. The lowest forecast accuracy was achieved when
the datasets with different shares of prosumers were tested on the
neural network trained on a dataset without prosumers. The result
improved when the neural networks were trained and tested on the
neural networks with different shares of prosumers. For a share of
prosumers of 60% or higher it is recommended to use the
parameterization of the neural network, which achieved the best re-
sults for the prosumer dataset.
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Table 1 (abstract P5). Best Combination of lagged input values

N kWh Weekday Calendar
Week

Month Holidays Time Global
Radiation

Temp.

4 96-
479
φh

1xlag95 1xlag95 1xlag95 1xlag95 1-95
15'

1-95 φh 1-95
φh

7 96-
671
φh

1xlag95 1xlag95 1xlag95 1xlag95 1-95
15'

1-95 φh 1-95
φh

15' = 15 minutes; φh = hourly average

Table 2 (abstract P5). Best neural network parameterization for
prosumers and non-prosumers

Non-Prosumer Prosumer

Optimizer Adam Adam

Learning rate 0.001 0.001

Loss function MAE MSE

Number of hidden layers 3 5

Number of neurons per hidden layer 1000 500

Activation function ReLu ReLu

Early stopping algorithm patience 20 20

Validation split 0.1 0.1

Combination of lagged input variables 7 4

Fig. 1 (abstract P5). Percentage change of MAPE for the three
neural networks setups tested with datasets with different shares of
prosumers
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Summary
In recent years, the academic community intensified research on
local energy markets. Implementations in pilot projects provide first
insights into different hypotheses and approaches. This work pre-
sents a tested IT-architecture for local energy markets, which covers
all necessary processes and basic functionality, namely the hardware,
the market implementation, the database, and the application for
the user. It consists of four modules and eight essential processes.
The IT-architecture can serve as a blueprint for future local energy
market projects as it covers the basic processes and is at the same
time extendable.
Keywords: Local Energy Market; IT-Architecture; Energy Transition
Introduction
The expansion of small renewable generation capacities in the distri-
bution grid changes the paradigm of top-down electricity grids and
causes the emergence of new microgrid concepts that allow partici-
pants to trade their residential generation with their neighbours. Due
to this changing situation, there has been increasing discussion in re-
cent years about local energy markets (LEM) [1, 2, 3]. An LEM adds a
market layer to a microgrid that is originally a mere technical con-
cept. On these markets, small local producers and prosumers trade
with local customers (e.g. private households) in the immediate vicin-
ity [4]. Currently, there are several pilot projects and a vital discussion
about proper market designs and regulatory issues has emerged [5,
4]. However, the discussion is currently rather focused on market de-
signs and concepts instead of IT-architectures. Therefore, in this work,
we present a developed and tested IT-architecture design for local
energy markets in a microgrid. This architecture is implemented in
the Landau Microgrid Project (LAMP), a real-world implementation of
an LEM [6].
This pilot project is a cooperation of the Karlsruher Institute of Tech-
nology, the software developer Selfbits and the local utility Energie-
Su¨dwest. Its objective is to investigate the requirements, challenges
and opportunities of an implemented LEM. The project is set up in a
selected microgrid in the German city Landau. A local combined heat
and power plant (50kW electrical) and a photovoltaic system
(23.56kWp) provide local generation. The microgrid is connected to
the public grid via a single link and consists of 118 connection
points, most private households. This connection ensures a continu-
ous supply and allows excess energy to be fed into the public distri-
bution grid. Initially, eight private households decided to participate
in the LEM. Based on this case study, we describe the proposed IT-
architecture and present an exemplary implementation, including
specific technology choices.
IT-Architecture
The architecture consists of four modules. Each takes on functional
tasks within the structure. First, the system has to record the load
values of all participants (Smart Meter Hardware). Second, the customer
application requires an interface to enable interactions with the user.
The participants must have access to their individual load data and be
able to submit bids into the system (User Application). Third, load and
bidding data have to be matched by the market mechanism (Market).
Fourth, the recorded and generated data of all former modules must
be stored and accessible to all applications (Database). Furthermore,
specific processes exchange information between the different mod-
ules to ensure the operation of the overall information system. A repre-
sentation of the architecture with its modules and processes is shown
in Figure 1. In the following, the functionality of each module and its
processes are presented in detail.
Smart Meter Hardware: The task of the Smart Meter Hardware module
is to record and communicate individual load data. Energy trading
on an LEM requires the current load profiles of all participants. In the
proposed architecture, a digi-tal electricity meter records the load
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data. This meter requires a communication module that allows the
measured load values to be transmitted to the information system,
where a database stores it. In Figure 1, process 1 displays this trans-
fer of load data from the Smart Meter Hardware to the Database
module. In the case study, the Smart Meter Hardware module is im-
plemented through a combination of the ’Long-Range Wide-Area
Network’ (LoRaWAN) and digital electricity meters with a LoRa-
Sensor communication module. Each meter is connected to a LoRa
Sensor, which sends the recorded data to the network. Then, the
LoRaWAN server processes and transmits the recorded data to the
Database module via a WebSocket connection. The advantages of
the LoRaWAN technology for this application are the easy installa-
tion, scalability due to the cost per sensor, and signal strength. A dis-
advantage is the LoRaWAN-Gateway, which represents a possible
single point of failure if it is not redundantly installed.
User Application: The information system of the LEM needs a human-
system interface where each participant is able to place bids on the
market. In the proposed IT-architecture, the module User Application
addresses these requirements. The application must be accessible by
all participating users over, e.g. mobile devices like smartphones. Fig-
ure 1 shows that five different processes originate from this module.
Process 2.1 and 2.2 show the registration and authentication process
of a new user with her login data. Both are necessary to identify the
user and prevent other participants from viewing the individual load
data or issue bids in the user’s name. After a successful registration,
the system can authenticate the user by its login data. This is neces-
sary for the login process (2.2). For security reasons, the login data is
stored on a different database (account database) and separated
from the market data (market database). The connection between
the user authentication data and its individual market data is estab-
lished with process 2.3. It links the ID of the smart meter hardware
with the user login data. Based on this connection, process 2.4 is able
to request individual consumption and market data. Comparably, the
user initiates process 2.5 by entering a bid price in the application. In
the case study project, the software partner provided a self-
developed Android based application for mobile devices. After a suc-
cessful login by the user, the application receives a JSON Web Token
from the account database to authenticate the user against the mar-
ket database. It allows a stateless session between the application
and the market database. Since end devices are often not optimized
for data storage, the application sends live queries against the mar-
ket database to receive the requested market data and visualize it.
The application illustrates the data in different forms like charts and
tables and a graphical controller allows to submit bids within speci-
fied limits.
Market: An LEM requires a market to match the local supply and de-
mand. In the proposed architecture, the Market module consists of
two components: The Mar-ketWrapper and the market mechanism.
The MarketWrapper is the first software component. Its task is to
process the raw input data from the market database into bids for
the market mechanism. Process 3.1 displays this procedure. The mar-
ket mechanism, the second software component, receives the bids,
allocates them and generates transactions and market prices as out-
puts. These are handed over to the MarketWrapper, which hands
them over to the market database (process 3.2). The market database
transmits requested data in a JSON file format via a GraphQL API.
These files are processed by the MarketWrapper into bids and
handed over to the market mechanism. The market is cleared ex-
post in 15-minutes intervals. The implemented market mechanism is
described by [7]. The market mechanism creates transactions for
each trading period that include the market price, volume and buyer
and seller ID. The MarketWrapper transfers each transaction back to
the market database module over the same API.
Database: Each LEM requires the storage of the recorded and gener-
ated data. The Database module provides this functionality. The
module is the central point in the architecture and consists of two
databases: the account and the market database. The account data-
base, as mentioned above, manages the authentication data of the
users. The task of the market database is to store all data associated
to generation, consumption and trade and to make it available to
other applications. While this module does not initiate processes it-
self, each of the other three modules communicates and transfers in-
formation exclusively over the database. Therefore, consistency and
assignability of the data are important and with it a proper database
design. In the case study project, this challenge is addressed by an
object-relational database built with the open-source database man-
agement system PostgreSQL. It organizes the data with different ta-
bles and each data type (e.g. smart meter readings) is stored in its
own table. A server handles the management of the database and
processes data requests in a specific programming language. Such a
GraphQL server manages and monitors the writing and reading ac-
cesses of the other modules.
Conclusion
This paper is intended to be the starting point of a discussion on the
IT-architecture of LEMs and thus contributes to the maturing of this
concept. The design of an LEM’s architecture has a central influence
on subsequent functionality and performance and its scalability. In
this work, we propose an IT-architecture design for LEMs which can
serve as a blueprint for future projects. The architecture is divided
into four modules. Each takes over different tasks within the LEM in-
formation system. The Smart Meter Hardware collects load data, the
User Application serves as an interface between user and information
system, the Market coordinates the matching, and the Database
stores the data. Processes describe the data exchange between these
modules. Each process performs a different task to ensure the func-
tionality of the LEM. We provide an exemplary technology implemen-
tation of each module and its processes in a case study. The choice
of the respective technology or additional modules and processes
depends strongly on the particular project and its requirements.
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Summary
Due to the joint impacts of both demographic changes and techno-
logical trends such as electric vehicles, the development of urban
electric load is increasingly uncertain. While sophisticated machine
learning methods promise to alleviate this issue, practical application
of these methods is frequently limited by insufficient availability of
data from distribution system operators. To overcome this challenge
and provide a useful tool for network planning in urban areas, we
propose a load decomposition model with minimal data requirement
to model the joint impact of demographic and technological devel-
opments. The model is composed of a statistical and a deterministic
part. The statistical part uses a constrained elastic net regression to
decompose the annual energy consumption into residential and
commercial sectors. Following this, the deterministic part of the
model uses the sector-specific energy consumption forecasts from
the statistical model, to scale their corresponding standard load pro-
files and conduct further modifications on those.
Keywords: Load forecast; Machine learning; Energy decomposition;
Electrification; Network planning
Introduction
With the energy transition, new technologies such as electric vehicles
(EV) or heat pumps (HP), as well as distributed generation, are alter-
ing the electricity consumption pattern and challenge the quality
and reliability of electricity supply [1]. These developments are ex-
pected to unfold predominantly in urban areas because of
urbanization [2], affordability of new technologies [3], cities’ responsi-
bility to compensate their greenhouse gas (GHG) emissions [4], and
their role as thought leaders to promote new energy technologies [5,
6]. At the same time, demographic developments are shaping future
electricity consumption in urban areas as well [7, 8], but with differ-
ent characteristics. Demographic development affects mainly con-
ventional electric loads (e.g. residential and commercial load), of
which the patterns are relatively well-known and can be described
using historical data for creating standard load profiles (SLP) [9];
while technological development brings new technologies with dif-
ferent electric load patterns than the conventional sectors [10].
The complexity of urban areas’ development and the differences be-
tween the two types of trends call for a novel model to study the fu-
ture electric load of urban areas. However, as summarized in [11],
most of the previous studies on long-term load forecast are limited
either by low time resolution [12, 13], or by high data requirements
[14, 15]. Ideally, a load forecast model for urban network planning
should have the following characteristics - (1) predicting the
aggregated electricity consumption (E) as well as the peak loads
(Pmax) as they are both important references to scale grid compo-
nents [16]; (2) using commonly available data sets since high data re-
quirements have always been a bottleneck for long-term load
forecasting in practice [17, 18], and the urban system operators are
usually short of data collection [16]; (3) quantifying joint impacts of
both demographic and technological trends that will simultaneously
arise in urban areas. Requirements (1) and (3) naturally lead to pro-
file-based long-term load forecasting since load profiles provide load
data with a high time resolution and allow simple addition of loads
with different characteristics. However, current profile-based forecast
models heavily rely on extensive data input, leaving the point (2) un-
resolved. Therefore, two research questions that we tackle are:

(a) What is an appropriate model to estimate the long-term im-
pacts of both demographic and technological trends on urban
electric load?

(b) What is the minimal data requirement for a long-term load
forecast model?

Methodology
In order to model both the demographic and technological trends, a
hybrid model composed of statistical modelling and deterministic
modelling parts is developed (Figure 1). The model is able to decom-
pose the annual energy consumption into residential and commer-
cial sectors (statistical modelling), which enables to localize the
technological trends into different sectors and to model their im-
pacts as a subsequent step (deterministic modelling). Load decom-
position is the key of the proposed model. For example, the
adoption of household energy efficient appliances will only reshape
the load profile of the residential sector, not the commercial sector.
For such cases, it is essential to differentiate the load profiles of dif-
ferent sectors as a first step and then model the impact of the new
technologies on their associated sectors.
(1) Statistical model for demographic trends
The goal of the statistical modelling is to find out the relation
(dashed arrows in Figure 1) between the independent variables
such as population (POP) and the annual energy consumption of
the residential and commercial sectors. Linear regression is se-
lected as the basis for the modelling because of its interpretabil-
ity [19] and transparency [20]. Since the energy consumption
data for each sector is not commonly available for distribution
system operators (DSO), they cannot be directly used as
dependent variables. Instead, two other dependent variables -
the measured annual energy consumption E and peak power Pmax

(the yellow boxes in Figure 1) are used. E is used as the primary
dependent variable assuming that it has a linear relation with the
independent variables. Pmax is used as the secondary dependent
variable which serves as a reference to decompose the E into the
two sectors. Together with regularization and bounds on the lin-
ear coefficients, the model is formulated as follows:

minimize L βð Þ ¼ E − Xβk k2 Accuracy control inEprediction
þ λc P max − λpfXcβk k2 Accuracy control inP maxprediction
þλridge βk k2 Part of elastic net regularization
þλlasso βk k1 Part of elastic net regularization

s:t:c j;lb≤β j≤c j;ub j ¼ 1; :::; pð Þ Bounds on the linear coefficients

During model training, the hyperparameters (λpf, λc,
λridge, and λlasso)

are determined at first with cross-validation (CV) and then the linear
coefficients (β) are determined with bootstrap to overcome hetero-
scedasticity [21].
(2) Deterministic model for technological trends
After the statistical model has been trained, annual energy consump-
tion of the residential and commercial sectors can be estimated. As a
result, their scaled SLP can be obtained and used as the basis for the
following deterministic model. For example, if households will adopt
appliances with higher energy efficiency, an efficiency factor can be
used to scale down the residential load profile; if PV-battery systems
will be installed in households, a PV-battery model can be applied on
top of the residential load profile.



Fig. 1 (abstract P7). Overview of the model (blue: data inputs;
yellow: dependent variables; green: scenarios for prediction; dashed
arrows: unknown relationships)
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Evaluation
Data from a German city is used to conduct a first evaluation of the
model’s accuracy in energy decomposition. Results show that the
model performs well in predicting the overall energy consumption.
However, its energy decomposition performance is only good for the
suburb network but not for the city center network. The bias in the
city center network prediction can be explained by the heterogeneity
of the commercial consumers in the city center. Unlike the residential
sector, the commercial sector is more diverse and it can be further
decomposed into 6 subsec-tors whose standard load profile have dif-
ferent patterns [9]. In order to improve the forecast accuracy in com-
mercial areas, we will further decompose the commercial sector to
capture its heterogeneity in future research. This is enabled by the
flexible model structure which allows to conduct decomposition into
any arbitrary number of sectors.
Conclusion
To model the joint impacts of demographic and technological trends
on electric loads in urban areas, an energy decomposition model
using a constrained elastic net regression algorithm is established.
The model has minimal data requirements from the distribution sys-
tem operators - (1) the annual energy consumption measured at
each consumption unit, and (2) the maximum current measured at
MV/LV transformers. These two datasets are both used as dependent
variables in the constrained elastic net regression model. This model
extends the standard elastic net regression model by adding two
more constraints - a peak power constraint and bounds on the linear
coefficients. Enabled by the established model structure, future re-
search or practical applications can focus on including more various
independent variables, further decomposing the sectors, and enrich-
ing the scenario setups.
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Summary
The success of demand response programs, as one of the key appli-
cations of a smart grid architecture, essentially depends on the end
consumers’ decisions and interactions. Technical demand response
models mostly require presumptions concerning these parameters.
In this paper, an agent-based model of consumer participation in de-
mand response programs based on the Consumat framework is de-
veloped. It will constitute the basis for an overall model to simulate
consumer decisions in the context of demand response.
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Introduction
One of the most important measure to address climate change ef-
fects is the global establishment of smart grid architectures. As one
of its essential technologies, demand response has to be enabled in
the residential sector to meet the European targets for a reduction of
greenhouse gas emissions by 2030 (40% compared to 1990) and a
greater share of renewable energy of at least 27% [1]. Demand re-
sponse in this context refers to “changes in electric usage by end-use
customers from their normal consumption patterns in response to
changes in the price of electricity over time, or to incentive payments
designed to induce lower electricity use at times of high wholesale
market prices or when system reliability is jeopardized” [2]. Based on
data from the US energy market (2014) demand response in the resi-
dential sector contributes 20% of the total peak demand savings and
61% of the overall energy savings [3].
As shown in, e.g., [4] and [5] the success of a demand response pro-
gram essentially depends on the end consumers’ participation and
their behavior when configuring and using a DR system. A technical
simulation model which integrates these soci-ological aspects would
be very helpful to support the deployment of a new energy infra-
structure. Analyzing such socio-technical systems is a major research
field. A review on literature has shown that agent-based models
might be considered as a preferred simulation tool (see, e.g., [6, 7, 8,
9]). There exist several frameworks to model human decision making
processes in agent-based systems. An overview and guidelines about
what kind of agent decision making model to be used is given in
[10]. One of these frameworks is the so-called “Consumat” model of
Jager and Janssen, first published in [11]. Several publications already
exist which use this approach to model sustainable behaviors but
also other types of decision making like farmer crop choices (see,
e.g., [12, 13]). The aim of this work is to develop an agent-based
model of consumer participation in demand response programs
based on Consumat and to prove its suitability for further implemen-
tation in an overall socio-technical demand response consumer
model.
The Consumat approach
The socio-psychological framework of Consumat allows the agent-
based simulation of human decision making in situations related to
consumption of goods or opportunities such as doing a specific ac-
tivity, deciding where to live, and others. Details of the model and its
updates as well as the underlying theoretical background can be
found in [11, 14, 15, 16]. Within the Consumat design, the simulated
consumers (consumats) have needs and they are equipped with abil-
ities to satisfy these needs with a certain behavior. The decision on
which behavior to perform depends on current uncertainty of the
agent and its level of need satisfaction (LNS). In an update of their
original framework Jager and Jannsen describe three main need
forces [16]:

� existence: availability of economical resources like food,
income, housing, etc.

� social: interactions with others, social affiliation
� personality: individual tastes and characteristic

Several needs differently influence the overall level of need satis-
faction and the outcome of a certain behavior may have contrary
consequences on the corresponding level of satisfaction for each
need. Which behavioral options (opportunities) a consumat has
depends on the domain/scenario being modeled. The Consumat
approach integrates uncertainty of an agent as a relevant factor
for decision making. In [14] uncertainty is described as the differ-
ence between expectations and the real outcome of an action.
The updated version of the Consumat framework [16] directly
couples it to the existence and social needs. With Consumat II
different uncertainties concerning the several needs may have
different weights within the overall uncertainty. Depending on
their uncertainty and LNS agents select specific decision strat-
egies, based on the following key rules [16]:
� with decreasing satisfaction, an agent accepts more effort to
find the optimal behavioral option

� with increasing uncertainty, the behavior of other agents
becomes more relevant

This leads to the four main possible cognitive processes for decision
making repetition, imitation, inquiring and optimization. Details about
the corresponding strategies can be found in section Demand re-
sponse consumers as ‘consumats’: model description.
Demand response consumers as ‘consumats’: model description
The model developed within this project aims to represent the
decision-making of consumers to generally participate in demand re-
sponse programs based on the Consumat approach. The consumers
(agents) are characterized by individual levels of need satisfaction
concerning their financial abilities, perception of comfort and the en-
vironmental state. Fig. 1 illustrates the adaption of the underlying
Consumat model (see [14]) on the decision behavior of a demand re-
sponse consumer. Based on own results published in [4, 17, 18], the
following driving forces on the micro level were identified and inte-
grated into the model:

� Needs: financial state, comfort, environmental state
� Opportunity: participation in demand response program
� Abilities: financial resources, general comfort requirements,

affinity for technology, acceptance
� Uncertainty

Based on its level of need satisfaction and uncertainty an agent will
select the underlying cognitive process:

� Optimization: maximization of LNS based on own calculations
� Inquiring: compare what similar others did with own

calculations and decide for maximum
� Repetition: repeat decision of last tick
� Imitation: copy last behavior of similar others

If an agent feels satisfied or uncertain, depends on individual thresh-
olds LNSmin and Umax. To check the general suitability and logical
correctness of the model, first simulation runs based on an imple-
mentation in NetLogo (version 6.0.4) with simplified assumptions
concerning the model parameter have already been realized. The
preliminary results indicate that in order for the model to be used
for practical purposes, further investigation of realistic parameter set-
tings will be necessary.
Conclusion and Outlook
This work presents the development of an agent-based model of
consumer participation in demand response programs based on the
Consumat approach. At the current state of the project, the model
provides a basic framework for further research on the variation of
the agents’ general behavior in time and the influence of varying in-
put parameters on participation decision. It may be used to find opti-
mal policy options and measures to motivate consumers to
participate in demand response programs. The model is scalable and
can be extended by an additional logic considering the short-term
aspects of consumers’ interactions in the context of demand re-
sponse. The underlying NetLogo tool allows interaction with other
simulation frameworks like, e.g., mosaik. Future work will focus on
two aspects: (1) improve and refine the Consumat approach to
model consumer participation in demand response programs and (2)
integrate it in an overall model of consumer decisions in the demand
response context.
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Summary
Research on the practical effects of control algorithms in smart grid
systems is often dependent on simulation, since the full modeling of
all the devices connected to the grid is usually not amenable to a
purely theoretical analysis. Many open source core simulation pack-
ages exist, but they typically involve only core network simulation,
requiring custom scripting without offering advanced functionality
needed for the full assessment of the solution tested. The OPTISIM
package was born as an answer to the lack of a smart grid simulation
framework offering a modular structure with a clear interface for the
algorithmic part, management of input and output data flows, graph-
ing and configurability through JSON files. OPTISIM integrates state-
of-the-art, freely available software components for network simula-
tion, inter-process communication and time series database to offer
a comprehensive tool.
Keywords: smart-grid; simulation; demand-response; demand-side-
management
Introduction
A complete framework for the simulation of smart grids needs to
provide several features: power flow resolution, graphing, manage-
ment of inputs and outputs, an interface for plugging in decision al-
gorithms for managed flexibilities, integration of physical and control
models, et cetera. The OPTISIM framework was created as a tool cap-
able of satisfying each of these needs, easing the core research task
of writing realistic models and novel centralized and distributed con-
trol algorithms for demand side management and steering grid-
connected apparel.
Power Flow simulation
The electric simulation engine underlying OPTISIM is OpenDSS [1], a
freely available, industry-grade distribution system simulator by EPRI.
It is a fast, widely used and powerful simulator, but needs third-party
bindings for usage with languages such as Python in order to be
interfaced with modern scientific computing packages. Many Python
projects exist offering thin wrappers around the core OpenDSS li-
brary [2]. We created the Krangpower package [3] [4] with the aim to
provide several enhancements. Krangpower is built over the Open-
DSSdirect.py thin wrapper and offers syntactic sugar such as
operator-based insertion of elements in the circuit and retrieval of
objects through simple indexing. Furthermore:

� Items that OpenDSS returns as simple lists of floats,
representing real and imaginary parts of flattened arrays of
physical quantities, are returned as a numpy array [5] with the
correct shape and format.
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� Structured items such as the admittance matrix are returned as
Pandas DataFrame [6][7] for easier manipulation and export

� Items come, where appropriate, as Quantities (from the pint [8]
package) including information on the measurement unit. This
enables easy conversions and secures against miscalculations.

� The OpenDSS text interface is checked for errors (normally just
returned as strings without raising a Python error).

Another key additional feature is the ability of returning a graph
(Networkx package, [9]) representing the underlying grid and featur-
ing the simulation results as node/edge attributes, enabling ad-
vanced graphing and analysis.
Interaction with models
Many of the most interesting smart grid studies involve co-
simulation with physical models of batteries, heating, houses and
other appliances connected to the grid. We will call them, generic-
ally, ”agents”. OPTISIM offers the possibility to insert software models
of these kind of objects directly into the simulation. These models
are configured in a dedicated structured json file, whose parameters
are fed to the constructor of these objects. During the main simula-
tion cycle, OPTISIM computes the electrical consumption for every
model, obtaining active and reactive powers that are then used to
configure Krangpower for the following step. Often, these models
need time-series data streams as input for computing the final power
(such as consumption profiles for uncontrolled loads, irradiance pro-
files for the models of photovoltaic plants). In vanilla Krangpower, it
is possible to use simple delimited files, leveraging the underlying
capabilities of OpenDSS. In the OPTISIM framework, a more flexible
solution was chosen, involving a time-series database, InfluxDB [10].
The single agents, such as house models, batteries, etc., are aggre-
gated under a single ”meter”, representing a commercial point of de-
livery that owns the underlying appliances. Each meter with its agent
models runs asynchronously, in a separate process, to achieve high
concurrency.
Interaction with algorithms
The central feature of OPTISIM is the ability to run separately algo-
rithms for governing the behavior of the agents. This is to be distin-
guished from the built-in, parametrized models of control circuitry
that are coded in the agents; we refer to computational, decisional
processes that govern the agents in order to obtain an individual or
collective goal, such as demand side management [11]. The scope of
these algorithms is vast [12, 13] and they constitute the central item
of research that OPTISIM aims to aid. Examples of algorithms that
can be experimented are individual self-consumption optimizers that
use a forecast of local production and demand to optimally manage
flexibility, or more complicated coordination schemes that involve
communication between the agents and the iterative solution of an
optimization problem for achieving a common goal under certain
sets of rules.
Overview and message broker
As we have seen, the OPTISIM framework involves several processes
running in parallel (the main script with the power flow simulation,
the database, the externally interfaced algorithms, the agent models).
In figure 1, an overview of the whole modular architecture is
depicted, together with the data flows between the parts.
Execution time and test runs
The OPTISIM package is written in Python language. The choice was
natural, since it is a framework connecting several existing software
packages. The wide availability of bindings for all the tools involved
and the scripting nature of the project made the choice natural.
Nevertheless, the tool is quite optimized. In Table 1 the performance
observed with two examples of tests is reported. The two test grids
are the following:

� IEEE EU LV (modified): it is a stripped-down version of the IEEE
European Low Voltage test network [14]. The agents include
thermal building models with heat pumps and boiler, rooftop
PV, pure consumption profiles.
� LIC: it is a network modeled from real data from the Lugaggia
Innovation Community [15] pilot project in Lugano (CH). The
data was supplied by the local DSO, AEM.

In both cases, no algorithm is governing the devices connected to the
grid, but the agent physical models are included. Running control algo-
rithms, naturally, can increase the time for taking a simulation step accord-
ing to their complexity. Examples of results are shown in Figures 2 and 3.
Conclusion
In this article, the OPTISIM framework was presented as a compre-
hensive tool for simulating electrical grids interfaced with physical
models and management algorithms. The general architecture was
investigated and each of the modular components was described.
The Python code for the project is under review and will be soon
made available to the community as open source.
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Fig. 1 (abstract P9). Scheme of the OPTISIM architecture

Table 1 (abstract P9). Simulation performance

Intel® CoreTM i9-7960X @2.80 GHz; 128GB DDR4 @ 3200 MT/s

nr. nodes nr. meters nr. agents wall-clock time per
step

IEEE EU LV (modified) 207 107 447 715 ms

LIC 24 21 120 250 ms

Fig. 2 (abstract P9). Simulation output for a building model

4https://keras.io/about/
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Summary
As the transition to cleaner and more efficient systems for cooling
and heating speeds up, it becomes more and more relevant to man-
age their electrical consumption to avoid overloading the electrical
grid. The focus of this work is on recognizing the operational state of
heat pump (HP) systems on the basis of smart meter data. For this
purpose, we illustrate the application of time series classification
methods and deep learning models on a monitoring data set that in-
cludes ground truth information of the HP operating state. Poten-
tially, the information of HP state of operation can facilitate their
integration to the grid.

Fig. 3 (abstract P9). Simulation output for a heat pump model
Keywords: Digital meter data; Heat pumps; Data science; Time series
classification; Deep learning
Motivation
An important share of the heat demand in Switzerland is already pro-
vided by heat pumps. However, it is necessary to speed up this tran-
sition from non-efficient and polluting heating systems to more
sustainable ones. The electrification of these loads can bring thermal
and voltage problems in low voltage networks. [1] Thus, besides
planning and design aspects, an important aspect for the integration
of these highly efficient heating systems into the grid is to control
them such that bottle necks in the flow of electricity are prevented.
[2] Traditional demand side management (DSM) techniques still in
use today, consist of deactivating loads, such as heat pumps, during
peak consumption times. Novel coordinated control of larger num-
bers of loads opens the possibility of new DSM business cases. How-
ever, this requires understanding of the operation of the HP
components to avoid disrupting their duty cycles and potentially
damaging the equipment.
Methods for recognition of heat pump operating modes
As the roll out of digital-meters continues practically in every utility,
numerous research and innovation projects have looked at utilizing
these data to better manage loads (DSM). When it comes to HPs
within those loads behind the meter, aspects studied are related
their control, identification and characterization. [3, 4] Our work con-
cerns the identification of the HP state of operation. For this purpose,
methods developed in previous work make use of classical machine
learning (i.e. feature engineering, dimensionality reduction, cluster-
ing), Bayesian change point detection approaches, and deep learn-
ing. The classical approach consists, essentially, of two steps (1) cycle
recognition (i.e. cycles may be of different durations), and (2) classifi-
cation of each cycle into one of the possible HP states. The classifica-
tion takes places in a feature space corresponding to various
summary metrics of each cycle. On the other hand, when applying
artificial neural networks (NN), the cycle duration is fixed and the NN
is trained to learn the mapping between the HP cycle-power con-
sumption time series and the labels indicating the operating state
(e.g. off, space heat, or hot water in Figure 1). Other common ap-
proaches for time series classification such as dynamic time wrap-
ping, longest common subsequece, or clustering have not yet been
applied.
Here, in order to derive a method that is applicable to systems from
any manufacturer, we abstract the different HP operating states into
the most relevant ones: off, hot water (HW), and space heating (SH).
Since our focus is on recognizing the operational state of heat pump
(HP) systems with algorithms that can potentially by applied near-
real time to inform control decisions, we investigate one dimensional
convolutional NNs. Compared to recurrent NN, which have feedback
loops between output and input, low complexity convolutional
neural networks (CNNs) have been shown better performance on se-
quence modelling tasks. [5, 6] A simple model of a NN can serve as
good baseline for more advance deep learning models, recently such
1D-CNN type of models have been applied to electricity load fore-
casting [7], and prediction of energy efficiency of domestic cooling
systems. [8] For the implementation of the models we use Tensor-
Flow [9] (v2.2.0) through its high-level application interface Keras.4

Data sets and models
In the context of this work, we explore several datasets, Table 1 de-
scribes three of them. The HSLU data is collected for load disaggre-
gation research. However it also includes power consumption and
specifications of HPs in operation, along with relevant building infor-
mation for thermal analyses. The NTB Buchs and the WP Monitor
data concerns dedicated HP research activities aimed at evaluating
the efficiency of HP systems. Thus, besides the energy consumption
data typically recorded by digital energy meters; temperature, volu-
metric flow, and power consumption are recorded by dedicated sen-
sors. Moreover, binary variables indicating the operation of key
components such as compressors, pumps, electrical backup heaters,
cooling circuits, and storage tanks are provided. Here, we use those
variables to label data with the corresponding state of operation.

https://keras.io/about/


Fig. 1 (abstract P10). Load profile and states of an air source HP
(PLZ92242) from WP Monitor data set
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Figure 1 shows the compressor power consumption and state of op-
eration of an air source HP during a winter day.
State encodings. From the NTB Buchs and WP monitoring data is pos-
sible to derive ground truth information about the state of operation.
We apply the following steps: (1) define a set of N components, e.g.
compressor, pumps, and electrical backup heater; (2) select binary
variables b that describe the state of each component i at each time
step; where b = 0 and b = 1 stand for component i off and on re-
spectively; (3) given the state of each component i in b , encode the
HP state as a concatenation of them; and (4) from the space of states
2|N| abstract the states S = {off, space heat, hot water} on the basis of
the engineering understanding of the heat pump. Table 2 shows
summary statistics of the encoded states for a year of operation, as
expected states have distinctive statistical features.
Modelling and prediction. Our model takes as input compressor
power consumption X and outputs states S, it consists of stacked 1D-
convolutional layers nL with a given number of filters, filter size k8,
causal padding, and dilation rate r. The model parameters are
learned with Adam optimizer to minimize mean squared error. Learn-
ing rate 0.1, 60 epochs with batch size 120 yield reasonable results,
however for some experiments these maybe adjusted to speed up
convergence or avoid overfitting. Evaluation of model prediction is
done calculating the accuracy of the predictions compared to the
true states. We test different model configurations (nL, k8, r) and look
a head horizons (hours to day-ahead) to illustrate their impact on
forecast accuracy and on computing resources (training and infer-
ence time, and model size).
Final remarks and outlook
Several data sets are available to study the behaviour of heat pumps
as seen from the grid, but dedicated monitoring campaigns are valu-
able to observe the behaviour behind the meter. We use these data
to encode the heat pump state of operation, and evaluate the per-
formance of one dimensional convolutional neural networks (1D-
CNNs) with different configurations to predict the time evolution of
the states. As expected, sudden changes of states are hard to predict
correctly. However, training these networks with only a couple of
hours of training data, on a laptop takes less than a minute for the
deepest network (4 convolutional layers) we tested. Thus, it seems
feasible to run them in an online fashion. Training on a full year of 1-
minute data, for the deepest network takes up to 20 minutes. Next
steps in our research involve the evaluation of models to predict en-
ergy consumption at different levels of aggregation.
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Table 1 (abstract P10). Three data sets including

Description

NTB Buchs [10,
11]

High resolution (10-second) monitoring campaign to investigate
HP performance aspects, such as: start-up behaviour, defrosting,
and influence of auxiliary equipment on efficiency. Up to 13 HP
systems (air-water, brine-water, variable speed, systems with cool-
ing, new and renovated systems) were monitored for up to 3
years.

WP Monitor
[12]

Monitoring campaign for benchmarking efficiency of different HP
technologies. A total of 87 HPs (direct evaporation systems,
ground source HPs, and variable speed compressor HPs) were
monitored during three years (1-minute resolution). Partially
anonymized data from three HP that complies to German data-
privacy law is accessible.

HSLU [13] Load monitoring open data from digital meters and other
sensors in five houses. 1.5 up to 3.5 years at 5-minute resolution.
Power consumption data from HPs (air-water, and brine-water) in
three of the houses along with HP specifications and building en-
velope information.
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Table 2 (abstract P10). Compressor power [W] summary statistics per
state of ground source HP during 2011 from WP Monitor data set

count mean std min 25% 50% 75% max

off 425884 0 1 0 0 0 0 180

space heat 81284 1199 169 60 1200 1200 1260 2160

hot water 18432 1841 287 60 1680 1920 2040 2280
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Summary
The massive deployment of low-frequency smart meters around the
globe is putting more and more attention on Non Intrusive Load
Monitoring (NILM) approaches and their potential applications in
smart homes. NILM techniques are a set of approaches that rely on a
single metering point (the smart meter) to identify individual appli-
ances consumption in the household. In this paper, the author points
out some open research challenges in the field of NILM and their real
applications in smart homes through an overview of the literature,
gives the formulation of three research questions related to these
open challenges and provide an outline of future research through a
description of the methodology and expected outcomes.
Keywords: Load disaggregation; Social acceptance; Ambient and
Assisted Living
Introduction
The current century is challenged by the growing rate of the ageing
population and the potential lack of energy resources [1]. A new
generation of intelligent home energy management systems based
on NILM techniques using the data gathered by these meters can
help tackle both issues. Besides of allowing for more efficient energy
consumption in residential sector, NILM approaches can also enable
the detection of various health care features (e.g. inactivity, sleep dis-
orders, memory issues, ...) [2] and offer more independence for the
elder population. In this paper, the author highlights the open re-
search problems related to NILM approaches and their applications
in smart homes in relation to the previous two challenges. It particu-
larly analyses the problem related to the accuracy of NILM tech-
niques, the social acceptance of these systems and their effect on
the two aforementioned applications.
Related work
A major open research challenge in NILM is the comparability of the
proposed algorithms [3, 4] as scholars generally use different
evaluation setups. A recent contribution in this vein was proposed in
[5] where 12 NILM benchmarks have been implemented and made
available as an open-source project including both traditional and re-
cent deep approaches. The same study proposed an experimental
evaluation of the implemented algorithms and demonstrated the su-
periority of sequence-to-sequence (Seq2Seq) and sequence-to-point
models (Seq2Point) in different scenarios. These models were in-
spired machine translation where they achieved very good results [6,
7]. The Seq2Seq learning is about training models to convert se-
quences from one domain another domain. The Transformer [7]
model is so far the best model for Seq2Seq modeling. However, to
the best of our knowledge, there has been no proposition to adapt
this model for NILM. Scholars demonstarted that NILM can improve
energy efficiency by increasing user’s knowledge about their appli-
ances [8, 9] which was also pointed as a preference by several social
studies about SM acceptance [10, 11]. Recent works also proposed
activity monitoring and the detection of abnormal behaviour
through electrical signatures [12, 13, 2]. The benefit of this approach
is its flexibility, low-cost and ubiquity [2]. However, the major chal-
lenge is to provide enough accuracy for these applications as it was
repeatedly pointed out in that the disaggregation accuracy propor-
tionally increases as the sampling frequency does [2, 13]. This moni-
toring approach has been well accepted by subjects, as well as
professionals, during experiments due to their low intrusiveness [13].
However, concerns like privacy still are present and can prevent such
solutions from reaching their full potential [2]. Recent studies [14, 15]
suggest that the acceptance of systems based on Smart Meters (SM)
is governed by many concerns that individuals have, this includes
but is not limited to: effects on health, cost and installation visits.
Therefore, considering the end-users beliefs and concerns should be
taken into consideration before the design of any services enabled
by this technology. Carefully designed services have the potential to
change a user’s attitude toward SM. Matter of fact, several studies on
acceptance showed that it usually follows a U-shaped curve from
higher acceptance in the first beginning to relatively low acceptance
during real deployment to again gain a higher acceptance when the
project is finished and the user can perceive its concrete benefits
[16]. However, to the best of our knowledge, only few studies consid-
ered this aspect.
Research questions
The research goals of current and future analysis of the author
are to contribute to the improvement of existing NILM ap-
proaches, establish a set of user’s requirements for SM based sys-
tems and finally evaluate how such systems can influence
decision making in smart homes. RQ 01: How can deep models
for NILM be improved? The author argues that adapting the
Transformer model for NILM can enhance the performance and
provide more understandable model through its attention mech-
anism. Matter of fact, establishing an understandable model for
NILM will allow to establishing a cause-effect relationship be-
tween the observed results and the errors made by the model. It
will, therefore, allow for more accurate models and thus enhance
the user’s trust in the system which will partially contribute to
RQ 02. RQ 02: With NILM techniques many services can be en-
abled, what is the user attitude towards those services? and how
can the acceptance and engagement of costumers with NILM
based services be improved? Understanding the users’ concerns
and key factors influencing their engagement would help in es-
tablishing a set of requirements for the design of those services.
It would also help utility companies to avoid costly consequences
of rejections by consumers after installations. RQ 03: Taking into
consideration results of RQ 01 as well as RQ 02, how can NILM
services support decision making in smart homes in the case of
elementary family and the case of elderly people living alone?
Advanced home energy management systems based on NILM
can influence human behaviour towards much efficient consump-
tion and help make appropriate interventions in the case of eld-
erly living alone (e.g. providing warning for carers or family
members). However, in the first case, more efforts on design ele-
ments of those systems should be carried out to assess their po-
tential effects on the consumer’s engagement. Besides, in the
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case of the elderly monitoring, well-thought scenarios should be
designed to evaluate and assess the applicability of these
systems.
Though the three research questions seem to be divergent, they are
highly linked to each other. Matter of fact, improving the perform-
ance of NILM from RQ 01 would lead to higher accuracy and is thus
a key factor to improve user’s trust and contribute to address the RQ
02. The outcomes of RQ 01 and RQ 02 will theoretically help design
a more performant and higher accepted services whose real effect
will be evaluated during the RQ 03.
Methodology
As a first step in evaluating the proposal, the author implemented an
energy measurement system based on open-source solutions in a liv-
ing lab environment [12] and conducted a set of experiments that
showed great potential for NILM approaches in the domain of Ambi-
ent And Assisted Living (AAL). In the next step, the author is willing
to work towards answering the first research question by extending
the previous system with an advanced NILM technique. This tech-
nique will consist of an adapted version of the Transformer for NILM.
This model will be validated using established datasets(e.g UK-dale,
REDD) and compared to already available benchmarks. For reproduci-
bility purpose, the implementation of this model will be made avail-
able as part of the open-source project describe in related work. This
implementation will later serve as a back-end for the systems build
in RQ 03. The second research question will be addressed using a
case study of consumer’s from an energy utility in Carinthia, Austria.
First, the author intends to perform a literature review of recent insti-
tutional documents dealing with the acceptance, attitude and en-
gagement of customers with energy services. The previous study will
help select an appropriate model explaining the acceptance which
will be the core to design a questionnaire study. The questionnaire
will be disseminated to real customers from energy utility which will
help to validate the hypothesis of the previous model. RQ 02 is ex-
pected to provide a set of user’s requirements and preferences for
energy services. As for the third research question, an intelligent
home energy management system will be developed based on re-
quirements from RQ 02. This system will use the NILM approach from
RQ 01 to provide two components: (1) energy feedback about house-
hold consumption, (2) activity monitoring and abnormal behaviour
detection. Thus, the evaluation of the system will be made in two in-
dependent steps. In the first step, focus groups of an ordinary con-
sumer’s from different ages will be recruited to assess different
design elements on their attitude. In the second step, focus groups
of health carers will be recruited to evaluate the real applicability of
the monitoring system in the case of elderly living alone.
Conclusion
In this paper, the author discussed her motivations, research ques-
tions as well as the methodology she intends to use during her pro-
ject. The overall goal of the author is to evaluate the potential of
NILM based ICT systems to influence decision making in smart
homes (RQ 03) which rely on both accurate data (RQ 01: improving
already established NILM approaches) and user’s requirements for
such services (RQ 02: user’s concerns and requirements).
Abbreviations
AAL Ambient And Assisted Living. 3
NILM Non Intrusive Load Monitoring. 1–3
SM Smart Meters. 2
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5Over-fitting: The ANN is not able to generalize to new data, but only
”memorizes” its training data.
6Generalization: The ability of ANNs to achieve good results for data
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Summary
Optimal power flow algorithms can be used to optimally control
power systems and to reduce need for grid expansions this way.
However, optimization of power systems is a complex problem and
still hardly possible in real-time, which would be necessary for grid
control. In this doctoral project, a methodology is proposed to train
artificial neural networks with the results from offline optimizations
in order to speed-up calculation and to ensure feasibility of the
optimization. That is expected to achieve fast and near-optimal re-
sults, but also allows for high modularity, which reduces engineering
effort and makes the approach applicable to diverse use cases.
Keywords: Real-Time; Optimal Power Flow; Machine Learning; Deep
Learning; Optimal Control; Grid Regulation
Introduction
The transformation of the energy system results in an increasing
number of small actuators in the distribution grids called distributed
energy resources (DERs). Most of these new actuators have fluctuat-
ing active power demand or feed-in, e.g. solar units, wind turbines,
or energy storage systems. Not only are those fluctuations difficult to
predict, but also may superimpose each other locally, resulting in
voltage problems, overloading of lines and transformers, and high
transmission losses. This decreases power quality and endangers sys-
tem stability.
One approach to these problems are massive grid expansions,
but these are expensive and undesired by society. To minimize
the need for grid expansions, it is necessary to exploit the exist-
ing infrastructure as far as possible. Especially distribution grids
are mostly operated in a passive way still, which means that the
distribution system operators barely perform active interventions
to optimize the state of the grid regarding efficiency or stability.
The mentioned new actuators technically provide a lot of active
and reactive power flexibility to make active control operations
possible.
Searching the optimal state of an electrical grid is called the optimal
power flow (OPF) problem [1]. However, the OPF is a highly complex
optimization problem that is difficult to solve fast and in real-time,
especially considering large-scale systems with complex constraints
[2]. Consequently, real-time capable OPF (RT-OPF) approaches are
pursued to make it applicable to grid control. Such a RT-OPF would
enable grid operators to keep their grids in optimal state
continuously.
State of the Art
OPF is an umbrella term for procedures that find the optimal steady-
state of a power system considering operational constraints and con-
trol limits [1]. Generally, the OPF is a large-scale non-convex non-
linar optimization problem that often contains discrete variables and
uncertainty, which makes it difficult to solve [2].
OPF algorithms are mainly used by transmission system operators
to plan future grid control operations. That is done in 15 minute
intervals or day-ahead, because of its computational complexity
[3]. There is a trend towards corrective control, thus reacting to
contingencies instead of anticipating them beforehand. That
means less constraints and better exploitation of the power sys-
tem [4].
Lots of RT-OPF approaches emerged in recent years [2]. This work
focuses on artificial neural network (ANN)-based approaches, be-
cause they allow for abstraction from the original OPF formula-
tion, which makes them applicable to various OPF variants. The
usual approach from literature is visualized in Figure 1. A conven-
tional offline OPF is performed thousands of times for different
grid states to create a training data-set, which consists of a map-
ping of grid states to respective optimal set-points of the actua-
tors within the grid. The generated training data is then used to
train a multi-layer perceptron (MLP)-ANN so that it can approxi-
mate the optimization for a given power system. This way, the
optimzation problem is transformed to a ANN inference – a series
of simple matrix multiplications. Because of that, calculation time
can be reduced and convergence problems are not possible any-
more. MLPs are mainly used in literature because they are the
standard ANN architecture and because they are proven general
function approximators [5].
Pan et al. [6] use MLPs to map load values to results of the DC-OPF –
a simplified OPF that neglects reactive power flows. They achieved a
calculation speed-up of three orders of magnitude. To prevent over-
fitting,5 they used multiple ten thousand random sampled training
data points. However, for training data generation, they varied loads
only in the range of ±10%, which is a too small solution space to
allow for good generalization.6

Zamzam and Baker [7] as well as Guha et al. [8] use MLPs to approxi-
mate the standard AC-OPF, which is more complex than the DC-OPF.
They mapped load values to the optimal set-point of actuators again,
achieving a precision of more than 99% in relation to the basic OPF.
Approach
The aforementioned publications were mostly published in 2019 or
2020 and are in an early proof-of-concept stage. That results in some
shortcomings, which are aimed to be resolved with this work. First,
all respective works consider a specific variant of the OPF problem
for a given power system and present a handcrafted ANN-OPF for
that problem. However, countless variants of the OPF problem exist
and design by hand results in lot of engineering effort. Instead, auto-
mation of this process is required. Figure 2 sketches the general idea
how a conventional OPF can be transformed to an ANN-OPF in an
automatic or semi-automatic way. Each of the framed boxes is
planned to be interchangeable to achieve high modularity. For ex-
ample, exchange of the power system model enables automatic de-
sign of control algorithms that are optimal for a given power system.
This general idea was proposed in a previous work [9], instead of
using generic concepts that are not optimized for specific grids. The
OPF itself is highly modular as well, because diverse objective func-
tions and system constraints can be chosen. This also applies to the
ANN training algorithms, which can be chosen from literature. The
modularity results in high generality and little engineering effort, be-
cause parts of the total design flow can be exchanged easily to apply
the methodology to various kinds of problems.
Second, most publications use MLP-ANNs as architecture to learn the
OPF. Diverse other architectures were not tested yet. For example, re-
current neural networks can be expected to be a useful for the
multi-stage OPF problem over a time-frame, instead of a single sta-
tionary grid state.
Third, the presented approach from literature requires tens or hun-
dreds of thousands of offline generated training data samples, which
is computationally expensive, if complex OPF variants have to be
solved. An alternate promising approach would be to map the OPF
problem to the training process of the ANN, so that the training
process implicitly solves the optimization problem. Hopfield networks
can be used in such a way to solve optimization problems [10].
The listed shortcomings and their respective proposed solutions shall
be pursued in the doctoral project to achieve an ANN-OPF that is us-
able for realistic use-cases, considering engineering effort and quality
of solutions. To test the quality of solutions, the resulting ANN-OPF
will be applied to several use cases on benchmark grids like the sim-
bench grids [11]. Use cases are OPF applications in grid control, e.g.
voltage control, re-dispatch, or clearing of ancillary service markets,
which is often done using an OPF [12]. Metrics for evaluation will be
1) deviation from the conventionally generated OPF solution as
ground truth, 2) number and magnitude of constraint violations, 3)
robustness against missing or faulty data input and outages within
the grid, and 4) computation time. The formal definition of the met-
rics is still to be done. The appliance of a trained ANN-OPF to mul-
tiple close-to-reality use cases is another step that was not
sufficiently done in literature yet.
Conclusion and Outlook
The presented doctoral project attempts to make the solution of OPF
problems faster and real-time capable by using ANNs to transform
the optimization problem into simple matrix multiplications by train-
ing. In this work, it is aimed to advance the methodology to applic-
ability in real-world situations by lowering the engineering effort for
points that were not used in training.



Fig. 1 (abstract PW2). Mapping of grid state to optimal set-points
using offline generated training data

Fig. 2 (abstract PW2). Modular work-flow of the methodology for
optimal ANN-based RT-OPF
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design, by systematically searching for the best ANN architectures,
by reducing the drastic computational effort of training data gener-
ation, and by evaluating the resulting ANN-OPF regarding solution
quality and computation time in realistic use cases.
In further research it could be investigated how ANNs are suited to
achieve distributed control of power systems. For example, Sonder-
meiyer et al. [13] trained ANNs actuator-wise to achieve decentra-
lized control. However, no communication is considered yet, which
would be required to achieve distributed optimal control.
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Summary
The distribution grid becomes continuously more difficult to operate
and monitor leading to voltage band violations in many cases. There-
fore, distribution system operators (DSO) need to surveil the correct
operation of grid connected devices, such as power converters on
the low voltage level. The behaviour of these decentralized gener-
ation units and their grid support functions such as reactive power
dispatch, used for example for voltage control, is crucial for grid op-
eration. The architecture developed is to enable better supervision of
grid connected devices. This is to be achieved combining machine
learning algorithms for anomaly detection, classification and load dis-
aggregation. These mechanisms are then to be applied to the trans-
former data as well as to the device data to identify and classify
unwanted behaviour.
Keywords: Power Distribution Systems; Malfunction Detection; Oper-
ational Data; Machine Learning; Misconfiguration
Introduction
Nowadays, electricity grid operators face many challenges connected
to the fundamental changes the energy system is undergoing. Espe-
cially a high density of photovoltaic (PV) power generation has grave
impact on a grid, as pointed out in [1]. Local violations of the admis-
sible voltage magnitude, the so called voltage band, are often the
consequence, whereas the system frequency can be affected glo-
bally. To avoid such unfavourable effects, without limiting renewable
energy generation, control strategies are needed. Voltage regulation
is regarded as the most important aspect in the integration of dis-
tributed generation in distribution networks [2]. This is implemented
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through grid supporting functionalities provided by the generation
units or loads. Amongst others, these range from curtailing the active
power dispatched or consumed, to controlling the reactive power in-
jection of generation units with inverters. To ensure these functional-
ities are exercised correctly, the grid connected devices have to be
supervised.
Scenarios
The cases targeted include the supervision of the correct scheduling
of loads or the proper feed in of energy by generation units. These
are non transient events and therefore their dynamics are not of
interest, allowing for lower resolution data to be satisfactory. Here
only supervision of operational changes on a lower time scale are ad-
dressed. Data with a resolution of one minute or lower is sufficient
for this task since the effects on the grid, the phenomena of interest
mentioned above have, are in a similar time range. A load not being
switched on will only have a measurable impact after a few minutes
or hours, making detection also less time critical.
The control function supervised in one of the scenarios is illustrated
in Figure 1: a) shows how the power factor, and therefore also the re-
active power is controlled depending on the active power, whereas
b) depicts a voltage control varying the reactive power. Distribution
system operators (DSO) need to surveil the operation of grid con-
nected devices, such as inverters on the low voltage level, and their
voltage control capabilities in order to ensure the network to be reli-
able and to work within the specified limits. Deviations of control
schemes from the specifications as they are defined by grid codes
can have two reasons: firstly a different configuration than the nor-
mative one can be purposely implemented, leading to misconfigur-
ation. Secondly the configuration can change due to malfunctions or
faults. The operational data needed is however not utilisable at all
connection points because of legal restrictions regarding data priv-
acy or the lack of measurements in general. Therefore, monitoring is
required to be performed remotely using as little data as possible,
making surveillance on the distribution transformer level preferable.
Architecture
An architecture is proposed that takes medium voltage transformer
data as well as information about the underlying low voltage grid as
input, and applies various data driven approaches to it. This should
enable detection and identification of grid supporting devices on the
underlying low voltage level that show behaviours that do not cor-
respond to the ones laid down in the specification. This allows to
monitor for instance the execution of control schemes of distributed
generation units on the low voltage level as shown in Figure 2.
Various tasks have to be covered by this architecture, such as anom-
aly detection, classification of the same, as well as data mining activ-
ities. The anomalies are limited to behavioural anomalies, such as
wrong parameterisation of control curves either as a result of fre-
quent initial misconfiguration or of recurrent malfunctions during the
execution as elaborated before. For detection of anomalies in the be-
haviour of grid connected devices, kernel principle component ana-
lysis (kPCA) [4], appears to be a promising solution, for it allows to
build a statistical model of the nominal state of a system. For classifi-
cation purposes a partially hidden structured support vector machine
(pSVM) in combination with kPCA as depicted in [5] can be
employed. Yet another approach is explored in [6] using a one class
support vector machine for Heating, Ventilation and Air Conditioning
(HVAC) anomaly detection. The results show, that most variability in
the data does not occur due to anomalies but during the usual func-
tioning of the system, which applies also to PVs in regular operation
or households. This points towards using primary component ana-
lysis (PCA) for anomaly detection on the low voltage level, whereas
some form of support vector machine could be applied on the
medium voltage level. For data mining purposes the transfomer load
profile can be disaggregated into its contributions by the devices
and loads on the low voltage level. To perform this disaggregation,
[7] proposes an application of an artificial neural network (ANN).
Smart meter data of households and grid connected devices, such as
generation units, could be used to establish a database of appliance
signatures. Alternatively, a hybrid support vector machine/Gaussian
mixture model (SVM/GMM) classifier could be employed, as explored
in [8]. The approach discussed here has the advantage of building its
own power feature model for appliances when these are turned on
without needing smart meter data. First implementations of the con-
cept presented are being developed in a coding environment using
data synthesized by grid simulation software. The data generated in
this manner should comprise of distribution transformer data and
low voltage grid participants data such as voltages, currents, and
power flows at minute resolution. Data of regular operation and ab-
normal behaviour, as of wrongly parameterised inverters, are needed
and therefore generated. KPIs are to be defined, such as a misclassifi-
cation rate or a confusion matrix representing false negatives and
false positives of the anomaly detection. The latter are of particular
interest since false alarms ought to be avoided. To enable the algo-
rithms to learn to classify these cases, at least partly labeled data is
going to be necessary [9].
Discussion and Conclusion
The integration and roll out of decentralized renewable energy
sources is both inevitable and necessary in order to reorganize the
electric energy supply in a sustainable manner. These sources of en-
ergy show great volatility when providing energy, which can lead to
problems in grid operation. Therefore, control measures have to be
put in place and grid operators have to make sure of their correct
functionality. An early framework has already been developed and
implemented that allows to synthesise operational grid data of mal-
functioning devices, allowing to examine results achieved with cer-
tain data as well as to determine the necessary properties of the
same. The first preliminary results of an approach applied to the data
synthesised are shown in Figure 3. These show voltages at two termi-
nals plotted against each other, which both have a household as well
as PV connected to them. Each data point’s x component is the volt-
age of the one terminal, the corresponding y component is the volt-
age at the other terminal at a certain point in time. Depicted here is
the data over the course of 48 hours in a 5 minutes resolution. In this
case the function supervised is a reactive power dispatch curve con-
trolled by the active power, which influences the voltage. Here, a first
feature for anomaly detection is depicted: the explained variance of
the second primary component varies greatly between the point
clouds depicting two terminals without malfunctions (right) and two
terminals where one of them experiences a malfunction resetting its
control curve (left). This could be used as an indicator of abnormal
and unintended behaviour. Results from these evaluations will be
used to develop, improve and robustify the architecture. Finally, real
world data provided by DSOs could be used to verify the concept
and the approach could be tested on a grid serving as a test site.
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Fig. 1 (abstract PW3). Control schemes: a) Q(P), b) voltage
droop [3]
Fig. 2 (abstract PW3). The concept proposed

Fig. 3 (abstract PW3). Voltages plotted against each other
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Summary
This project aims to design a prediction model, optimize an oper-
ation plan and simulate systems operation. Simulation is necessary
due to mismatches between predicted and actual heat demand. The
goal is to understand the influence of heat demand prediction errors
on a flexible operation of combined heat and power systems (CHP
systems). The simulation additionally reveals what actions could ei-
ther be taken to react on prediction errors during operation or to
avoid complications beforehand. Based on these results the solution
space of optimization is going to be limited in order to avoid inter-
ventions during operation plan realisation. Thereby the question is
addressed whether prediction errors can be acknowledged during
operation planning fruitfully for systems operation.
Keywords: Prediction Errors; Heat Demand; Time Series Forecasting;
Artificial Neural Networks; Operational Optimization; Flexibility
Problem Statement
The growing share of intermittent energy sources increases the likeli-
hood of power overproduction at some point in time and power out-
ages at others.
One idea to deal with these fluctuations is the usage of existing
mid-scale CHP devices in decentralized energy systems. With sev-
eral hundreds of kilowatts in power generation and usually con-
nected to a heat storage system, such CHP devices are able to
shift considerable loads and react to market stimuli.
Generally speaking, they incorporate the potential to generate power
during high price hours and avoid generation during low price hours
i.e., the potential to counterbalance power shortage in the market or
shut down of renewable power plants respectively.
The ability to shift loads to high price hours is limited by device con-
straints like storage capacity or feasible power generation. Further-
more, since the CHP device generates heat along with power, heat
generation and therewith power generation is limited to the existing
heat demand. Short term imbalances between generation and de-
mand can however be compensated by storage systems.
In order to generate heat and power when power prices are high
and store excess heat for low price hours, system operation needs to
be planned beforehand. Moreover, complying with power delivery
contracts restricts spontaneous changes to plans.
A reliable operating plan is crucial to unleash the full potential of
existing CHP systems for demand side management. An operat-
ing plan, however, can only be as reliable as the inputs it is
based upon.
These inputs consist of the available energy generation and storage
system, power price predictions, as well as power and heat demand
predictions. All predictions are subject to uncertainties. If assumed
power prices fail to materialize, the operating plan fails to achieve
the promised goals. The impact of deviations between assumed and
actual heat demand is different, because it affects system operation
directly.
On the one hand, if heat demand exceeds the expected extent and
thus remains unmet, generation needs to be boosted. A compensat-
ing heat source, like a district heating grid, is usually not available.
On the other hand, if heat demand under-runs the expected extent
and generation exceeds the storage capacities, generation needs to
be limited. Overproduction might cause overheating and damages to
the energy system, if excess heat cannot simply be dumped.
In such situations, the operating plan needs to be modified accord-
ingly, endangering not only promised goals but possibly the con-
tracts entered into.
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Such situations are not unlikely. The operating plan is product of an
optimization algorithm to achieve the greatest possible benefits.
Consequently, it tends to push the limits of capacity. Not expecting
any deviations, using only 90 % instead of the full storage capacity
makes no sense. Therefore, optimized operating plans are particularly
vulnerable for unexpected heat demand deviations.
Heat demand predictions and their errors were studied frequently
[1]. Even if predictions based on artificial neural networks (ANN)
achieve good performances, a perfect prediction is simply
unachievable.
If prediction errors are unavoidable and if such errors affect the
promised goals when operating plans are put into practice, such op-
erating plans might perform better if prediction errors are in advance
accounted for.
Stringently, the research hypothesis that needs to be verified is thus:
Limiting the solution space in operation planning grants tolerances for
heat demand prediction errors and thus avoids interventions during
realization. In this way, a limited operational optimization does in real-
ity tap the flexibility potential of decentralized energy systems to a
greater extent than optimizing within the full range of operation.

RQ1:How do prediction errors decrease the real potential of flexible
operation?

RQ2:How can one limit the solution space of an optimization
algorithm in a fruitful manner?

RQ3:How do these limitations correlate with the performance of
predictions?

Related Work
Three different publications dedicated to find the impact of imper-
fect energy de-mand forecasts on the flexible operation of CHP sys-
tems were found.
Bakker et al. [2] predict in the first publication the heat demand of
four individual single households. Via Integer Linear Programming an
optimal schedule for the CHP plant is determined. The schedule is
optimal concerning the profit made by the CHP plant on the electri-
city market APX. The schedule is then simulated taking real electricity
and heat demand as well as the limitations of a local heat buffer into
account. As a reference the same procedure is done with a perfect
forecast.
The achieved average sales price corresponds to 78 % of the theoret-
ically achievable price. In other words 22 % of the income is lost due
to forecast errors.
Baltputnis et al. [3] investigate in the second publication a CHP plant
in Latvia with an electric power of 976 MW. With help of a heat de-
mand forecast a heat and power production plan is obtained. Gener-
ated power is traded at the Nord Pool Day-ahead Market.
Since their prediction is on average underestimating the heat de-
mand, also the power production is underestimated, which in turn
means more power is available than traded on the market the day
before. Costs of imperfect predictions are therefore estimated as the
lost revenue of unexpectedly overproduced power not sold
beforehand.
For two different ANN-based forecasts - the prediction qualities of
which are measured via the RMSE and given as 8.786 % and 7.819 %
respectively, a difference of 11 % - the lost revenue is decreased by
26 %. The authors state that ”the consequences of imprecise heating
demand forecasts cannot be overstated.”.
Fang and Lahdelma [4] predict in the third publication the heat de-
mand of the city of Espoo in Finland with a yearly heat demand of
2.25 TWh.
With that prediction they calculate the optimal operation plan for
the existing generation system with regard to the net operating
costs. The generation system consists of a combined heat and power
plant and a heat storage. The power produced is sold at the Nord-
Pool spot market.
In the presented case study 90 % of the theoretically possible sav-
ings due to flexible operation are achieved by taking imperfect fore-
casts into account.
None of the above publications acknowledge prediction errors
beforehand.
Methodology
The overall methodology can be subdivided into three main tasks.
The three tasks are depicted in figure 1.
Prediction models are designed to obtain predictions with different
accuracies. This work focuses on neural network based prediction
models. As an indication for its ability to learn the underlying pat-
terns, its performance is compared with other prediction models. On
the one hand, a naive prediction model (today is the same as yester-
day) will be used. On the other hand, an ARIMA [5] prediction model
will be used for comparison. The main prediction model is based on
a feedforward neural network with historic temperature and heat de-
mand data, and a temperature forecast as inputs, a single hidden
layer and a single output. The target is the measured heat demand
e.g. 24 hours later.
Operational Optimization is realized with help of a given mixed-
integer linear programming (MILP) optimization model.
The goal is to obtain optimized operation plans either based on his-
toric heat demand data as an idealized forecast or based on a imper-
fect heat demand predictions. The operation plan obtained with the
historic heat demand data will not encounter any difficulties when
put into practice. Therefore benefits can directly be determined.
The operation plan based on imperfect heat demand prediction,
however, is faced with the problem that the assumed heat demand
during optimization does not match the actual heat demand during
realization. Hence, the latter operation plan has to be simulated tak-
ing actual heat demand into account.
Simulation of Operation is added to the workflow in order to reveal
any issues occurring while realizing the operation plan. The mis-
match between heat demand prediction and actual heat demand re-
sults in some time periods of over- and underproduction.
If the connected energy system is not able to cope with the ex-
cess heat or the heat deficit the operation plan needs to be
modified. Such modifications might be unexpected shut downs
or ramp ups of the CHP plant, which lead to e. g. additional fuel
consumption, higher energy losses, inefficient operation or in-
creased wear.
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Summary
Until today it is not possible to allocate the CO2 emissions in the
German electricity system to a specific region and its corresponding
electricity demand that caused them. This paper presents a new en-
ergy system model and uses established methods for answering this
question. A detailed bottom-up model of the German electricity sys-
tem is built to represent a highly spatial and temporal representation
of the Germany electricity system in 2019. In combination with a cus-
tomized input-output analysis, the individual emissions from the pro-
ducer to the caused consumer can be traced. The analysis
demonstrates the importance of considering spatial and temporal ef-
fects as well as electricity exchanges between regions in estimating
emissions footprints.
Keywords: Electricity System Simulation; Power Flow; Input-Output
Model; Grid Usage; CO2 Emission; CO2 Tracking; Carbon Accounting
Introduction
Nowadays, tracking of CO2 emissions is of great interest [1]. This
is not only caused by national regulations [2, 3] but also driven
by public awareness and the interest of industries and individuals
to become more environmentally friendly [4, 5]. Tracking of emis-
sions refers to the idea to check how much CO2 or other green-
house gases are produced by a certain activity at a particular
point in time. With around 35 %, the energy industry represents
the largest CO2 emitter in Germany [6]. Therefore, the climate
impact (CO2 and other greenhouse gas emissions) associated
with the production and consumption of electricity should be
carefully monitored. It is important to correctly allocate where,
when and from what source emissions in the electricity sector
are emitted. In the electricity sector, this is a challenging task, as
generation and consumption are interconnected via transmission
networks. These networks can connect regions located far from
each other, which results in the fact that production and con-
sumption take place in different locations. Therefore, consump-
tion based-emissions in a region are not only determined by
local electricity generation, but also by possible imports from
other regions. This will become even more difficult in the future,
since our energy system will become more and more linked to
different sectors and regions [7, 8]. Due to the spatial and tem-
poral distribution of generation and consumption, these imports
and the associated electricity flows often represent a critical fac-
tor in the emissions associated with local electricity consumption.
Methodologically, these consumption based-emissions can be de-
termined using multi-regional input-output models [9]. To obtain
useful results at a local level, load, generation and flow data with
high spatial and temporal resolution are required. Unfortunately,
this data is only available to the public with limited resolution or
not available at all. To compensate this, available data must be
extrapolated, and model-based analyses must be used. In this
study, a model is developed that allows a highly spatial and tem-
poral emission tracking for the German electricity system.
Research questions
The goal of this work is to develop a model that represents the Ger-
man electricity sector for the year 2019. The spatial and temporal
resolution of power production and consumption is a significant part
of this work. In order to track emissions, production and consump-
tion data with a high spatial and temporal resolution will be applied.
The spatial resolution is determined by the number of network
nodes (number of substations). The temporal resolution of the model
is limited by the available load and generation time series data. As
an example, we use power plant generation time series with an
hourly resolution published by ENTSO-E [10] where available. Missing
power plant production time series will be modeled using an
optimization approach. The production and consumption data ob-
tained will later be used to model the historical load flows in the net-
work. Finally, the historical emissions in the system will be tracked by
using a flow based tracing method. Consequently, the following re-
search questions shall be the guideline for the model and the ap-
proaches presented in this work:
· Is it possible to represent the German electricity system in a model,
including the high voltage (HV) grid, conventional power plants, re-
newable power plants, production and consumption data on sub-
station level by using public open data with a sufficient degree of
accuracy?
· Is it possible to backcast power flows for the year 2019, with the
publicly available data?
· Based on the built model and the derived power flows, is it possible
to track CO2 emissions and gain reasonable information about their
causation in the German electricity system?
Methodology
To analyse the impact of a specific generator or consumer onto the
power system, Bialek et al. introduced the flow tracing method [11].
The method is based on solving linear equations that take the inflow
and outflow pattern, as well as the electrical grid topology into ac-
count. Tranberg et al. used the flow tracing approach to allocate car-
bon emissions in the European electricity trades on the national level
only. In order to allocate the emissions with higher geographical
resolution, we need flow patterns within a single country.
Power flow simulations can be used to calculate the flow patterns on
a given network. Combining the economic dispatch with network
constraints results in optimal power flow (OPF) problem, which is
usually done due to missing generation data. Most models rely on
the simplified linear OPF (LOPF) simulations. This means the gener-
ation time series is generated by the model (with lowest costs, line
constraints, and linearization of the full non-linear power flow). In
order to generate more realistic results, we added the available unit-
wise generation data published by the ENTSO-E [10]. The remaining
dispatch is then approximated by the model using an LOPF simula-
tion. The power flows are modeled in the Python for Power System
Analysis (PyPSA) environment [12].
The used emission tracing method (real-time carbon accounting)
traces flow pattern from generators to consumer and taken into ac-
count the underlying network topology [13]. The method follows
power flows in electrical networks and draws the path connecting
the location of generation with the location of consumption. It works
in such a way that each technology for each node is assigned a color
mathematically. For each hour, nodal production and imported flows
to the node are assumed to mix evenly. The resulting color mix de-
termines the mix of the power generation serving the demand of
each node. The applied carbon emission intensities for each gener-
ation technology are derived from the ecoinvent database to provide
an accurate average intensity per MWh produced during construc-
tion and operation [14].
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Energy system model
The network model topology is manly based on the online avail-
able ENTSO-E Grid Map [15]. The hourly demand time series pub-
lished by the ENTSO-E transparency website [16] was processed
by using an heuristic allocation method based on gross domestic
product and population data to assign the national demand data
to the respective busses. Power plant data (conventional as well
as renewable) was collected mainly from two sources (1. power-
plantmachting [17] 2. Marktstammdatenregister [18]) and added to
the model. The corresponding production time series were ob-
tained for some of the conventional power plants from the
ENTSO-E website [10]. The renewable generation is modeled
based on the re-analysis weather data ERA5 by the European
Centre for Medium-Range Weather Forecasts [19]. The energy sys-
tem model is build and simulated by using the PyPSA environ-
ment [12].
In a first step, the model validation is determined by using the LOPF
simulation of the energy system model for the year 2019. It will be
checked whether the model with all elements (line, busses, gener-
ation units as well as the demand) can be solved without overload-
ing the lines (line-loading is below 70 % to approximate the N-1
criteria). In a second step, the simulation results are compared with
reported historical data. For this purpose, the Cross-Border Physical
Flows [20] and the Actual Generation per Production Type [21] can
be used as reference values.
Conclusion and outlook
An approach to create a model that can represent the German elec-
tricity system at its current status was presented. The integration of
published power plant dispatch data into the model displays an
innovation in the field of energy system modeling. The resulting
model with 443 lines, 337 buses and a set of generators can be seen
as a basis for further investigations by using power flow methods
(PF, LPF and LOPF) and allocation methods for emissions tracking. In
a next step, the developed model will be used in combination with
the presented real-time emission allocation method to investigate
the location and pathways of emissions in the German electricity
system.
Currently, the model represents only Germany and the neighboring
countries. As an extension, the geographical coverage of the model
could be enlarged to the European scale.
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Summary
Non-intrusive load monitoring can enable energy savings through the
provision of device consumption information based on whole-building
data. However, the highly heterogeneous nature of aggregated consump-
tion traces was found to impede the generalisability and comparability of
disaggregation methods as the input data differences impact disaggrega-
tion results. Thus, the presented PhD project proposes a methodology to
identify differing data characteristics, enable adaptation of their values, and
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but also provide metrics to measure data characteristic differences and cre-
ate generalisable knowledge regarding their impacts.
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Introduction / Motivation
Providing detailed information on loads in a home can enable en-
ergy savings [1]. Load monitoring provides such fine-grained infor-
mation. Non-intrusive load monitoring (NILM) methods gain the
information through the analysis of whole-building consumption
data and its decomposition into the constituting device consump-
tions [2]. With the advancement of digitalisation and rising climate
concerns, the research has seen many advances in recent years.
Aggregated consumption traces have been confirmed to be highly
heterogeneous in aspects such as noise, consumption amplitudes,
sampling rates, or device classes (compare e.g. [3, 4, 5]). However,
knowledge regarding the impact of differences in the input data,
which will henceforth be called Data Characteristic Differences (DCDs)
is currently shallow and distributed through multiple publications.
Nonetheless, DCDs were found impeding to the generalisability and
comparability of current research [3, 4, 6, 7]. A better understanding
of DCDs and their impact on disaggregation results could alleviate
the impediments. Therefore, this PhD project is set to answer one
central question: Which consumption data characteristics can differ be-
tween data collections and which impacts to the load disaggregation
process arise from these differences?
After exploring the current knowledge regarding DCDs in the State
of the Art, this abstract will present the methodological approach as
a Proposal to Overcome Current Impediments and conclude with the
expected contributions in Conclusion and Outlook.
State of the Art
The high variety of differences in consumption data has been found
to impede data set interoperability and the comparison of results
across data sets in multiple evaluations [3, 4, 6, 7]. The differences
can be categorised into structural differences, concerning file and
data organisation, and specifics of the data characteristics. While a
number of works has considered methods to overcome structural dif-
ferences (e.g. [5, 8, 9]), research concerning DCDs and their impact
on the disaggregation process is sparse. Surveys have shown a rela-
tion between appliance type and disaggregation complexity as early
as 2012 [2], but many DCDs are identified without further consider-
ation during the proposal of NILM algorithms or the evaluation of
their usage in new environments (compare e.g. [10, 11, 12]).
The theoretical evaluation of disaggregation processes has provided
broader sets of DCDs. In [13] the authors consider the impact of
noise, consumption amplitude and the sampling rate. A complexity
measure based on device and time sequence characteristics is de-
rived in [14]. However, both works consider simplified ideal dis-
aggregation processes, making their transfer to real world effects
difficult.
The only data characteristic that has, to the best of our knowledge,
been further evaluated is the temporal resolution. While the authors
in [15, 16] evaluated very low sampling frequencies under privacy as-
pects, the first work in this project [17] evaluated data collected at
frequencies in the order of kilohertz.
Proposal to Overcome Current Impediments
To complement the existing knowledge, this work proposes a
process akin to a sensitivity analysis: an identification and controlled
variation of input parameters, the DCDs, and evaluation of changes
in the output, the disaggregation results. The methodology is out-
lined in the following paragraphs, reflecting four main steps:

1. Identification of input data characteristics and their value
ranges

2. Determination of adaptation possibilities
3. Evaluation of DCD impacts on the disaggregation results
4. Verification of the findings

Identification of input data characteristics and their value ranges An ex-
tensive literature review will be conducted to compile a comprehen-
sive set of DCDs, as even more detailed evaluations include different
characteristics (compare [6, 7, 13, 14]). Additionally, the literature re-
view should provide a metric to quantify the charac-teristic’s value in
a given set of data, and determine a value range for each DCD, both
of which are mandatory for the further process. However, DCDs are
not necessarily methodologically measured in the presenting works.
Thus, the compilation of metrics and value ranges will extend be-
yond literature review to assess suitable metrics or evaluate value
ranges based on data from public data sets when the information
cannot be found in the related work.
Determination of adaptation possibilities Based on the created compil-
ation of DCDs and their value ranges, a strategy for the value vari-
ation of each characteristic can be developed. However, determining
possibilities to vary DCD values will face the challenge of inter-
dependencies. An ideal variation would allow to only influence the
characteristic under consideration. Interdependencies complicate the
variation and are expected for device-specific characteristics, such as
the consumption amplitude. The development of adaptation strat-
egies will identify the interdependencies and acknowledge them in
the developed adaptation processes. Additionally, a sequence of
evaluations will be created in order to evaluate the most independ-
ent characteristics first.
Evaluation of DCD impacts on the disaggregation results In general,
the impact of a DCD’s value will be evaluated based on the incurred
changes on the disaggre-gation results, measured through suitable
metrics. However, the evaluations must enable fair and generalisable
comparisons. While fixing evaluation conditions allows for a fair com-
parison, setting or identifying generalisable evaluation conditions is
not trivial. Analysing impacts on highly simplified artificial data allows
complete control of influences. However, the generalisability of such
an evaluation remains questionable, as complexity and interdepend-
encies are reduced or excluded. Additionally, choosing a suitable dis-
aggregation method as the model under evaluation is non-trivial
because so far, no best disaggregation approach is known.
To allow the generalisation of the model, the proposed evaluations
will use multiple state-of-the-art disaggregation methods and evalu-
ate the results for all of them. To allow for the generalisation to real-
istic data, evaluations will be conducted on multiple environments.
An environment, in this context, is a set of training and testing data.
To enable generalisable findings, each evaluation will include at least
two environments, one with either highly simplified or artificially cre-
ated data and one including excerpts from multiple publicly available
data sets, which must previously be analysed regarding the values of
further included DCDs and their possible interdependencies, which
were noted during the development of adaptation strategies. In
combination, the evaluation will allow to generalise identified trends,
specify the impact of the DCD under review, and confirm inter-
dependencies between DCDs.
Verification of the findings To verify the identified impacts, this work
proposes the analysis of unseen data from distinct sources regarding
their specific data characteristics. Based on this analysis and the col-
lected findings, predictions regarding the disaggregation process will
be made and, in the following, compared to the achieved disaggre-
gation results. Confirmation of the predictions will serve as verifica-
tion for the conclusions drawn during the evaluation and confirm
their transferability to new consumption traces.
Conclusion and Outlook
In conclusion, we intend to extensively evaluate Data Characteristic
Differences (DCDs) and their impact on the disaggregation process
to create generalisable findings. The evaluation will provide three
major contributions:

� Accumulation of current knowledge regarding DCDs
� Provision of metrics and value ranges to characterise each DCD
� Empirical evaluation of the DCDs’ impact on disaggregation

results

Additionally, we expect the conducted evaluation and improved un-
derstanding of DCDs to improve future research possibilities. The
provision of a complete set of data characteristics and their impact is
expected to allow for the creation of more meaningful benchmarks
and a better model of the disaggregation process, to provide import-
ant insights for privacy considerations (e.g. providing information
which characteristics are most identifying for devices) and the cre-
ation of artificial consumption data, and allow the creation of
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systems better adapted to their specific environments or require-
ments. Furthermore, it will allow a more precise assessment of data
sets and current challenges for disaggregation methods.
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