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Abstract
The analysis of electrical load signatures is an enabling technology for many
applications, such as ambient assisted living or energy-saving recommendations.
Through the digitalization of electricity metering infrastructure, meter reading intervals
are gradually becoming more frequent than the traditional once-per-year reporting. In
fact, across smart meter generations, samples were initially reported in 15-min intervals,
more recently once per second, and even newer devices capture readings at rates on
the order of several kilohertz. The advantages of using such high sampling rates have,
however, not been unambiguously demonstrated in literature. We thus choose a
widely considered application scenario of energy data analytics, event detection, and
assess the impact of the sampling rate choice on the correct event recognition rate.
More specifically, we compare the accuracy of two event detection algorithms with
respect to the resolution of their input data. The results of our analysis hint at a
non-linear relation between accuracy and data resolution, yet also indicate that most
event occurrences can be correctly determined when using a sampling rate of
approximately 1 kHz, with only minimal improvements achievable through higher rates.

Keywords: Load signature analysis, Event detection, Thresholding, Chi squared test,
Execution time evaluation, Sensitivity to data sampling rate

Introduction
In recent years, a global trend towards the roll-out of smart metering infrastructure
can be observed. A widely researched application domain for the data collected through
smart meters is Non-Intrusive Appliance Load Monitoring (NIALM) (Hart 1992). It fol-
lows the objective of determining the operative appliances and their modes of operation
from a household’s aggregate power consumption. An important component in NIALM
algorithms is the recognition of state or mode of operation changes, also referred to
as event detection in literature (Chang et al. 2011; Bijker et al. 2009). Event detection
approaches range from the detection of step changes of an appliance’s power intake to
more sophisticated solutions able to detect minor changes or gradual state transitions.
One fundamental aspect of event detection has seen virtually no scientific consideration
yet. The temporal resolution at which data is provided to an event detection algorithm can
differ widely. Using the lowest possible data resolution is, however, an important objec-
tive to minimize the demand for storage space and computation time.We thus investigate
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in this work what impact the temporal resolution of the input data has on the achievable
event detection accuracy, as well as on the algorithm’s execution times.
First, we survey existing work on event recognition methods and data sets suitable

to accomplish this objective in “Related work”. Subsequently, we formulate a definition
for the notion of “events” in load signatures in “Detecting events in load signatures”
and discuss necessary data preprocessing steps to find events in smart meter data in
“Data preparation”. Next, we conduct an in-depth analysis of the accuracy levels and
execution times of two state-of-the-art event detection algorithms in “Event detection
accuracy analysis”. Finally, we summarize the insights gained during our investigation in
“Conclusions”.

Related work
Electrical load signatures have been demonstrated to contain a great information con-
tent. This bears promising potential for the application of signal processing algorithms
to extract relevant high-level (i.e., abstract) features from the possibly large volume of
consumption data. One prominent example for load signature analysis is NIALM, first
introduced by George Hart in (Hart 1985; 1992). A range of approaches to detect activi-
ties and identify the causing appliances have been presented in literature, e.g., in (Zeifman
and Roth 2011), and numerous companies have added disaggregation products to their
portfolio in recent years. The process of inferring appliance activity through NIALM is
composed of three major steps: Data acquisition, feature extraction, and load identifi-
cation (Zoha et al. 2012). All of which have been extensively investigated in research,
resulting in a large set of proposed algorithms, methods, and features, e.g., in (Jin et al.
2011; De Baets et al. 2017; Leeb et al. 1995; Bergés et al. 2011; Kahl et al. 2017). Event
detection is commonly a part of the feature extraction step and used to detect changes in
appliance operation from the data.
Event detection algorithms can be categorized by their analysis of steady state or

transient information. Algorithms relying on steady state information, such as power con-
sumption readings during the periods before and after a state transition, are well-suited
to detect events of appliances with a constant power consumption in each of their modes
of operation. The second option is to operate on transient signatures, i.e., the power
consumption changes that can be observed during an event. They allow for the characteri-
zation of a device and its mode of operation by the unique shape of its power consumption
during state changes (Zoha et al. 2012; Anderson et al. 2012).
A secondary aspect by which event detection methods can be categorized and which

can be combined with either steady or transient information usage, is their analytic
methodology. Algorithms can be predominantly attributed to one of the following classes
(Anderson et al. 2012):

• Expert Heuristics, which determine events by means of pre-defined expert rules.
The first event detection approaches for NIALM defined such rules by setting a
threshold for event recognition (Hart 1992; 1985).

• Probabilistic Models are based on statistical methods to detect sudden power
consumption changes. Different approaches have been proposed, e.g., the use of the
General Likelihood Ratio (GLR) (Luo et al. 2002), its adaptation presented in (Bergés
et al. 2011), or a chi square (χ2) Goodness-of-Fit Test which was introduced by Jin et

(2019), 2(Suppl 1): 24



Huchtkoetter and Reinhardt Energy Informatics Page 3 of 12

al. in (Jin et al. 2011) and has since been widely adopted (Yang et al. 2015; De Baets et
al. 2017).

• Matched Filters are used to detect the characteristic features of a known appliance’s
power signal in another appliance’s data (Leeb et al. 1995). While this leads to good
detection rates for previously observed events, matched filters cannot correlate
sections with unknown or non-recurrent characteristics.

Anumber of energy consumption data sets have been presented for research inNIALM.
Many of these data sets (such as REDD (Kolter and Johnson 2011), tracebase (Reinhardt
et al. 2012), or SMART* (Barker et al. 2012)), however, exclusively contain electric power
consumption data or voltage and current readings. The absence of ground truth annota-
tions (i.e., metadata on what user actions took place during the data collection, and how
they are reflected in the data) complicates their use in conjunction with event detection.
Fortunately, a few trace collections provide metadata along with the power consump-
tion readings. Most notably, the BLUED data set (Anderson et al. 2012) overcomes this
issue. BLUED is composed of one week of voltage and current measurements, collected
at 12 kHz, in a family home in Pittsburgh, Pennsylvania. It furthermore features anno-
tation files, timestamped at millisecond resolution, that contain information on events
happening inside the monitored dwelling. An excerpt of BLUED data is shown in Fig. 1,
side-by-side with the annotations of appliance activity.

Detecting events in load signatures
Events are defined in literature as “state changes of devices” (Anderson et al. 2012). Most
commonly these changes constitute transitions between the device’s on and off modes.
Some appliances also follow an internal state machine (e.g., washing machines that
follow a pre-defined sequence of operational steps) that determines their mode of
operation. This temporal sequence also results in events happening at all internal state
changes (Anderson et al. 2012). Jin et al. formulate an event to be a change in the
(electrical power) data stream, which occurs at the onset of the change (Jin et al. 2011).
In this work, we slightly extend the aforementioned event definition:

An event is a change in a stream of sequential power consumption data, that is caused
by an appliance changing its state. The event time is defined as the time of the onset of
this change. Each event is followed by a transition. This transition has a duration,

Fig. 1 Excerpt of the BLUED data set, showing the actual data (phase A, collected on 20 October 2011) and
the corresponding appliance events from the provided annotations file
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measured from the time of the onset of change until the time when the power
consumption reaches a steady state again.

An example of the occurrence of two events in actual data is shown in Fig. 2. The dia-
gram shows an appliance turning on first, and off again after approximately 3 s, with the
corresponding transitions.

Event detection methods

In order to be usable in the context of NIALM, event detection methods must reliably
recognize changes. Simultaneously the measurement noise and changes induced by tran-
sitions of preceding events should ideally be ignored. Event detection hence not only faces
the challenge to correctly identify load changes as events, but also to correctly ignore load
variations that do not result from events.
The successful detection of events strongly relies on the temporal resolution of the input

data. Low sampling rates induce much less fluctuations and in turn reduce the likeliness
of erroneous event detections. However, at the same time the reporting rate might not
be high enough to ensure that every event is detected at the correct time offset, and the
switch continuity principle (Hart 1992; Makonin 2016) may thus no longer be assumed to
hold true. As opposed to using very low sampling rates, the sampling of data at frequen-
cies on the order of tens of kHz provides a greater data resolution for event detection,
yet at the same time measurement noise is more likely to be falsely identified as events.
We thus analyze the achievable accuracy of event detection mechanisms when provid-
ing them with input data of varying temporal resolutions. To avoid unintentional bias, we
comparatively analyze a variation of the chi square (χ2) algorithm (Jin et al. 2011) as well
as the threshold-based event detection (Hart 1985).

Event detection using the chi squaremethod

The chi square algorithm relies on the comparison of two continuous sets of samples, a so-
called “pre-event window” x and a “detection window” y, both of duration n. A goodness-
of-fit level lGOF is computed between the two according to Eq. 1.

lGOF =
n∑

t=1

(y[ t]−x[ t] )2

x[ t]
(1)

The decision whether an event has occurred is made by comparing the obtained value
of lGOF to the χ2 distribution by checking whether lGOF > χ2

α,n−1. The parameter α is
the relevance level for which χ2 has been computed. If the condition holds (indicating

Fig. 2 Excerpt of a power consumption trace with event and transition annotations. Events are marked as
solid lines, transitions are marked as grey boxes
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the two samples do not originate from the same distribution), an event is detected at the
last entry of the pre-event window, with a confidence of (1 − α). To achieve a high level
of confidence, we set α to 0.01. We have furthermore set n = 1000, according to the
recommendations for window sizes made in (Jin et al. 2011).

Event detection using threshold analysis

In early work on NIALM (Hart 1985), events are reported whenever the difference
between two subsequent values exceeds a threshold value Pth. The temporal resolution of
load signature data has a strong impact on the this method because higher sampling rates
generally lead to smaller changes between successive samples. To encounter this on the
high sampling rate BLUED provides, we calculate and compare the average of two subse-
quent analysis windows, each of length n. Each event detection is followed by a back-off
period, during which any event detections caused by the event’s transition are ignored.
As a result of our investigation of suitable parameter values, n = 1000 has been selected
because it yielded accurate event detection results. For the remaining parameters Pth and
the back-off period between allowed event detections, we rely on information provided
along with the BLUED data set (Anderson et al. 2012). In BLUED changes are considered
as events if they introduce a change of more than 30W and have a duration of at least 3 s.
Given that no duration is stated across which a 30W changemust occur, however, we have
selected our threshold and back-off time windows slightly more sensitive. The threshold
was set to 15W, and the back-off time to 1 s.

Events in the BLUED data set

In the BLUED data set, a total number of 2355 events are present in more than 50GB
of power consumption data. As the goal of this paper is a comparative evaluation of
the impact of data resolution on event detection performance across a large parame-
ter space, processing the complete data set would have required excessive computational
resources. Instead, we have confined our analysis to a subset of BLUED data, namely
the first snippet (20 October 2011, starting at 11:58 and ending at 22:47) of data and
a weekend snippet (23 October 2011 starting at 14:09 and ending at 00:37 on the fol-
lowing day). Devices without events logged in this period were thus implicitly excluded.
Albeit some of the excluded devices have significant power consumption, the chosen
subset can still be considered representative, considering that devices with similar con-
sumption are included. We have extracted events from both phases (A and B) of the
BLUED data set, and used 169 events occurring on phase A and 288 events on phase B
in our analysis. Phase A mostly contains events caused by the refrigerator and different
lights, as well as household appliances. It has a very low noise level. In contrast, events
on phase B mostly originate from entertainment devices (TV, monitors, A/V receiver,
computer) and some higher consuming household appliances, e.g., a microwave oven.
More random noise is present, as well as periodic spikes without any corresponding
annotations.

Data preparation
In the following parts we describe the chosen approach for lowering data resolution,
before elaborating on its impact on the parameters we supply to the event detection
methods.
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Lowering data resolution

As both considered event detection algorithms require macroscopic (Zeifman and Roth
2011) power data to work on, we have computed the Root Mean Squared (RMS) values
of the input data. To this end, we multiply voltage and current signals first, and then
shift a sliding window of the length of one period of the mains voltage (n = 200 at full
resolution) across the results. The root mean square value of the window is subsequently
computed and reported. By shifting the sliding window sample-by-sample across the full
length of the power data, RMS power values are available at the same temporal resolution
as the input data, i.e., 12kHz. To compute representations of the data set with reduced
resolutions, we slide non-overlapping aggregation windows of lengths 4, 8, 9, 10, 11, 12,
13, 14, 15, 16, and 32 across the data and compute the arithmetic mean values of their
contained RMS values.

Parameter adaptation

The reduction in temporal resolution effectively changes the temporal distance between
two samples. As all considered algorithms rely on windows of fixed lengths, a reduction of
the input data requires the window sizes to be scaled proportionally. We hence reduce the
size of the detection window of the chi square method and the threshold-based approach
by the same factor as the power data, such that the windows capture the same duration
(rather than the same number of samples).

Event detection accuracy analysis
In this section we will describe the setup of our event detection evaluation, followed by
the presentation and discussion of accomplished results.

Metrics for event detection

We analyze traces of all considered temporal resolutions in conjunction with
both event detection algorithms described in “Event detection methods”. To com-
pare their event detection results, we determine the number of true/false posi-
tives/negatives and consider their combination in the F1 score as the metric for
our evaluations. This choice is further supported by the fact that true negative
events do not impact the F1 score. This is an important property as for elec-
trical load signatures, the high sampling rate and the sparseness of event occur-
rences leads to a very low ratio between events and samples without events
(often below 1:1,000,000).
For the calculation of the metric, the typical definition of a true positive needed to be

adapted. Many algorithms detect events throughout the whole duration of the transition
period.We thus add a one secondwindow around each annotated event, and only one cor-
rect event detection within this period will be considered a true positive. In all presented
evaluations, we visualize the results of the event detection by adding an event timeline
to the power consumption graphs, as shown in Fig. 3. This visual aid was found to be of
great help in visualizing the effects of the reduction on the event detection that the F1
score cannot fully express. It should furthermore be noted that the achieved F1 scores
are not used to measure an absolute goodness of the method. Instead they are compared
in relation to each other to enable a comparison of the effects of the lower input data
resolutions.

(2019), 2(Suppl 1): 24



Huchtkoetter and Reinhardt Energy Informatics Page 7 of 12

Phase A

Phase B

Fig. 3 Excerpts of results obtained from executing the chi square algorithm on data of reduced resolution,
showing the detected events on both phases

Results for the chi squaremethod

First we evaluate the chi square method’s reaction to reduced data resolution. To this
end, we plot the detected events alongside the actual power consumption. The results are
shown in Fig. 3a for phase A and Fig. 3b for phase B. Less events are correctly recognized
on phase B, which can be attributed to the greater presence of noise on this phase. Sup-
plementally, Table 1 shows how the resolution reduction steps affect the F1 score of the
chi square event detection.

Table 1 Values of the F1 score for the chi square algorithm

reduction factor

phase full 4 8 9 10 11 12 13 14 15 16 32

A 0.280 0.226 0.215 0.201 0.183 0.192 0.208 0.222 0.222 0.151 0.157 0.004

B 0.072 0.080 0.086 0.087 0.087 0.087 0.080 0.082 0.017 0.043 0.008 0.011
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The F1 scores on phase A consistently range below the highest value achieved for data
of full resolution. However, the event detection accuracy only experiences minor fluctua-
tions unless the data resolution is reduced by a factor of 14 or greater. Best F1 scores are
observed at full resolution and reduction factors of 4, 13, and 14 (i.e., effective sampling
rates of 3kHz, 923Hz, and 857Hz). Further reductions show a higher detection of small
power changes until the detection deteriorates such that events are not recognizable any-
more at factor 32 (as visible in Fig. 3a). The F1 score on phase B is generally lower, yet
slightly increasing F1 scores are observed for data with reduced resolution. This is consis-
tent with the higher number of false positives observed; the F1 score varies consistently
between 0.072 and 0.087 until reducing the data by a factor of 14 (at this point the score
drops to 0.017). For phase B, the best event detection performance was achieved on data
reduced by factor between 9 and 11 (i.e., effective sampling rates between 1.091kHz and
1.33kHz).
To further visualize the event recognition rates, Fig. 4 shows the distribution of time

differences from detected events to the closest ground truth event. On phase A (shown in
Fig. 4a), a positive trend can be seen for the first three plotted reduction factors.While the
median remains constant across all reduction factors, the upper quantile shrinks until a
factor 10 and then only slowly varies. For reduction factors between 8 and 12 the shrinking
does not result in more outliers, whereas the factors 14 and 16 show a high number of
outliers. These findings are consistent with the falling F1 score starting at factors of 15,
which had shown a higher number of false positives far away from real events.
The outliers show a similar trend on phase B (shown in Fig. 4b), though their increase

is more strongly correlated with the reduction factor. The quantiles and mean on phase
B are also rising. Three distinct steps for factors up to 10, between 10 and 14, and at 16
can be seen, with each step rising in mean, quantiles, and number of outliers. Again the
boxplot illustrates the deterioration after a reduction by a factor of 14, on the one hand
through a general rise of the time differences between real and detected events, and on
the other hand through the higher number of outliers.

Results for the threshold analysis

Overall the threshold analysis results exhibit a similar trend as observed for the chi square
method across all different resolution reduction steps. The achieved F1 scores are tabu-
lated in Table 2. Again, the score on the full resolution is higher on phase A than on phase
B, with the highest F1 score of 0.636 and following scores around 0.475. This observation

Phase A Phase B

Fig. 4 Time difference between detected events and the temporally closest ground truth event for the chi
square method
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Table 2 Values of the F1 score for the threshold analysis

reduction factor

phase full 4 8 16 32

A 0.636 0.474 0.483 0.468 0.234

B 0.078 0.075 0.071 0.069 0.027

can be attributed to the higher precision of the full resolution data. On phase B, the algo-
rithm picked up more false positives, resulting in a lowered precision and the F1 score
reaching only 0.07. For thresholding, the F1 score is highest for the input data that has
not undergone a resolution reduction. A slight falling trend can be observed, caused by
registering more false positives.
A stark change can be seen at the highest reduction factor. At factor 32 on phase B,

the algorithm suddenly detected nearly 600% more events than before, on phase A about
300% more. This rise was caused by the variations being aggregated over the extended
time of one sample, such that some samples passed the detection threshold. The effect
can be observed in Fig. 5 from timestamp 18:40:00 onwards.

Origins of false positives

In a supplementary study, we have investigated the occurrences of false positives. Upon
closer inspection of events and their transition times, it has become apparent that on
phases A and B events are often already detected before the ground truth event is taking
place. The impact of these occurrences could be mitigated by ignoring all events detected
a short time before an actual (as per the ground truth) event in the evaluation. On phase
B an additional cause for false positives can be attributed to the high amount of noise.
Part of this noise appears in the form of small outbursts or spikes. This can also be seen
in Fig. 3b, which moreover shows that further reduction of the input data leads to higher
event detection rates at the spikes. For the threshold analysis, most of the false posi-
tive are the result of variations introduced by running appliances. Figure 5 displays these
variations which are most prominent at the times after 18:32:00.

Execution time evaluation

Another important aspect when assessing the impact of reduced data resolutions is their
effect on the execution times of the algorithms. The execution time evaluation was con-
ducted on a 64-bit windows system with 8GB of RAM and an Intel i7-4790 processor

Fig. 5 Events detected by the threshold aon input data reduced by a factor of 32
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unit. For this test, all algorithms were run on a trace of 10min length, which contains 2
events, including a 5min duration without any event occurrences. For all tests the overall
execution time (which includes loading the data from a file) was measured. The results
are shown in Table 3. The table confirms that the execution times of both algorithms scale
inversely proportional with the reduction factor.

Discussion

We have analyzed the event detection accuracy with regard to the resolution of the traces.
Our evaluations have shown that only small differences of the F1 score can be observed
when comparing event detection results on data at their native resolution (12kHz) to
input data that have been reduced by a factor of approximately 10. On phase B, the use of
data at lower resolutions even yielded slightly higher F1 scores, i.e., a better event detec-
tion accuracy. Even though results for the threshold analysis do not fully corroborate this
trend, comparably constant F1 scores can be observed even when the data resolution is
reduced. The observed potential of using lower-resolution data confirms the assumption
that future research activities into this domain are needed.
Besides that, both compared event detection methods unambiguously hint at the exis-

tence of a changing point, at which the detection rate begins to drastically deteriorate.
While this point lies at factors between 16 and 32 for the threshold-based approach,
Table 1 in conjunction with Fig. 4 shows this changing point at a reduction factor of
14 (i.e., an effective sampling rate of 857Hz). This not only reveals a non-linear corre-
lation between sampling rate and detection accuracy, but also poses a lower bound for
practically usable data sampling rates for the given configuration.

Conclusions
For the realization of smart homes, effective NIALM methods are required. Event detec-
tion is an important aspect in the creation of such methods. So far it has been assumed
that the information value in load signatures is positively correlated with the temporal
resolution at which the data is collected. We have refuted this assumption for the use case
of event detection, and shown that the chi square algorithm and a threshold analysis can
well tolerate a lowered temporal resolution of the input data. The F1 score improvements
of the chi square method after resolution reductions indicate that higher resolutions are
more likely to introduce measurement noise and other erratic fluctuations, which have
increased chances of being falsely detected as events. The in-depth analysis has shown
that a lowered resolution by a factor of up to 13 had almost no perceptible effect on
the event detection rate, pointing at sampling rates between 925Hz and 1.2kHz as suit-
able temporal resolutions for event detection. The F1 score only starts to be affected at

Table 3 Algorithm execution time (in seconds) on a trace of 10 min length

reduction by chi square adapted threshold

- 1421.3 166.9

2 717.2 83.6

4 351.8 41.5

8 167.3 21.2

16 84.9 10.3

32 44.4 4.4
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a resolution of 857Hz and below, i.e., at a reduction of BLUED’s resolution by a factor of
14. These results indicate that the relation between data resolution and information con-
tent is non-linear. Further investigations are hence required to determine the optimum
resolution choice that caters to both low data rates for their efficient transmissions while
ensuring a high information content.
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