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flexibility can be viewed as the excess energy that can be charged to or discharged
from a battery, in response to a group objective of several such battery-storage systems
(aggregation).

One such group objective considered in this paper includes marketing flexibility
(charging or discharging) to the Day-ahead (DA) spot market, which can provide both
a) financial incentives to the owners of such systems, and b) an increase in the overall
absorption rates of renewable energy. The responsible agent for marketing and
offering such flexibility, herein aggregator, is directly controlling the participating
batteries, in exchange to some financial compensation of the owners of these batteries.
In this paper, we present an optimization framework that allows the aggregator to
optimally exchange the available flexibility to the DA market. The proposed scheme is
based upon a reinforcement-learning approach, according to which the aggregator
learns through time an optimal policy for bidding flexibility to the DA market. By
design, the proposed scheme is flexible enough to accommodate the possibility of
erroneous forecasts (of weather, load or electricity price). Finally, we evaluate our
approach on real-world data collected from currently installed battery-storage systems
in Upper Austria.

Keywords: Demand-response, Aggregation, Reinforcement learning, Day-ahead spot
market

Introduction

A recent trend in home automation is a constant increase in the number of battery-
storage systems (Kairies et al. 2016). So far, such storage systems are mainly used to
maximize the on-site absorption of the PV generation. Given the current need for
increasing the percentage of renewable energy fed into the grid, the available charg-
ing/discharging flexibility potential can also be used to react to price variations in the
Day-ahead (DA) or the Intra-day (ID) electricity spot-market. The responsible party (or

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0

@ Springer Open International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
— reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
duction i di ided i i di he original author(s) and th ide a link to th
Creative Commons license, and indicate if changes were made.


http://crossmark.crossref.org/dialog/?doi=10.1186/s42162-019-0087-x&domain=pdf
mailto: georgios.chasparis@scch.at
http://creativecommons.org/licenses/by/4.0/

Chasparis et al. Energy Informatics (2019), 2(Suppl 1): 16 Page 2 of 17

aggregator) could make such decisions over the specific use of the participating storage
units with respect to the optimal participation in the DA and ID spot markets, the benefits
of which are then transferred to the owners of the participating batteries.

In this paper, we focus on addressing the problem of optimal participation of a set of res-
idential battery-storage systems in the DA market. The underlying assumption is that the
aggregator (of a pool of batteries) may directly control the operation of the participating
batteries if required, thus any charging/discharging flexibility potential can be extracted
in real-time. The proposed scheme will be based upon an approximate-dynamic-
programming (or reinforcement-learning) methodology. According to this scheme, an
approximation function of the performance is being trained (using historical data) that
can be used to generate optimal biddings/schedules for the DA market. By design, the
proposed scheme is flexible enough to accommodate the possibility of erroneous fore-
casts as well as the need for re-optimizing in real-time upon receipt of corrected/updated
forecasts.

It is worth noting that the proposed framework is part of the Flex+ project (Flex+).
In this project, several component-pools consisting of a single technology (amongst heat
pumps, boilers, battery-storage systems and e-cars) are enabled to participate in the short-
term electricity markets, whilst also considering the interests of the consumers (e.g.,
comfort, eco-friendliness, greediness, etc.).

The remainder of this paper is organized as follows. In “Related work and contributions”
section, we present related work and the main contributions of this paper.
“Participation costs and notation” section presents the notion of participation
costs in the flexibility extraction program. “System dynamics” section presents a
detailed formulation of the overall system dynamics, and “Optimal activation” section
addresses the problem of (instantaneous) optimal activation of a set of batter-
ies, given a desirable amount of flexibility extraction (charging/discharging). Both
the system dynamics and the instantaneous optimal activation are essential parts
for formulating the problem of optimal flexibility bidding in the DA market
(briefly, DA-optimization), which is presented in “Day-ahead (DA) optimization”
section. In “Approximate dynamic programming (ADP) for DA optimization” section,
we propose a reinforcement-learning scheme specifically tailored for addressing the
DA-optimization, the effeciency of which is evaluated on real-world data. Finally,
“Conclusions and future work” section presents concluding remarks.

Related work and contributions

With the constantly increasing renewable generation, users need to be flexible in adjust-
ing their energy consumption, giving rise to demand response mechanisms. Demand
response refers to the ability of each user to respond to certain requests reported by
the network operator. This is usually performed either in the form of a commitment of
the consumer to reduce load during peak hours (Ruiz et al. 2009; Chen et al. 2014) or
by introducing financial incentives that affect prices during peak hours (Herter 2007;
Triki and Violi 2009; Xu et al. 2016). For example, a commitment-based approach has
been proposed by Chen et al. (2014), in which the operator distributes portions of its
desired aggregated demand in the household users, using an average consensus algorithm.
In particular, each one of the households receives a local demand objective which may
only be fulfilled through the adjustment of its own flexible loads. On the other hand, an
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incentive-based approach has been proposed by Xu et al. (2016), where each participating
household communicates to the operator a bidding curve, that is a function that provides
the load adjustment that each user is willing to perform at a given price. Then, the group
operator computes the clearing prices, so that the overall cost of the participating house-
holds is minimized while achieving the desired demand adjustment. A similar approach
to the one proposed in this paper, including also battery charging/discharging control, is
considered in Nguyen et al. (2015). However, there is no specific centralized operator
objective for either production/consumption. Instead, the objective in Nguyen et al. (2015)
is to drive all instantaneous energy demand close to the average demand of the network.

Apart from these approaches (commitment-based or incentive-based), there is an alter-
native methodology which can be considered as a combination of the two and it is
the one employed in this paper. According to such methodology, an aggregator directly
extracts the required flexibility from the participating equipment when necessary. In
return the aggregator offers to the owners of the participating equipment an agreed
financial compensation. Such methodology is usually referred to as demand-response
aggregation (Parvania et al. 2013). It has been employed in Parvania et al. (2013), where
aggregators can activate load reduction in a set of consumers according to an agreed
demand-response strategy for each consumer. Similar in spirit is also the work in refer-
ences (Iria et al. 2017; Nan et al. 2018), where an aggregator directly controls a set of
different types of loads in residential buildings to reduce total electricity consumption. As
expected, a feature that distinguishes demand-response aggregation is the self-scheduling
or activation optimization problem, that is the optimization of optimally utilizing the
available flexibility (stemming from several households) over a future time horizon. Such
feature (of multiple households) is not usually considered in the context of participation
in a wholesale electricity market (see, e.g., (Gomez-Villalva and Ramos 2003; Philpott and
Pettersen 2006)).

In the context of battery-storage systems, demand-response aggregation (as discussed
in the previous paragraph) has not yet been addressed in an effective and computationally
efficient way. In this context, the aggregator wishes to compute an optimal (day-ahead)
schedule for extracting flexibility (charge, discharge or do nothing) for each one of the
participating batteries. So far, such optimization problem has mostly been addressed for
a single battery system, e.g., (Mohsenian-Rad 2016; He et al. 2016). Existing methodolo-
gies also include a detailed modeling of the battery as well as a detailed description of the
cycle life costs of the battery due to the frequent charging/discharging (He et al. 2016).
It may include computations of optimal bids for the day-ahead electricity market, as in
Mohsenian-Rad (2016); He et al. (2016), or the intra-day/hour-ahead electricity market,
as in Jiang and Powell (2015). In order to effectively address the uncertainty of the ini-
tial/final stage-of-charge of the battery, reference (Jiang and Powell 2015) also employs an
approximate dynamic programming formulation.

In this paper, participation in the day-ahead wholesale electricity market is imple-
mented by directly controling the battery-storage systems, as in Mohsenian-Rad (2016);
He et al. (2016); Jiang and Powell (2015). The specific contributions and novelty of this
paper can be summarized as follows:

(C1) Incomparison to the work on demand-response aggregation, the aggregator derives
specific optimal scheduling (or activation) strategies for the set of participating
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batteries over the duration of the next day. The specifications and cost functions of
the participating batteries are directly included in the optimization (contrary to a
generic load reduction strategy, e.g., (Parvania et al. 2013)).

(C2) In comparison to the work on day-ahead optimal bidding of flexibility available in
battery-storage systems, we consider aggregators that can directly control multiple
battery-storage systems simultaneously. This extends prior work presented in
Mohsenian-Rad (2016); He et al. (2016); Jiang and Powell (2015) which are
restricted to a single battery.

(C3) In order to address the complexity of deriving optimal bidding schedules for
multiple battery-storage systems simultaneously, we introduce a novel optimization
method that hierarchically decomposes the problem into a two-level optimization
problem: a) at the upper-level, we compute the optimal (aggregate) flexibility
(charging/discharging) that can be extracted from the set of available batteries for
each 15-min interval over the duration of the next day, b) at the lower-level, we
compute the optimal activation strategy of the participating batteries in order to
generate the overall flexibility determined by the upper level (a) for each 15-min
interval. Naturally, this decomposition significantly reduces the computational
complexity of the problem, contrary to Iria et al. (2017); Nan et al. (2018) where
these two computations are treated simultaneously.

(C4) The computation of the flexibility bids/schedules is based upon an Approximate
Dynamic Programming (ADP) methodology specifically tailored to this problem.
An ADP approach can naturally incorporate uncertainties or erroneous forecasts,
while it provides optimal strategies (instead of direct schedules). Thus, the
schedules can directly be updated in case of updated forecasts. An ADP
optimization approach also offers an attractive computational efficiency, as it will be

discussed in detail in the forthcoming “Discussion” section.

Participation costs and notation

The participation costs are the costs experienced by the owners of the battery-storage
systems due to the intervention of the aggregator through the DA flexibility schedules. We
will consider a generic form of participation costs that can be used to model discomfort
of the participants. Discomfort could be expressed with respect to the weight that the
battery owner puts in certain preferences, e.g., autarky (i.e., maintaining a high state-of-
charge at all times), eco-friendliness (i.e., priority on charging the battery only with PV
generation), greediness (i.e., always selling available PV or battery energy), etc.

The optimization horizon (next day) is divided into time intervals of duration AT.
We enumerate the resulting time intervals (T in total) using index ¢t = 1,..,T. Let
N be the total number of participating battery-storage systems and let i € {1,..,N}
be a representative element of this set. The parameter u;(t) €[ —1,1] will denote the
activation factor of battery i at time ¢ If u;(¢) > 0, then |u;(t)| expresses the per-
centage of the charging flexibility potential that is activated. Analogously, if u;(f) <
0, then |u;(t)| expresses the percentage of the discharging flexibility potential that is
activated. The quantities v.;(t) > 0,v;;(¢) < 0 will denote the charging and dis-
charging flexibility potential that is available in household i, respectively. We will also
denote v.(£) =[vi(®)]; and vz(t) =[v4;(¢)]; as the vectors of the available positive
and negative flexibility potential, respectively. Finally, let V() = 1Tv4(f) < 0 and
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Vet) = 1Tv.(#) > 0) be the total discharging and charging flexibility potential,
respectively.

The user’s participation costs could be expressed through a set of bidding curves. In
particular, we introduce the positive constants f;(¢) , B4,;(¢), that represent the cost that
the provider pays to the participating household per unit of charging and discharging
potential retrieved at time interval ¢, respectively. For example, if the user values autarky
a lot, then we can select a large ;,(¢) when the state-of-charge of the battery is high, and
small B, ;(¢£) when the state-of-charge is low. Then, when there is a decision for a charging
activation of user i at time interval £, i.e., u;(£) > 0, then u;(t)v.,;(t)B.,:(t) > O represents
the cost of activation. Analogously, in case of a discharging activation of user i at time
interval ¢, i.e., u;(£) < 0, then u;(¢£)v;;(t) B4 (t) > O represents the cost of activation.

We will denote E;(¢) to be the energy charged to or discharged from household i. We
will also adopt the convention that the energy is positive if it is charged to the battery
and negative otherwise. In other words, if u;(t) > 0, then E;(t) = u;(t)v.,i(t) > O (energy
is charged to household i), and if u;(¢) < 0, then E;(t) = —u;(t)vg;(t) < O (energy is
discharged from household 7). In several cases, we will denote by E() as the total energy
charged/discharged from all participating households, i.e., E(t) = Zf\i 1Ei(®).

System dynamics

The SOC;(t) (state-of-charge) of the participating battery-storage systems, i = 1,..,N,
together with the exogenous parameters of Ppy ;(t) (PV power-generation) and Ploaq,;(t)
(load consumption), and the activation factors (or control parameters) u;(t), are sufficient
to determine the evolution of the state-of-charge through time. We will often refer to this
update mechanism as the system dynamics, which are also visualized in Fig. 1. We use the
notation AP;(t) = Ppv,i(£) — Pload,ii(f) to denote the excess PV generation. Furthermore,
for any quantity x, the notation “%” will denote either estimated or forecast quantity.

AP;(t)
Py pase.ilt IORNG 850Gt +1
B, b base,i (t) . ‘ (t),9a,i(t) 5, : (t+1)

Fig. 1 System dynamics of the battery of household i. The upper part corresponds to the forecast dynamics,
based on which decisions {u;}; are made. The lower part corresponds to the actual dynamics (assuming that
PV generation and load consumption are perfectly known). The actual dynamics are not a-priori known, but
they can be used for evaluating the decisions after the actual PV generation and load consumption become
available (at the end of the optimization horizon)
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The system dynamics comprises three main procedures (operations), namely:

e Baseline computation which refers to the computation of the power from/to the
battery under normal operation (i.e., when no additional charging or discharging
potential is activated by the aggregator). This procedure is described by Algorithm 1.

¢ Flexibility potential computation, that computes the total amount of energy that can
be charged or discharged to the participating households. This procedure is
described by Algorithm 2.

e State-of-Charge update, that computes the new state-of-charge (at the beginning of
the next time interval £ 4 1), when energy commitment level u;(£) has been assigned.
This procedure is described by Algorithm 3.

Regarding the baseline computation, we assume here that the participating battery-
storage systems follow the following simple strategy: a) if AP;(¢) > 0 (i.e., PV power
generation is larger than the load consumption), then any excess PV power generation
is first used to charge the battery, and any additional power is fed into the grid, b) if
AP;(t) < 0 (i.e., the PV power is less than the load consumption), then the excess load
consumption is first covered by the battery and if not sufficient additional power is with-
drawn from the grid. We may argue that this criterion values autarky and eco-friendliness,
since at times of energy excess the priority is to charge the battery, while at times of energy
shortage, the priority is to use the energy available in the battery. Alternative criteria may
also be employed, e.g., an economic optimum, where the objective would have been the
maximization of the monetary utility of the participant.

Algorithm 3 defines the system dynamics update (i.e., the update of the SOC;(¢)) and
uses the results of Algorithms 1 and 2 for the baseline and flexibilty computation. In sum-
mary, given the current state-of-charge SOC;(t) (at the beginning of time interval ¢) and
the planned flexibility extraction u;(¢) for that interval, updating the state-of-charge is

performed as follows:

Pppase,i(t) = Bi(AP;(t), SOC;(£)) (1a)
[va,i(@), ve,i(©)] = Vi(Pp,pase,i(£), SOC;(2)) (1b)
SOCi(t + 1) = Xi(SOC;(2), va,i(1), ve,i(2), ui(2)). (1c)

Since we will be addressing a DA-optimization, we will particularly be interested in
updating the total flexibility potential, which leads to a different ordering of the above
sequence of equations. In particular, given v4;(£), vc,i(t), SOC;(t) and u;(£), we have:

SOCi(t + 1) = Xi(SOCi(9), va,i(0), ve,i(D), ui(t)) (2a)
Phpase,i(t + 1) = Bi(AP;i(t + 1), SOC;(t + 1)) (2b)
[Va,i(t + 1), ve,i(t + D] = Vi(Pp,pase,i( + 1), SOC;(£ + 1)). (2¢)

In this case, we will refer to the overall available potentials {V;(£), V.(¢)} as the state
variables of the overall process and u(¢) =[u;(¢)]; as the control variables. The terms
AP =[ AP;(t)];, which capture the available excess of power available in all households,
are considered exogenous parameters or disturbances. To summarize, we can write the
state dynamics of Eq. 2 more compactly as:

[Va,i(t + 1), vei(t + D] = @i(va,i(), ve,i(®), ui(®), AP;i(#)), i=1,..,N, 3
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Algorithm 1 Baseline power to battery i at time interval ¢

1: procedure B;(AP;(t), SOC;(t))

2: Step la. maximum possible (avemge) charging power to battery

3: AT* ;) = (1 —=S0C;(®)) - m > We make the assumption here that the
maximum charging power, cmax,» is evaluated at the output of the battery. Thus, the actual
charging power (that directly affects the SOC;(¢)) will be a bit smaller than cmay,; due to the
energy losses during charging (captured by the efficiency rate 7.,). AT;;(¢) is the minimum
time needed for the battery to reach its full energy capacity, denoted by x;, at the maximum
charging power cmax,i-

4 P ¢ max,i (£) = Cmax,i - Min { ATC*Z, AT} /AT o This is the maximum (average over a AT
time-interval) charging power that could be achieved within AT.

5: Step 1b. maximum possible (average) discharging power to battery

6 AT,(6) =SOC(t) - f4 > Analogously to the
charging case, we make the aésumption here that the maximum discharging power, denoted
by dmax,i> is evaluated at the output of the battery. Thus, the actual discharging power (that
directly affects the SOC;(¢)) will be a bit larger than dpax,; due to the energy losses during
discharging (captured by the efficiency rate ;). AT} is the minimum time needed for the
battery to empty at the maximum discharging speed dmax,;-

7: Ph g max,i(t) = —dmax,i - min{AT*J., AT}/AT > This is the maximum (average over a AT
time-interval) discharging power that could be achieved within AT.

8: Step 2. baseline power to the battery

o if AP;(t) > O then

10: P pase,i(t) = min {Pb,c,i(t): APi(t)} >0 o ifthere is an excess of power, a battery is
always charged at maximum possible (average) power

11: else

12: Phpase,i(t) = max {Pp,q,;(t), APi(t)} <0 o if there is a shortage of power, the battery

is always discharged at maximum possible (average) power

13: return P pyge i (£) > baseline power to battery at interval ¢

Algorithm 2 Flexibility potential of household i at time interval ¢

procedure V;(Py base,i (t), SOC;(1))
Maximum charging (flexibility) potential

1:

2:

3 ve,i(t) = [Pb,c,max,t(t) Pb,base,z]+ AT

4 Maximum discharging (flexibility) potential
5
6

Vd,i(t) = [Pb,d,max,i(t) - Pb,base,i]_ - AT
return v, (t) , v, (t) > flexibility potential at interval ¢

from which we can derive an aggregate flexibility update recursion of the form:

which updates the aggregate flexibility potential.

Optimal activation

In this section, we address the optimization problem of the optimal activation of some
given flexibility (positive or negative), E(t), over a time interval ¢ € {1,..,T}. That
is, we wish to compute the set of batteries that should be activated to provide total
energy E(t), as well as the amount of flexibility extracted from each activated battery.
This optimization problem is solved centrally by an aggregator which tries to minimize
the overall activation or participation cost (defined in “Participation costs and notation”
section through the positive cost factors B, B4,;). The solution of this optimization
problem is the basis of the upcoming day-ahead market optimization, and it has been
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Algorithm 3 State-of-Charge of battery i at time ¢ + 1

1: procedure X;(SOC;(t),vg;(t), vc,i(t), ui(t))

2 Step 1. average power to battery under u;(t),

3: if u;(t) > 0 then

4: Py, i(t) = Pppase,i(t) + ui(t) - v,i(t)/AT > Charging flexibility potential v.;(¢) during
time interval ¢ has been computed by first applying Algorithm 1 to compute P pase,;(£) and
then applying Algorithm 2 for computing the available charging potential v ()

5: else

Py () = Phpase,i(t) — ui(t) - vg;()/AT > Discharging flexibility potential v, ;(¢)

during time interval ¢ has been computed by first applying Algorithm 1 to compute P pase,i
and then applying Algorithm 2 for computing the available discharging potential v ;(t)

7: Step 2. State-of-Charge at time t + 1
8: if Py, ;(t) > O then

o SOCi(t + 1) = SOC(#) + e 210AL

10: else

11 SOCi(t + 1) = SOC;(t) + 02T

12: return SOC;(t + 1) > State-of-Charge at £ + 1

presented in detail in Chasparis et al. (2019). It is evident that any flexibility potential
E(t) extracted from the pool of batteries, at any given time interval ¢, should satisfy:
Va(t) < E@@) < Ve(®).

Forecast flexibility potential

The optimal activation problem is driven by our forecast energy potential for the next day.
It is evident that we do not have knowledge of the actual flexibility potential during the
time interval ¢ of the next day, since this depends on the actual PV generation Ppy ;(¢) and
the actual load consumption Pjaq,;(£). For this reason, any optimization for computing
the optimal activation for time interval ¢ may only be based upon the forecast (or pre-
dicted) flexibility potential, V.;(t) and V,4;(¢). Analogously, we define the overall forecast
charging and discharging flexibility potential as V,(¢) and V,(¢), respectively. Thus, the
above activation constraint should be replaced by V() < E(t) < V.(2).

Activation optimization

For each battery i = 1,..,N, we wish to compute the activation factor u;(t) €
[—1,1] for time interval . This computation is provided by a function of the form
Oactt(E(2),V;4(8),Vc(t)), which accepts as inputs, the desired total activation E(¢) and the
available forecast flexibility potential of the participating batteries. The output of this
function will be the optimal activation factors {u] (£)}; for each one of the participating
batteries i = 1, ..., N at time interval ¢. In other words, the optimal activation optimization
is summarized by Oqcts :[ V@), Ve(H)] xR_ x Ry [ —1,11V, such that:

W (E(0), Va (), Ve(®) € Oacet (E(0), Va(t), Ve(2)), (5)

where u* denotes the optimal activation. At the optimal activation of a positive flexibility
(E(t) > 0), we should expect that u* > 0 (elementwise). In other words, given that a
positive activation has a strictly positive activation cost, a positive flexibility can only be
optimally extracted through positive activations. Analogously, when E(¢) < 0, then u* <
0 (elementwise). To this end, we can decompose the problem of optimal activation as
follows:
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Oact,d,t(E; ‘A’d): ifE <0,

Ay (6)
Oact,c,t(E, ve), ifE > 0.

W (E, Vg, Ve) € Oactt (E, Vg, Ve) =
In particular, let us first consider the case of a negative (or discharging) desirable energy
activation, i.e.,, E < 0. In this case, the optimal activation is the solution to the following

optimization problem:

argmin Cg,(w, V() = Y70 uivyi () Bai(2)
Oacta, i (E, Va@®) : § st Z?:l ”if/d,i(t) =—-E (7)
var. u; €[—-1,0] ,i=1,2,..,N.

Analogously, for the case of positive (or charging) desirable activation £ > 0, the

optimization takes on the following form:

argmin Cgy(w, Ve(£)) = Y71 uive,i(t) Be,i(t)
Oact,c,t(E; Ve(@) : § st 2?21 l/lii}c,i(t) =E (8)
var. u; €[0,1],i=1,2,..,N.

Optimal activation algorithm

Reference (Chasparis et al. 2019) provides an algorithm for computing the optimal acti-
vation (cf., (Chasparis et al. 2019, Algorithm 1)), and takes the form of a merit-order
optimization. We will present here only the case of discharging activation, i.e., when
E(t) < 0, since the charging activation will be similar.

We first order the set of participating batteries in ascending order, with respect to
the cost coefficient B;;(¢). In other words, we order the batteries as follows: f;1(f) <
Baa2(t) < ... < Bin(f). Define also the function k4 :[ V@), Ve()] xRN > N, such that
k4 + 1 corresponds to the minimum number of batteries that should be activated in order
to generate a total discharging flexibility potential of E(¢) < 0. In other words,

k
ka(E,¥q(t) = max { k € {1,2,.,N}: 0> ) 9g;(t) > E ¢ . )
i=1

Algorithm 4 Optimal activation for generating discharging flexibility E(£) < 0

1: procedure Oycr 4 (E(2), V;4(2))
2 order participants i = 1,2,..,, N in ascending order 841 (t) < Bz2(t) < -+ < Ban(£)

3 fori=1,2,..,N do

4; ifi <k (E(t),v4(¢)) then

5: Lt;k ) =-1

6: else

7: if i = ky(E(t),v4(t)) + 1 then

8: ul(t) = — (E(t) — Zl’;i f/d,j(t)> /V4i(t) = By definition of x4, the numerator

defines the remaining energy that should be extracted from battery «; + 1.

9: else
10: l/l?< =0
11: return u* ()

It is straightforward to show (using strong duality) that the optimal activation is given
by Algorithm 4.
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Proposition 1 (Proposition 7.2 in Chasparis et al. (2019)) The activation u* computed
by Algorithm 4 is an optimal solution to optimization (7).

Day-ahead (DA) optimization

Optimization under perfect forecasts

In this section, we present the optimization of flexibility extraction {E(¢)}; (positive or
negative), during the next day t = 1, ..., T, that would be optimal for the aggregator to
provide to the DA market. The aggregator would like to exploit the variations in the DA
price over the next day in order to increase its revenues.

In this subsection, we will assume that the aggregator has perfect knowledge over the
dynamics of the day-ahead flexibility potential of the participating batteries, i.e., all the
required forecasts are assumed perfectly known. In this case, the optimization problem
for computing the optimal activations, given some exogenous sequence of the clearing
DA prices, denoted by {ppa (£)}:, will be of the following form:

Opa (Va )y, tve @)L
argmax Y g (E(8), w*(t), va(t), ve(t), ppa(®)
s.t. [Vat+ 1), Vet + 1] = E(Vd(t), V.(t),u*(t), AP(t))
Valt) < E@) < Ve(d) (10)
W (1) € Oaert(E(8),va (D), ve(®))
var. Et)eR,t=1,..T.

where,

G(E@®),u* (1), v4(t),ve(t), ppa(t)) =
L0,00) (E(®)) - [=pDA @) - E(8) — Cep(u* (), ve (1) ] +
I(—o00,0] (E(®)) - [—pDA(®) - E(t) — Cae(u* (), va(t))]

represents the utility of the aggregator when provides flexibility E(¢) (positive/negative)
at time ¢, where I4 : R — {0, 1} denotes the index function for some set A C R, i.e,,

lifxeA
0 else.

Ta(x) = :

Note that, when E(¢) > 0, the aggregator is charged with —ppa (¢£)E(t) (since this energy
is purchased from the DA market), and when E(¢) < 0, the aggregator is credited with
—ppa(B)E(t) (since this energy is sold to the DA market). The variable u*(¢) is a solu-
tion to the activation optimization O, presented in “Optimal activation” section, i.e.,
it is a function of the overall offered flexibility E(¢). In other words, in order to evaluate
the utility of an offered flexibility E(¢), we should know the corresponding optimal acti-
vation (i.e., which batteries should contribute to generate E(t)). We write u*(¢) instead of
u*(E(),v4(t), vc()) to simplify notation.

* summarized in

Due to the equilibrium constraints that should be satisfied by u
the constraint u*(¢) € Oyere(E(2), v (t),vc(t)), optimization Opp corresponds to a
mathematical program with equilibrium constraints (MPEC). The outcome of the DA
optimization will be a sequence of optimal flexibilities £*(¢) over the next day that the

aggregator should commit to offer to the DA market.
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Optimization under imperfect forecasts
In the presence of imperfect forecasts, the aggregator can still address the optimization
problem (10) using forecasts of the flexibility potential, v;(¢) and V.(¢), and the DA price
Ppa(t). However, possible discrepancies between actual and estimated quantities will lead
to imbalances between the promised commitment E*(¢) (calculated using forecasts) and
the available one. This can lead to imbalance costs.

Assuming that the imbalance price is pimp(¢) at time interval ¢, the actual objective
function that the aggregator is facing when implementing £*(¢) is instead:

& (E* (@), u*(£), v (1), ve(t), ppa(t)) =
Lo,v.(6)] (E*(®) - [=pDA(DE* () — Cer(w*(8), ve(8) ] +
Liv, 0,0/ (E*(©)) - [—PpA(DE*(£) — Car(u* (1), va()] +
Tev,(1),00) (E* () -[ =ppA () Ve (t) — Cee(u* (1), Ve(£)) — pimb () (E*(£) — V()] +
I(—o0,vy0) (E*(@))-[ =ppa &) Vi) — Car(u*(2), v (t)) + pimb () (E* () — Va(0)],
(11)

where recall that u*(¢) is the optimal activation under E*(¢). In other words, the above
utility function is the one realized by the aggregator after the completion of the optimiza-
tion horizon and when the actual measured data (v;(£), v.(¢) and ppa (¢)) are revealed.
The last two terms of the actual utility function corresponds to the penalty that the
aggregator pays due to the resulting energy imbalance.

Ideally, we would like that the actual utility of Eq. (11) replaces the perfect-forecast
utility of optimization (10), so that we also incorporate the expected costs of faulty fore-
casts. However, in order to incorporate these costs, it is necessary that we have available
an accurate distribution of the forecast errors. Usually, such distribution of errors is not
available. For this reason, in the following section, we propose a reinforcement-learning
methodology, where, due to an averaging effect, the trained policy will incorporate the
possibility of forecast errors.

Approximate dynamic programming (ADP) for DA optimization

ADP background and algorithm

We will consider a version of ADP that can be used to compute optimal policies for
dynamic optimization problems of the form (10). The proposed scheme is based upon
Monte-Carlo simulations and least-squares approximation.

ADP methodologies are based on the notion of cost-to-go, or better here utility-to-
go. That is, for each time-interval ¢ € {1,2,.., T}, we consider the objective function
of the sub-problem starting from ¢ onwards (until the end of the optimization hori-
zon T). The utility-to-go at time ¢ will be denoted by J/*, defined as follows J/* =
Zszt g, which is a function of the current state variables V4(t), V.(t) and the exoge-
nously defined DA prices {pDA(r)}tT=1 during the optimization horizon. In other words,
]t’” = t“‘ (E(t), Vi), V. (¢), {pDA(r)}szl). The superscript p; refers to the policy imple-
mented at time ¢ and it captures the reasoning based on which actions are selected as a
function of the currently available information. The u*(¢), which corresponds to the opti-
mal activation of the selected flexibility E(¢) will not be directly included as a parameter
of JI, but it is indirectly taken into account when E(%) is implemented. The utility-to-go

1 also depends on the forecast PV generation and load consumption of the remaining
optimization horizon, however we suppress this dependence to simplify notation.
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For finite-horizon dynamic programming problems (of the form (10)), Bellman’s
Dynamic Programming principle (cf, (Bertsekas 2000, Proposition 1.3.1)) states
that a policy pu that maximizes J/* at time ¢, is also an optimal policy for
the original optimization problem (10) at time ¢ As we discussed though in
“Optimization under imperfect forecasts” section, due to forecast errors, the actual real-
ized utility is not g but g (possibly incorporating imbalance costs). Thus, the explicit
form of ]Lf‘ * is not a-priori known, and therefore an exact solution (i.e., a closed-form
expression for the optimal policy i) cannot be computed in practice. To this end, we
introduce instead approximation functions of the form Q;(E(¢), V@), V@), {PDA (r)}TTzl)
(so called, Q-factors) that approximate the utility-to-go function /! based on the avail-
able forecasts. A different Q-factor applies to each time interval ¢, and it can be used to
generate an approximate policy /i, for this interval. In particular, the approximate policy
1 can be computed as:

e (Va@®, Ve tpoa@)Zy) = max Qi (E Va(o), Ve, (poam)1y).
Ee[Va(0),Ve(0)]
(12)

which is a function of the available information at time ¢, V;(2), V. (¢), {ﬁDA(r)}thl.
A common approach that is used to compute the Q-factors is Monte-Carlo simulations

that proceeds as follows. Prior to any day-ahead optimization, we first generate a time-
series forecast (sample path) for the overall PV generation, the overall load consumption
and the DA price. Then, for each time interval ¢ of this sample path, we compute the opti-
mal flexibility commitment E*(¢) using the approximate policy of Eq. (12). Then, at the
end of the optimization horizon, we evaluate the performance of the approximate policy
i by computing the actual utility-to-go ]t’1 * using the actual measurements. By utilizing
the approximation error | ]f * — Q¢|, we can improve our approximation functions Q.
The specific form of the Q-factors considered here is the following:

Qi(E, Va(®), Ve(®), ppa(®)) = o+
a1,e-[Els [ Poays () — poa(®)]+ +aoe- [ E]- -[ ppas(t) — ppa(®)]4 —
az-[Ely [ Ppa(t) — ppap(D)]y —aae-[E]l- [ ppa(®) — Ppap(®)]+ —
a5t [Ely [ ppa(®) — Ppas )]+ —aes [ El- -[ ppa(f) — Poays )]+ (13)

for E €[ V,(¢), V.(¢)], where

1 T ,
p ) 7 e PoA(r) ift < T
poag(ny = | 777 Zr=t1 PoAT)
poa(T) ift="T
is the average DA price in the future time intervals, and
5 .} poa( ifr=1
Ppap(t) = . :
' = i boa(o) ift>1

is the average DA price in the previous time intervals. Furthermore, for some real
number x, we denote [x]; = max{x,0} and [x]_ = min{x, 0}. Finally, the constants
{aos 01t .. 6} for each interval ¢ are the unknown parameters. We employ also the
constraint oy ¢, ..., ez > 0.

The Q-factors of Eq. (13) capture the anticipated utility/losses in the remaining opti-
mization steps. In particular, the first part (multiplying o) captures the anticipated
revenues when purchasing electricity (i.e., E > 0), due to a future increase in the DA

price. The fourth part (multiplying a4,) captures the anticipated revenues when selling
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electricity (i.e., E < 0) due to a current increase in the DA price. The remaining parts
intend to minimize different forms of anticipated opportunity costs, which may or may
not eventually be part of the actual utility-to-go ]t’l t. For example, the sixth term (multi-
plying o) captures the anticipated revenues of discharging the battery when anticipating
a drop in the future electricity price (thus, giving the opportunity to charge the battery at
later stages).

As discussed in detail in (Bertsekas and Tsitsiklis (1996), Section 6.2.1), an issue critical
to the success of this method is whether the assumed form of the Q-factors is rich enough
to capture the actual utility-to-go. Furthermore, the simulations should generate sample
paths that are persistently exciting is order for the (least-squares) approximation to con-
verge (cf., (Ljung 1999)). As we will see in the forthcoming experimental evaluation, the
considered form (13) will be sufficient to generate accurate approximations.

The details of the ADP algorithm implemented for the DA optimization is presented
by Algorithm 5. It consists of two main processes, namely a) forward simulation (Step 3),
and b) backward evaluation (Step 4). In the forward simulation, and for each sample path
s € S (i.e., each simulation day), we simulate the action selection process (according to
Step 3a) and using the current approximation factors { Es)}t. In the backward evalua-
tion, and starting from the last interval of each sample day, we evaluate the utility-to-go
performance of the offered flexibility on the actual/realized data. This evaluation can
then be used to better approximate the Q factors (Step 4c). We should expect that as we
increase the number of tested sample paths, the approximation error of the utility-to-go
approaches zero.

After the Q-factors have been trained, as Algorithm 5 demonstrates, at the beginning
of each day, we can employ the trained factors to compute the optimal flexibility bidding
as Step 3 of Algorithm 5 describes.

Discussion

The reasons for considering the proposed hierarchical- and ADP-based optimization
are the following: i) the original problem formulation of Eq. (10) constitutes a dynamic-
programming (DP) optimization problem (due to the battery dynamics); ii) the original
problem is subject to equilibrium constraints (for each quantity of extracted flexibil-
ity there is an optimal activation); iii) the original problem involves integer (activation)
variables; iv) an exact DP solution to the combined (integer) optimization of optimal
bidding and optimal activation of the batteries is practically infeasible; v) by separating
the decisions over the optimal energy commitment (Step 3a of Algorithm 5) from the
(precomputed) optimal activation (Step 3b of Algorithm 5), the overall scheme avoids
the computational complexity of the combined scheduling problem; vi) the ADP opti-
mization provides strategies (rather than explicit schedules), thus the solution can be
updated whenever updated forecasts become available; vii) the learning-based nature of
the algorithm allows for capturing the effects of imperfect forecasts due to averaging.

Experimental evaluation

Algorithm 5 was implemented on real-world data collected from N = 30 battery-
storage systems located in the state of Upper-Austria, over the duration of approximately
one year. The simulation days used for training the Q-factors correspond to approxi-
mately 4000 days (since a simulation day was used more than once to achieve better
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Algorithm 5 Optimal utility-to-go training { Qt}tT=1

1:
2:

N 9o

10:

11:
12:

13:
14:

15:

16:

procedure ADP
Step 1. Choose sample paths, denoted by s € S (each of which corresponds to one day)

of DA clearing prices {fagk(l : T)} , and PV power generation {131(,3\),[(1 : T)} , load con-
s ’ s

load,i
i=1,..,N.
Step 2. Define the following approximation factor of the utility-to-go,

sumption [f’(s) 1: T)] and initial state-of-charge {SOCL@ (0)}s from several households
s

P = (B9, 70 @, 7O @,550: 1)),
t =1,.,T,s € S, given by Eq. (13), with unknown constants (xé“?,afg,..., (x;fz, for s =
1,..,|S|, andE® (¢) €[ V4(8), V. (®)].

Step 3. Computing optimal flexibility extraction using forecasts

Sets =0.

fort=1,2,..,T do > Throughout the sample path of one day s

Step 3a. Compute the decision at time ¢ using the approximations of QES_I) during

the previous sample path s — 1 evaluated at the current state, i.e.,

(s—1) %0 (7($) ~(5) (1. _
E9®) e BB e [79 0,00 0] <t (E’ Va 0, Ve (0, Ppa (1 : T)>’ wpl =4
rand [\A/a(ls) (®), VC(S)(t)] , W.p.A.

> We use our currently available approximations, evaluated at sample path s — 1, to
compute our action at time ¢. For a small probability A, we select a random (feasible) action,
in order to create conditions of persistence of excitation in the identification of the Q-factors
(cf., (Ljung 1999, Definition 13.2)).
Step 3b. For the selected flexibility extracted (positive or negative) E®(f), we
compute the optimal activations of the participating batteries, i.e.,

(1) € Oure (E0,35 0,39 )

the solution of which is given in “Optimal activation” section.
Step 3c. Update the total energy potential state

[V e+ 0,70+ 1] =3 (VP 0, 70 0,0 0, 527 )

Step 3d. Implement the computed activation strategy u*(¢) during time interval .
Step 4. Evaluating selected actions using actual data and going backwards
Set J7 = gr, which corresponds to the actual performance during the last time interval
T of the sample path s.
fort=T7T-1,T-2,..,1do
Step 4a. At the end of interval ¢, and given the actual recorded data (of PV generation
and load consumption), we evaluate the performance of the implemented activation strategy,

4 =& (EY 0. 0. 0.5, 0).

Step 4b. Compute a time-¢ sample of the utility-to-go, J; = r - J+1 + g, with discount
factor r = 1.

Step 4c. Use this sample J; to train the utility-to-go factor

Qis) <~ M( Es_l),]t)

where M is the training model that we use to train the parameters of the Q factors. In this
case, it corresponds to a Recursive-Least-Squares filter (cf., (Sayed 2003)).
Step 5. Increment s. If k < |S| go to Step 3.

Step 6. return the Q-factors of the final stage |S], {Q;‘SD }e

training performance of the recursive-least-squares filter implemented). For these eval-

uations, we considered AT = 15min, which implies that each day consists of T = 96

Page 14 of 17
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Utility-to-go approximation

Jf —e
—

2 - ﬂ —

w 0 |
—92 i
4 |

| | | | | | | |
0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000

sample path (day)

Fig. 2 Approximate and actual utility-to-go as they evolve during the sample paths (simulation days). Note
that the approximation factors Q; (of the first time interval) rather accurately approximate the actual
utility-to-go function J; (which captures the value of the optimal objective function during one day)

time intervals. The available data include recordings of PV power generation and load
consumption.

At the beginning of each simulation day, the trained Q-factors are used to derive the
optimal flexibility commitments over the upcoming day using forecast values of the
unknown data (AP and Ppa)- At the end of the upcoming day, when the actual data AP
and ppa have been revealed, the performance of these flexibility commitments are eval-
uated and the approximation errors over t = 1,..., T are used to train the Q-factors. The
approximation error of the utility-to-go function during training is depicted in Fig. 2,
where we see that the considered Q; -factors (of the first time interval) can quite accurately
approximate the actual utility-to-go J;.

When the training of the Q-factors has been completed, we evaluate the trained factors
on a test data set of sample paths (days), which have not been used during training. The
outcome of these test evaluations are depicted in Fig. 3. Finally, Fig. 4 demonstrates the
real-time implementation of the computed optimal flexibility over the next day. Note that
discrepancies between the offered flexibility and the actual flexibility potential can still be

observed due to forecast inaccuracies.

100 - -

Earnings (€)
ot
(e
I
|

test day

Fig. 3 Cumulative revenues over a period of 10 consecutive (test) days. Tests were performed on days that
have not been used for training of the Q-factors
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Optimal commitment under perfect forecasts

= Actual charging potential
' ’ : | = Actual discharging potential
20 25 30 35 40 45 50 55 60 v scharging pote

= Optimal commitment under perfect forecasts

o
=
o
I

time interval

Optimal commitment under imperfect forecasts

= 4
=
= Actual charging potential
- 1 1 v a— r~ 1 . 1 . L —— Actual discharging potential
0 5 10 15 20 25 30 35 40 45 50 55 60| . : s § e
= Optimal commitment under imperfect forecasts
time interval
Cumulative Revenues under Perfect and Imperfect Forecasts
T T T T T T T T T T T

20 - =
2
g
a ok 4

= Utility under Perfect Forecasts
= Utility under Imperfect Forecasts
—20 Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 8 8 90 95 100
time interval
DA price

70 T T T
= 6or 4
=
=
=
2
2 s0f e

10 I I I I I I I I I I I I I I I

I L
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
time interval
Fig. 4 Offered commitment of charging/discharging flexibility in real-time and resulting revenues (under

perfect and imperfect forecasts) from a pool of N = 30 batteries and for one day

Conclusions and future work

This work presented an optimization framework for optimal participation of an aggrega-
tor in the DA spot-market through the direct control of a set of residential battery-storage
systems. The aggregator optimizes the amount of flexibility (the energy that can be
charged/discharged in the participating batteries) that can be offered to the DA market
during the next day. The optimization is based upon forecast PV generation and load
consumption of the participating households over the next day. Given the expected
forecast errors, as well as the complexity of the involved optimization, we proposed a
reinforcement-learning methodology that trains over time to adapt to forecast inaccura-
cies and provides an optimal strategy for each time interval of the next day. Given that
the outcome of the optimization is a strategy (rather than a specific schedule), we can
immediately re-adjust the optimal schedules (e.g., in case of updated forecasts) without
the need for a full re-optimization.

About this supplement

This article has been published as part of £nergy Informatics Volume 2 Supplement 1, 2019: Proceedings of the 8th

DACH+ Conference on Energy Informatics. The full contents of the supplement are available online at https://
energyinformatics.springeropen.com/articles/supplements/volume-2-supplement-1.
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