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Abstract
Model-based optimization of energy systems with batteries requires a battery model
that is accurate, tractable, and easy to calibrate. Developing such a model is
challenging because electrochemical batteries exhibit complex behaviours. In this
paper, we propose and evaluate a family of battery models that have different
trade-offs between accuracy and complexity. We derive our models from a recently
developed battery model, which is accurate and easy to calibrate but is not tractable.
We evaluate our models against the commonly-used benchmark tractable model
using a set of experiments that characterize the cycling behaviour of two Lithium-ion
battery chemistries, as well as dynamic charge/discharge experiments. We further
compare the models for two typical energy system applications, solar farm firming and
grid regulation, to show the impact of the choice of battery model on the results.
Finally, we evaluate the increase in accuracy when battery models are calibrated with
the proper operating range.
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Background
The rapid decline in the cost of energy storage, particularly Lithium-ion batteries, has
motivated a wide range of storage applications (Scrosati et al. 2011). Many of these appli-
cations, such as grid support and home energy management, require large, expensive
battery systems. Hence there are many research studies being conducted on optimal bat-
tery dimensioning and operation using model-based analysis of the energy system under
consideration.
There exists several models which can accurately take into account the dynamic

behaviour of Lithium-ion cells, including their non-linear properties such as voltage hys-
teresis, efficiency losses, degradation, and temperature effects. A cell model has to be
combined with a battery management system (BMS) model, which captures voltage, cur-
rent, and temperature limits, to get a complete dynamic battery systemmodel.Most of the
cell models use an equivalent circuit to emulate model behaviour (see He et al. (2011); Hu
et al. (2012); Chen and Rincon-Mora (2006) for examples) or complex equations to rep-
resent the electrochemical interactions inside the battery (see Klein et al. (2013); Tanim
et al. (2015) for examples). Some of these models are difficult to calibrate because they
require data which is onerous to obtain (i.e., can only be obtained via experiments). For
example, RC circuit models (Chen and Rincon-Mora 2006; Hu et al. 2012) require pulse
charge/discharge measurements to set the resistance and capacitance parameters of the
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circuit, and while there are attempts to reduce the calibration effort of these models (Ein-
horn et al. 2013; Hentunen et al. 2014; Jackey et al. 2013), calibrating them is still not an
easy task. Furthermore, these models are described using complex mathematical func-
tions such as differential equations, and this makes them unsuitable for optimization
studies usingmathematical programs.
The computational effort required to solve a mathematical program is proportional to

the number and complexity of equations and model constraints in the program. The sim-
plest programs to solve are linear programs (LP), which have reasonable solving times
even when the program has hundreds of thousands of constraints (Gearhart et al. 2013).
The most commonly used battery model in studies requiring an optimization framework
is linear (for examples, see Khalilpour and Vassallo (2016); Hassan et al. (2017); Mehra-
bankhomartash et al. (2017); Atia and Yamada (2016); Chen et al. (2012)). It uses power
as input, rather than current. This model, henceforth referred to as the benchmark, uses
linear and constant approximations to many of the non-linear dynamic characteristics of
a Lithium-ion battery, and the loss in model accuracy as a result of these approximations
is not clear. We are unaware of any published works that thoroughly evaluate the bench-
mark model’s accuracy, explain how to calibrate it properly, and explore how it affects the
results of the optimization studies that use it.
In this paper, we start by comparing the accuracy of the benchmark to

an experimentally-validated, non-linear, and non-analytic PI model1 developed by
Kazhamiaka et al. (2018) which is also power-based (power is conserved, and power-
based models are much simpler since they do not necessarily require voltage/current
transformations). To do so, we propose a calibration process for the benchmark and
we find that it compares poorly with the PI model in estimating the battery energy
content, which suggests that it is problematic to base battery optimization studies
on this model. This finding motivates the development of new battery models with
improved accuracy to replace the benchmark as the go-to model for mathemati-
cal programming. Developing and validating these new models is the main focus of
this paper. In this context, we aim at developing models with the following desirable
properties:

1. Tractability: use only simple polynomial expressions with low degrees. The goal is
to be as simple as possible to reduce the computation time, while respecting the
inherent non-linearity of Lithium-ion batteries.

2. Calibration using only the data commonly found in a battery datasheet (spec), to
avoid onerous experiment-based calibration and therefore make it more likely for
the model to be adopted by the research community.

3. Use power as input, rather than current.
4. Integrate the constraints typically imposed by a BMS, i.e., a complete battery

model, rather than a cell model.

Similar to the work done by Zou et al. (2016) to extract simpler models from a high-
order physics-based Lithium-ion battery model and reduce the computational effort of
simulations, in this paper we start with the non-analytical PI model, which has the last
three of the above properties, and extract models that have all the four desirable proper-
ties. The methodology developed here can easily be reused for other battery chemistries.
Our contributions are as follows:
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• We evaluate the accuracy of the benchmark model and incidentally show how to
calibrate it.

• We methodically extract three tractable models, one of which is linear, from the PI
model and explain how to calibrate them using a spec sheet.

• We thoroughly evaluate each of them using an extensive measurement campaign on
two Lithium-ion battery chemistries.

• We conduct two application studies that illustrate the effect of model complexity on
the outcome of optimization analyses.

• We provide guidelines for researchers on how to choose which model to use in order
to improve the accuracy of their battery system study.

The main messages of our study are the following:

• We have developed a new linear model that is more accurate and just as tractable as
the benchmark model for optimization studies.

• The choice of model can significantly affect the conclusions of model-based energy
system studies and that sometimes a quadratic model is necessary.

• The operating range of the battery is a crucial parameter for obtaining accurate
results with simplified models.

The rest of the paper is organized as follows. In the “Existing models” section we
describe the benchmark and PI models. In “A Family of Tractable Models” section, we
simplify the complex aspects of the PI model to develop and calibrate a set of tractable
models. In the “Evaluation” section, we compare the accuracy of the tractable models,
the benchmark and the PI model. In the “Applications” section, we dimension a solar
farm and a grid regulation battery application using different models to characterize the
practical trade-off between the accuracy and complexity of our tractable models. We
provide some practical advice on how to choose the right model for a system study In
the “Discussion and Limitations” section and conclude the paper in the “Conclusion”
section.

Existingmodels
In the following, we use a discrete time model. The duration of a time slot is Tu and the
time index is k. Table 1 summarizes the notations and the corresponding units.

Table 1 Notation

Name Description Unit

P(k) Power applied to battery in time slot k W

I(k) Current estimate for time slot k A

V(k) Battery voltage estimate for time slot k V

b(k) Battery energy content estimate at the end of time slot k Wh

a1 (a2) Minimum (maximum) cell energy content Wh

αc(αd) Charge (discharge) current limits per unit of storage A/Wh

ηc(ηd) Charge (discharge) inefficiency

M Voltage function that uses energy content and current as input V

n Number of cells that compose the battery

Ric (Rid) Internal cell impedance during charging (discharging) �

Tu Time slot duration h
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The Benchmark Model

Given the energy content, b(k − 1), of a battery in time-slot k − 1, and an applied power
P(k)which is constant over time slot k, the benchmarkmodel calculates an estimate of the
energy content b(k) at the end of the kth time slot using simple linear equations. It models
three basic properties of a cell: 1) the charging and discharging inefficiencies (ηd and ηc,
respectively), 2) the upper and lower energy content limits (a1 and a2, respectively), and 3)
the charging and discharging current limits (αc and αd, respectively), which are converted
into power limits by taking their product with the corresponding nominal cell voltage
(Vnom,c and Vnom,d). The (constant) values of all these parameters can be obtained from
the spec sheet of the cell. For a battery system comprised of n cells, the battery energy and
power limits scale with n.
The typical formulation of the benchmarkmodel for a battery with n cells is given below.

The piece-wise Eq. 2 is often expressed in linear form by splitting P(k) into separate charg-
ing and discharging variables, say c(k) and d(k) respectively. It is physically impossible for
the model to charge and discharge the battery simultaneously, which yields the following
non linear constraint c(k) · d(k) = 0. It has been shown in Ghiassi-Farrokhfal et al. (2016)
that this constraint can often be relaxed, making the model linear.
The benchmark (n cells):

b(k) = b(k − 1) + �E(k) (1)

�E(k) =
{

ηcP(k)Tu : P(k) ≥ 0
ηdP(k)Tu : P(k) < 0

(2)

nαdVnom,d ≤ P(k) ≤ nαcVnom,c (3)

na1 ≤ b(k) ≤ na2 (4)

Note that ηc, ηd, a1, and a2 are all constant, and the performance of the model
is heavily dependent on the calibration of these parameters. However, it is com-
mon practice to calibrate the model without considering the following: 1) the
operating range of the application (discussed in the “Operating Range” section),
and 2) all of the data typically available in a spec sheet. In most papers, the following
parameters are used for lithium-ion batteries irrespective of the operating range: the
discharging efficiency is equal to the charging efficiency and is in the range of 90–95%,
and a1 = 0, a2 = B where B is a ‘nominal’ capacity. We will show that the benchmark
model can be derived from the PI model, and hence the calibration procedure we propose
is based on the calibration of the PI model, where parameter values are computed from
spec sheet data. We discuss parameter calibration in greater detail in the “Methodology”
and “Operating Range” sections.
A significant shortcoming of this model is that, in reality, both the efficiencies

and energy content limits of a battery are dependent on the current being applied,
and the efficiencies also depend on the battery voltage. The benchmark model
does not have an internal representation of the voltage and current, which hin-
ders its accuracy; we evaluate model accuracy in the “Evaluation” and “Applica-
tions” section. The more accurate PI model, which models these dependencies, is
discussed next.



Kazhamiaka et al. Energy Informatics             (2019) 2:4 Page 5 of 22

The PI Model

The purpose of a dynamic battery model is to compute the evolution of the energy
content of a battery as it is charged or discharged. However, it is extremely dif-
ficult to directly measure the energy content of a battery. The PI model takes
advantage of the relationship between battery voltage and current, which are easy
to measure, to infer the energy content. The full formulation, calibration proce-
dure, and evaluation of the PI model can be found in Kazhamiaka et al. (2018).
All of our tractable models are derived from the PI model, so we describe it in
detail below.
The inputs to the PI model are the applied power P(k), and the energy con-

tent of the battery in the previous time step, b(k − 1). The model calculates an
estimate of the resulting battery V (k), charge/discharge current I(k), and energy
content b(k). It takes into account the voltage- and current-dependent charging
and discharging inefficiencies (ηc(I(k)) < 1 and ηd(I(k)) > 1, respectively),
the current-dependent lower and upper limits on the energy content (a1(I(k))
and a2(I(k)), respectively), as well as the charging and discharging current limits
(αc and αd, respectively).
The voltage of the battery is modeled using a function M which maps the energy

content and applied current to a unique battery voltage. The M function cap-
tures the voltage hysteresis behaviours, where the voltage jumps relative to the
open-circuit voltage (idle battery) when a charging current is applied, and drops
when a discharging current is applied. The M function also captures the pro-
portional change in voltage with respect to the change in the battery’s energy
content.
The functions a1(.), a2(.), and M(.) and constants αc and αd are parameters to the
model and can be obtained using a spec sheet. ηc(.) and ηc(.) are given by Eqs. 7 and 8
respectively. They are functions of I and V as well as the internal impedances of a cell
Ric and Rid for charging and discharging respectively, which can also be found in a
spec sheet2.
The following set of equations and constraints describes the PI model:
The PI model:

b(k) = b(k − 1) + �E(k) (5)

�E(k) =
{

ηc(I(k),V (k))P(k)Tu : P(k) ≥ 0
ηd(I(k),V (k))P(k)Tu : P(k) < 0

(6)

ηc(I(k),V (k)) = 1 − I(k)Ric
nV (k)

: I(k) ≥ 0 (7)

ηd(I(k),V (k)) = 1 − I(k)Rid
nV (k)

: I(k) < 0 (8)

V (k) = M(b(k), I(k)) (9)

I(k) = P(k)
V (k)

(10)

nαd ≤ I(k) ≤ nαc (11)

a1(I(k)) ≤ b(k) ≤ a2(I(k)) (12)
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This formulation requires the numerical computation of the intersection between the
surface defined by Eq. 9 in the plane (I(k),V (k)) and the surface (in the same plane)
defined by the following equation (assuming P(k) ≥ 0):

b(k) = b(k − 1) +
(
1 − I(k)Ric

nV (k)

)
I(k)V (k)Tu

The details of this process, as well as instructions on how to calibrate the model
parameters, are documented in Kazhamiaka et al. 2018.
The a1(.), a2(.),M(.), ηc(.), and ηd(.) functions are shown for a Lithium-Titanate (LTO)

cell (Leclanché 2014) in Fig. 1, where the current is expressed in terms of C-rate; 1 C
is defined as the current which fully discharges the battery in one hour. The cell has a
nominal charge capacity of 30 Ah, hence 1 C corresponds to a 30 A current. A negative
C-rate is used to represent a discharging current.

A Family of Tractable Models
The PI model has three principal components: the M function that maps from energy
content and charge/discharge current to battery voltage, the energy content limits (a1(.)
and a2(.)), and the inefficiency functions (ηc(.) and ηd(.)). TheM, a1, and a2 functions are
numerically derived from the spec sheet, i.e., they are not explicit, and this prevents the PI
model from being used as part of a mathematical optimization program. The inefficiency
functions are explicit but yield non-linearities and this makes the model difficult to use
for mathematical optimization.
We therefore derive a set of tractable models by approximating these three components

with polynomials. Our methodology is to test different combinations of approximations,
starting with higher degree polynomials and working down to constant approximations,
keeping combinations that show a noticeable difference in performance compared to the
next iteration, and discarding those that do not have a favourable accuracy-complexity
trade-off. We test each combination by simulating charge/discharge cycles at different
C-rates and comparing the b(k) estimates of the model with that of the PI model to quan-
tify the loss of accuracy due to the approximations. The complexity of each model is on
the spectrum between the PI and benchmark models; indeed, approximating the three
complex components of the PI model with constants results in the benchmark model.
In developing our models, we experimented with polynomial approximations of degree
less than or equal to 3.
In this section, we show how to derive the benchmark model and three novel tractable

models which have a favourable accuracy-complexity trade-off.

Methodology

We now discuss our analytical approximations to voltage, efficiency, and energy content
limit functions; these are functions of the current, which is estimated from the input
power using Eq. 10. We compute the parameters to each approximation to minimize the
error between the PImodel’s version of the corresponding function and the approximation
for a given operating range (OR), which corresponds to the maximum range of permis-
sible currents as defined by the spec sheet or programmed into the BMS by the system
operator (we elaborate on the OR in the “Operating Range” section). Our intuition is that
this approach minimizes the error introduced by the approximation. Each approximation
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(a)

(b)

(c)
Fig. 1 aM function, which maps the applied current and energy content to a unique voltage, shown with
blue curves obtained from a spec and grey points representing the interpolated surface between the curves.
b a1(.) and a2(.): points obtained from the spec. c ηc(.) and ηd(.), with each line representing the efficiency
at a different C-rate, as per Eqs. 7 and 8

is evaluated by comparing the energy content estimates of the resulting model to the
PI model over constant-current charge/discharge cycles and a varying charge/discharge
profile. We give a detailed account of the evaluation in the “Evaluation” section.
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Voltage Estimate

When a battery has a certain amount of energy that can be extracted from it, and is subject
to a current, this results in a certain voltage across the positive and negative electrodes.
In the PI model, the voltage estimate is obtained by using the M function, which rep-
resents the relationship between energy, current, and voltage for a given battery, and is
obtained by sampling the voltage curves found in the battery’s spec sheet. To make the PI
model analytical, M has to be expressed in analytic form. We consider the following two
polynomial approximations3:

V (k) =
{
Vnom,d : P(k) < 0
Vnom,c : P(k) ≥ 0

(13)

V (k) = x00 + x10I(k) + x01b(k) (14)

The constant approximation of the voltage corresponds to the ‘nominal’ voltage of the
battery, Vnom,c when charging and Vnom,d when discharging; these can be computed by
taking the average of the voltage curves over the OR. Note that we can separate the charg-
ing voltage from the discharging voltage (as done in Eq. 13) for the linear approximation
(Eq. 14) without increasing the complexity of the model because of the natural separation
between charging and discharging processes in Eqs. 6, 11, and 12, but we found that this
has little effect on the overall accuracy of the resulting model when applied to Eq. 14.
Figure 2 shows the non-analytic M function from the PI model, and the linear approx-

imation given by Eq. 14 which takes the form of a plane with the best least-squares
approximation of the function4 over the OR. The plane is able to capture the positive
slope of the voltage with increasing current and energy content, but does not capture the

Fig. 2 M function, represented by the black dots which map the applied current and energy content to a
unique voltage and are obtained from a spec sheet. The plane is a linear approximation to theM function
(Eq. 14)
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rapid drop as the battery voltage approaches the lower limit. A cubic function is able to
capture these dynamics, however we found that the additional complexity of the cubic
function over the plane offered negligible improvements to the accuracy of the model.

Energy content limits

Energy content limits are functions of the current, and can be obtained empirically from
the voltage curves in the spec sheet. We consider the following approximations to a1(.)
(similarly for a2(.)):

a1(I(k)) = nā1 (15)

a1(I(k)) = u1I(k) + v1n (16)

ā1 is computed by taking the average of the a1(.) curve over the OR, and u1 and v1 are
parameters which define the line of best fit (least-squares) to a1(.) over the OR. In our
evaluation, we found that the linear form in Eq. 16 offers the best trade-off between
accuracy and complexity, i.e., better approximations offered very small improvement in
accuracy at the cost of much higher complexity. Figure 3 shows the a1(.) and a2(.) func-
tions for an LTO cell, as well as their linear least-squares and constant approximations
used in our tractable models.

Charging/discharging efficiencies

In the PI model, the charging (resp. discharging) efficiency (Eqs. 7, 8) is a function of the
voltage, current, and nominal internal resistance during charging (Ric) (resp. discharging
(Rid)). The efficiency formula makes the model inherently non-linear, since both I and V
are variables of the model and hence the equation is quadratic in terms of the variables.
Furthermore, the energy content update equation (Eq. 6) has a product of the efficiency
and the applied power–which is the free variable in an optimization problem–to update

Fig. 3 Lower (a1) and upper (a2) energy limits for an LTO cell, along with linear and constant
approximations computed over the maximum OR of the battery (up to 5 C charging and discharging)
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the battery energy content estimate. We consider the following approximations for ηc
(similarly for ηd):

ηc = η̄c (17)

ηc(I(k)) = 1 − I(k)Ri
Vnom,c

(18)

Using constant approximations for the charging (η̄c) and discharging (η̄d) efficiency
linearizes this part of the model; they are calculated as the average values of ηc(I,V ) and
ηd(I,V ) over the OR. Another approximation (Eq. 18) can be obtained by using Vnom,c
in place of V (k) to reduce the dimensionality of the calculation, thereby reducing the
non-linearities in the model.
To illustrate the efficiency functions and the effect of the approximations, the charging

and discharging efficiencies of an LTO cell is shown in Fig. 4, with solid lines represent-
ing Eqs. 7 and 8, asterisks representing the efficiencies when calculated using a constant
approximation of the charging voltage as Vnom,c and Vnom,d, and squares representing
constant efficiency approximations.

Fig. 4 The charging and discharging efficiencies of an LTO cell with Ric = Rid = 0.002m�. Each solid line
represents the efficiency calculated using Eqs. 7 or 8 at the labeled charging/discharging C-rate. Each asterisk
represents the approximation where V = Vnom,c for charging and Vnom,d for discharging. The constant
approximations η̄c and η̄d are shown for two labeled operating ranges
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Operating Range

The operating range (OR) is an important parameter to consider when calculating the
approximations to different curves. We define the OR as the range of currents that we
expect to be applied to the battery. The intuition is that we shouldmatch the parameters of
the modelled battery to reflect the actual operation of the battery, rather than calibrating
the model to be as accurate as possible over the full OR capabilities of the battery. Indeed,
some applications do not use the full OR. When the OR is narrow, we can expect a lower
modelling error.
In Figs. 2, 3, and 4, the approximations to the corresponding functions were computed

over the full operating range ([-5 C, 5 C] for the LTO cell) unless otherwise noted. In
this paper, we compute the constant approximations to be equal to the average value of
their corresponding curve over the OR, and choose linear approximations that minimize
the least-squared error to the curve over the OR. For example, Fig. 4 shows the constant
approximation for charging efficiency (η̄c) and discharging efficiency (η̄d) for the full OR
of [-5 C, 5 C] as well as for a narrower OR of [-2 C, 2 C]; η̄c is higher for the narrower OR
because the efficiency is higher at lower C-rates.

Models

We have developed notation to refer to each of the four models that we describe next,
based on how the voltage, energy limits, and efficiencies are approximated. Similar to
Kendall’s notation for queues (Kendall 1953), each component of the model is described
by a letter with slashes in between, i.e., Voltage function/Energy limit/Efficiency (V/E/η)
notation. A letter ‘Q’ means that that calculation uses a quadratic approximation, such
as the voltage function in the PI model; ‘L’ represents a linear approximation, and ‘C’ a
constant approximation5.
The four analytic models are summarized in Table 2, and we describe them below. Out

of the four models, three approximate the voltage using two constants Vnom,c and Vnom,d.
For these three models, we can write their formulation in terms of power by replacing
I(k) > 0 by P(k)/Vnom,c and I(k) < 0 by P(k)/Vnom,d in the PI model and can remove
Eqs. 9 and 10 completely.

C/C/C

This model is exactly the benchmark summarized in Eqs. 1–4, and we henceforth refer
to it as the C/C/C model. It uses constant approximations for efficiencies and energy

Table 2 Summary of Analytical Models

Model Approximations

Voltage Energy Content Limits Efficiency

C/C/C V =
{
Vnom,d : P < 0

Vnom,c : P ≥ 0

ā1n
ā2n

η̄d
η̄c

C/L/C V =
{
Vnom,d : P < 0

Vnom,c : P ≥ 0

a1(P) = u1(P/Vnom,d) + v1n
a2(P) = u2(P/Vnom,c) + v2n

η̄d
η̄c

C/L/L V =
{
Vnom,d : P < 0

Vnom,c : P ≥ 0

a1(P) = u1(P/Vnom,d) + v1n
a2(P) = u2(P/Vnom,c) + v2n

ηd(P) = 1 − PRid/nV 2
nom,d

ηc(P) = 1 − PRic/nV 2
nom,c

L/L/Q V = x00 + x10
n

I + x01
n

b
a1(I) = u1 I + v1n
a2(I) = u2 I + v2n

ηd(I, V) = 1 − IRid/nV
ηc(I, V) = 1 − IRic/nV

Note: x00, x01, x10, u1, u2, v1, and v2 are fitted parameters. Bolded parameters are affected by the OR
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limits, and a constant approximation of the voltage. It is linear (see the discussion in “The
Benchmark Model” section) and all the equations can be written in terms of b(k) and
P(k) only. It has low energy estimation errors when the OR is narrow (Kazhamiaka et
al. 2016), and hence it is important to calibrate it with respect to the OR. Treating the
benchmark model as a derivative of the PI model makes the calibration procedure (see
“Methodology” section) clear, as it utilizes the available spec data, and thereby improves
model accuracy. For example, the charging efficiency calculated for an LTO battery with
an OR of [-5 C, 5 C] is 0.94, and is increases to ≈0.975 for an OR of [-2 C, 2 C]; for a
Lithium-Ferrous-Phosphate (LiFePO4) battery (A123 Systems 2009), the efficiency for an
OR of [-2 C, 2 C] is calculated to be ≈0.985.

C/L/C

This model uses constant approximations of the charging and discharging voltage as well
as charging and discharging efficiencies, and uses a linear approximation to the energy
content limits. Similarly to the C/C/C model, all the equations can be written in terms of
b(k) and P(k) only. Notably, it has the same complexity as the C/C/Cmodel (linear), while
offering a better approximation to the energy limits.
C/L/C:

b(k) = b(k − 1) + �E(k) (19)

�E(k) =
{

η̄cP(k)Tu : P(k) ≥ 0
η̄dP(k)Tu : P(k) < 0

(20)

nαdVnom,d ≤ P(k) ≤ nαcVnom,c (21)

u1
P(k)
Vnom,d

+ v1n ≤ b(k) ≤ u2
P(k)
Vnom,c

+ v2n (22)

C/L/L

This model uses constant voltage approximations, the same efficiency formula as the PI
model, and linear energy content limits. The constant voltage approximation makes the
efficiency function linear. Note that in the formulation, we have excluded an explicit I(k)
term since, due to the constant voltage approximations, the current is estimated as either
P(k)/Vnom,c or P(k)/Vnom,d. Hence, all the equations can be written in terms of b(k) and
P(k). Altogether, this model is quadratic in P(k).
C/L/L:

b(k) = b(k − 1) + �E(k) (23)

�E(k) =
{

ηc(P(k))P(k)Tu : P(k) ≥ 0
ηd(P(k))P(k)Tu : P(k) < 0

(24)

ηc(P(k)) = 1 − P(k)Ric
nV 2

nom,c
(25)

ηd(P(k)) = 1 − P(k)Rid

nV 2
nom,d

(26)

nαdVnom,d ≤ P(k) ≤ nαcVnom,c (27)

u1
P(k)
Vnom,d

+ v1n ≤ b(k) ≤ u2
P(k)
Vnom,c

+ v2n (28)
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L/L/Q

This is the most complex of our explicit models. It combines a linear bivariate voltage
function, the same quadratic efficiency formula used in the PI model, and a linear approx-
imation for the energy limits. The formulation resembles that of the PI model with the
voltage and energy limits replaced by explicit functions. The model is
L/L/Q:

b(k) = b(k − 1) + �E(k) (29)

�E(k) =
{

ηc(P(k))P(k)Tu : P(k) ≥ 0
ηd(P(k))P(k)Tu : P(k) < 0

(30)

ηc(I(k)) = 1 − I(k)Ric
nV (k)

(31)

ηd(I(k)) = 1 − I(k)Rid
nV (k)

(32)

V (k) = x00 + x10
n

I(k) + x01
n

b(k) (33)

I(k) = P(k)
V (k)

(34)

nαd ≤ I(k) ≤ nαc (35)

u1I(k) + v1n ≤ b(k) ≤ u2I(k) + v2n (36)

Note that all the equations can be written in terms of b(k), I(k) and P(k) and the model
is non-linear in both I(k) and P(k). Hence, this model is much more complex and difficult
to use.

Evaluation
In our evaluation, for each of the analytic models discussed in the “Models” section, we
quantify the loss of accuracy in the energy content estimate with respect to the PI model.
We take this approach because measuring the energy content of a battery directly is very
difficult. Hence, we use the PI model to estimate the energy content of the battery, since
prior work has found it to accurately model battery dynamics.
More precisely, to evaluate our models, we use LTO (Leclanché 2014) and Lithium-

Ferrous-Phosphate (LiFePO4) (A123 Systems 2009) battery measurements collected
while running charge/discharge cycling experiments on these batteries at different C-rates
with 2-3 cycles per C-rate, and use the PI model to calculate the energy content of these
batteries over the course of the experiment. We then recreate these experiments using
simulations of each one of our tractable models, assuming the same applied power that
was used in our experiments. We then compare the energy content in the battery over
time as simulated by each of our models to the energy content calculated by simulating
the battery using the PI model.

Constant-current cycles

For this section of the evaluation, we calibrate our models over the full operating range
of the batteries: [-10 C, 4 C] for LiFePO4, and [-5 C, 5 C] for LTO. Figure 5 shows the
mean absolute energy error (MAEE) over a full charge (or discharge, for negative C-rates)
as a percentage of the maximum battery capacity for each of our analytic models with
respect to the PI model. The order of the models from most accurate to least accurate
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(a)

(b)
Fig. 5 Mean absolute energy error for LTO cell (a) and LiFePO4 cell (b) for constant-current cycles at different
C-rates (top scale)/Amperes (bottom scale)

mimics their order in terms of complexity. The relative differences in accuracy between
the models can be used to understand how much error each approximation contributes.
For example, having a linear voltage function (L/L/Q) offers little improvement in accu-
racy over using two constants (C/L/L) for all but the most extreme C-rates. C/C/C and
C/L/C have low errors around 2-3 C for LTO for both charging and discharging, and at 5C
discharging and 2 C charging for LiFePO4 because the constant efficiency approximation
happens to be close to the PI model’s efficiency at these currents, as shown for an LTO
cell in Fig. 4.
It is important to note that errors introduced by two approximations can cancel each-

other out. For example, one approximation pushes the model to over-estimate the energy
content while another approximation pushes in the other direction. In our results this
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appears to be the case in the 5 C charging test for the LTO battery, where the errors of the
C/C/C and C/L/C models are lower than the C/L/L model error.

Varying charge/discharge profile

To evaluate the accuracy of the models in a realistic setting, we conducted an experiment
which mimics the charge/discharge pattern if an LTO battery were installed in a building
with photovoltaic (PV) panels, and used as a buffer to store excess PV solar generation and
provide power to the building when PV was not enough. We then simulated this system
using our analytic models which were calibrated with an OR of [-2 C, 2 C], and with the PI
model to use as our benchmark. Figure 6 shows the power profile used in our experiment,
the resulting energy content evolution over an 8-hour period, as well as the residual with
respect to the PI model’s energy content estimate. This experiment highlights the effect
of the efficiency and voltage function approximations, since the battery did not approach
any energy content limits over the course of the test. The residual for all the models stays
below 1% of the total energy capacity of the LTO battery, with the residual of C/L/L and
L/L/Q models well below 0.1%.
From these experiments alone, it is unclear if 1% or 0.1% residuals are low enough for us

to get useful results when these models are used for energy system analysis. Likewise, the
MAEE is not easy to relate to the impact of these errors on the actual application of these
models. For this reason, we next compare these models in terms of their performance in
two case studies.

Fig. 6 The energy content over 8 hours in a realistic deployment charge/discharge profile. The residual
between the analytic models and the PI model (bottom), as well as the applied power trace (top), are also
shown
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Applications
We performed case studies that compare the accuracy of our models with respect to the
PI model for relevant metrics in two battery applications: a solar farm firming application,
and grid regulation services. The purpose of these case studies is to exhibit the effects
of the choice of battery model on the conclusions that are made. Both case studies are
performed via simulations and will be described next.
To obtain results with the proper operating range (OR), which differs for a given appli-

cation and battery size6. We run each simulation twice. First, we calibrate the model
with the maximum OR of the battery, i.e., [αd,αc], and simulate the application. We then
observe the OR that was actually used in the simulation, re-calibrate the model, and run
the simulation a second time. We report the results from the second simulation.7

Solar farm firming

We consider a small (100 kW) solar farm participating in an electricity market with hourly
power commitments and penalties for failing to adhere to the commitment. Figure 7
shows the basic structure of the system, where S(t) is the incoming solar power which we
model using measured data. The load L(t) represents the hourly power commitment that
is made by the operator. We assume that the operator always commits to providing the
average hourly solar production, and a battery is used to firm the intra-hourly fluctuations
in PV production.8

An important metric in this application is the amount of energy that was needed from
the battery but not delivered, i.e., when not enough PV is being generated to meet the
power commitment and the operator needs to discharge the battery but is unable to
because the battery does not have enough energy or the required power is too high for
the battery to provide. We call this the unmet load on the battery. Choosing a battery size
to meet an unmet load target is a classic optimization problem. To see the difference that
the choice of battery model will make on the conclusions of this study, we calculate the
unmet load by simulating the system with a solar measurement trace for 100 days across
a range of battery sizes.
We present results with the model calibrated for the LTO battery chemistry, and remark

that we obtained similar results for the LiFePO4 chemistry. Figure 8 shows the unmet load
calculated for different battery sizes using the PI model as well as the four analytic models,
and the OR used to calibrate model parameters for each battery size. The relative error is
very low for the L/L/Q and C/L/L models, and very high for C/C/C and C/L/C models.
The C/L/C model has a low error for 10 and 50 cell batteries, and high error for larger

sizes; this is due to the OR and its effect on the different parameters. For smaller battery
sizes, the OR is maxed out at [-5 C, 5 C], although the actual currents are much more

Fig. 7 Power flow diagram in a solar farm equipped with a battery. S(t) is the power generated by the solar
cells, and L(t) is the load on the system (power commitment)
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Fig. 8 Unmet load for different battery sizes, computed using five different models. Relative error is with
respect to the PI Model, and the effective OR calculated by the PI model is shown in the bottom-most figure

uniformly distributed across the OR with a small (10 - 50 cell) battery compared to the
100-cell battery where the 5 C is a rare occurrence. The OR gradually narrows as the
number of cells increases to 300. For a large OR, it is crucial tomodel the energy limits as a
function of the current, which is why the C/L/Cmodel outperforms the C/C/Cmodel. For
narrower OR, the efficiency estimate becomes a more important factor as demonstrated
by the high accuracy of L/L/Q and C/L/Lmodels and the similar (poor) accuracy of C/L/C
and C/C/C models.
The conclusions of this study can vary greatly depending on the choice of batterymodel.

For example, if the purpose of the study is to determine the smallest battery size that
is sufficient to achieve an unmet load target of 40%, all models suggest a similar size.
However, for a more realistic 10% target, the size suggested by the C/C/C and C/L/C
models is over 2x larger than the size suggested by the C/L/L and L/L/Q models. The
main message is that neither of the linear models works well for this application, and a
more complex model such as C/L/L is needed to get accurate results.

Regulation

We study a grid regulation application9 where the battery operator declares the amount
of power that they can provide or absorb (by discharging or charging the battery) for the
duration of a short-term contract. Given the amount of energy in the battery, the operator
needs to calculate the maximum amount of power regulation they could provide in the
worst case where their power commitment is requested for the entire duration of the
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contract. In this case study, we model an LTO battery and fix the energy content at the
start of the contract to 50% of the battery’s maximum capacity.
We presents the results for down-regulation, where the battery is discharged. Figure 9

shows the power that the battery can consistently provide for various contract durations.
We also compute the relative error with respect to the results obtained using the PImodel.
The C/C/Cmodel has very poor accuracy for all contract lengths, which can be explained
by noting that the energy limit is the most important parameter for this application. The
L/L/Q model has slightly larger errors (up to 5%) than the C/L/C and C/L/L models,
which is not an intuitive result and is an important observation; since we are dealing
with approximations of multiple components of the PI model, there is room for errors
introduced by these components to cancel each other out. Indeed, the improved voltage
estimate of the L/L/Q model in turn leads to an accurate current estimate, which is then
used to calculate efficiency and energy limits, while the constant voltage approximation in
C/L/L and C/L/Cmodels leads to a poor current estimate which actually ends up partially
negating the errors in the energy limit approximation. The main message here is that a
linear model (C/L/C) is accurate enough for this application.
To highlight the effect of the OR on the accuracy of the models, we have calculated the

results for the regulation application with a full OR ([-5 C, 5 C]) for all contract lengths.
Figure 10 shows the power commitment suggested by the C/C/C, C/L/C, and C/L/Lmod-
els with a full OR, compared to the same models calibrated with the actual OR of the
application for each contract length. Every model has worse accuracy when calibrated
for the full OR. Note that the L/L/Q model is not shown because its accuracy is almost

Fig. 9 Maximum power commitment for guaranteed delivery, shown for various contract lengths. The
relative error with respect to the PI model is also shown. The OR figure shows the actual OR determined from
the PI model simulation
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Fig. 10 Computed vs. full OR calibration for the regulation application

unchanged when calibrating for a narrower OR; this is an intuitive result, as the L/L/Q
model uses better approximations which are not as sensitive to the OR.

Discussion and Limitations
Our extensive experimentation with different models and calibration methods has given
us insight into how to choose and calibrate a battery model for energy system analysis,
in particular for system control and sizing optimization studies. Below, we outline four
considerations in selecting a model.

1. What is the size of the optimization problem? For small problems that could be
solved by non-linear optimization methods in a reasonable time frame, the L/L/Q
and C/L/Q models could be used. Large problems require efficient methods such
as linear programming, which require a linear model. In this case, we suggest using
the C/L/C model, since it is more accurate than the commonly used C/C/C model,
with no added complexity.

2. What battery chemistry is being modelled? Some chemistries, such as LiFePO4,
have “flat” voltage profiles which can be approximated well as a constant voltage.
Cells with very low internal impedance have high efficiency values (close to 1)
which could be closely approximated using a constant. The area under the voltage
curve for different C-rates on a voltage vs. charge graph (commonly found in a spec
sheet) can hint at the shape of the energy limit function10. This information can
help guide the choice of battery model.

3. Which constraints of the battery is the application most sensitive to? This may or
may not be known a priori; if it is known, it can guide the selection of the model
based on the effectiveness of the approximations to each model component. For
example, if efficiency is a crucial parameter, we suggest the use of the L/L/Q or
C/L/L models which have more accurate efficiency functions than the C/L/C
model.
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4. What is the operating range of the application? If it is known a priori, it should be
used to calculate the parameters of the battery. If it is unknown, the analysis should
first be conducted with the model calibrated using the maximum OR that the
battery allows, keeping track of the OR that is actually used by the battery in the
analysis. Then, the analysis should be re-run with parameters computed for the OR
observed in the first analysis. This can be repeated until the calibrated OR matches
the observed OR; in our experience, we noticed that there was little benefit in going
beyond one or two iterations of this method.

Our work has two main limitations. The first is that we have only evaluated our model
on two Lithium-ion battery chemistries; we defer the testing of a broader range of electro-
chemical storage technologies to future work. Finally, there are limitations to the PI model
that are inherited by the tractable models we have derived: it does not model the effects of
temperature on the battery, and does not take the battery state of health and degradation
into account.

Conclusion
We propose three novel, analytical, and easily-calibrated battery models which are
derived from the PI model: the C/L/C, C/L/L, and L/L/Q models. These models were
obtained by using a methodology that involves measuring the effect of different degrees
of approximations to complex and non-analytic PI model components, and selecting the
models with a desirable trade-off between accuracy and complexity. In our evaluation, we
compare the accuracy of the derived models in three settings: constant-current cycling,
a real-world charge/discharge profile, and two energy system case studies. In particular,
we show that the C/L/C model is more accurate and just as tractable as the benchmark
model for optimization studies. We also show that the choice of model can significantly
affect the conclusions of model-based energy system studies and that sometimes a non
linear model (C/L/L) is necessary. Finally, we show that the operating range of the battery
is a crucial parameter for obtaining accurate results with simplified models.

Endnotes
1 PI stands for “Power-based Integrated”, because it uses power as input and integrates

the BMS and cell models into a single model.
2 If the spec sheet provides only one value for internal impedance, then we use that

value for both Ric and Rid.
3 To scale these equations to more than one cell, we divide I(k) and b(k) by n wherever

they appear.
4We use MATLAB’s fit function to compute the linear approximation.
5 Technically, the voltage approximation given in Eq. 13 corresponds to two constants

instead of one.
6 The effect of the battery size on the OR, which is given in terms of C-rate, can be

explained concisely via example: an applicationmay require a current of 100 Amps, which
equates to 1 C for a particular battery, but only 0.5 C when the battery’s size is doubled

7One could continue re-running simulations using the OR observed in the previous
simulation until the OR used to obtain parameters and the OR observed in the simula-
tion converge. In practice, we found that one iteration of this method is enough to get a
reasonable OR.
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8A comprehensive study of this system can be found in Ghiassi-Farrokhfal et al. (2015).
9A comprehensive study of this application can be found in Fooladivanda et al. (2016)
10The area under a discharging voltage vs. charge curve is equal to the energy

discharged from the battery at the given C-rate.
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