Razik et al. Energy Informatics 2018, 1(Suppl 1):47

https://doi.org/10.1186/542162-018-0031-5 E ne rgy I nfo rm atl cs

RESEARCH Open Access

CIMverter-a template-based flexibly e
extensible open-source converter from CIM to
Modelica

Lukas Razik” ®, Jan Dinkelbach, Markus Mirz and Antonello Monti

From The 7th DACH+ Conference on Energy Informatics
Oldenburg, Germany. 11-12 October 2018

*Correspondence:

Irazik@eonerc.rwth-aachen.de; Abstract

lukas@ra?ik.dAe : Over the last decade, the Common Information Model (CIM), as specified by IEC 61970/ 61968,
nstitute for Automation o . .

Complex Power Systems at EON ha; become an |mpprtant docgmer_]t format for the storage of power grid data. Its
Energy Research Center of RWTH object-oriented design makes it easily maintainable and extensible for many use cases
Aachen University, Mathieustr. 10, in the energy sector. As a result, more and more power grid analysis and simulation

52074 Aachen, Germany tools allow the import and export of CIM based power grid data. Unfortunately, many

of them are proprietary and therefore not convenient in the research area since their
component models and numerical back-ends often cannot be modified by the user.
Thus, open-source alternatives are in demand, such as simulation environments based
on the popular modeling language Modelica. Therefore, this paper presents our
approach of a template based CIM to Modelica converter. The usage of templates
makes it easily adaptable for the generation of Modelica system models targeting
arbitrary Modelica libraries. The presented approach is implemented in an open-source
project called CIMverter, evaluated on a real-world case with two Modelica power
system libraries, and validated against a proprietary simulation tool.

Keywords: CIM, Modelica, Smart power grids, Energy, Simulations

Introduction

The Renewable Energy Directive requires the EU member states to fulfill at least 20 %
of their total energy needs with a wide range of renewable energy technologies by 2020
(European Commission 2018). More renewables often require smart grid operation with
an increasing application of ICT systems exchanging information among one another.
The Common Information Model (CIM) was developed to meet the requirements on a
well-defined and extensible data format, nowadays used by many entities in the energy
sector, such as the European Network of Transmission System Operators for Electricity
(ENTSO-E). CIM was standardized in [EC61970 (Energy Management), [EC 61968
(Distribution Management), and IEC62325 (Energy Market Communications)
(IEC 2012a; 2012b; 2014) as part of the IEC/TR62357 reference architec-
ture (IEC 2016). Among others, these CIM standards define an ontology, i.e.
classes of virtual objects, representing real-world objects, and their relations
(Uslar et al. 2012). Most important for this paper is IEC61970 which defines

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0

@ Springer Open InternatIOQaI L_Icense (hrt_p://creati\{ecommon_s.org/licens_es/by/4(v)/), which pe_rmits unrestricted use, distribut‘\on_, and _
— reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the

Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s42162-018-0031-5&domain=pdf
http://orcid.org/0000-0002-0820-2489
mailto: lrazik@eonerc.rwth-aachen.de
mailto: lukas@razik.de
http://creativecommons.org/licenses/by/4.0/

Razik et al. Energy Informatics 2018, 1(Suppl 1):47 Page 196 of 428

things needed for the representation of power grids (i.e. the topologies with
equipment, lines, etc.), used by grid operators as a software tool independent
data format.

Because of the widespread use of CIM based grid topology interchange, power system
simulation and analysis tools such as NEPLAN can handle CIM. The problem of such
proprietary simulation solutions in the academic research often is an insufficient or
unavailable possibility for component model as well as solver modifications. As a conse-
quence many open-source and free power system simulation tools have been developed
during recent years as, for instance, MATPOWER which is compatible to the pro-
prietary MATLAB as well as the open-source GNU Octave environment (Zimmerman
et al. 2011), and its Python port PYPOWER. Other solutions are programmed in the
object- and component-oriented multi-domain modeling language Modelica (Fritzson
2015). Since this allows a declarative definition of the model equations, the Modelica
user resp. programmer does not need to transform mathematical models into imper-
ative code (i.e. assignments). Modelica simulations can be executed with the aid of
proprietary environments such as Dymola and open-source ones such as OpenModelica
(Fritzson et al. 2006) and JModelica (Akesson et al. 2010) with various numerical back-
ends. Modelica libraries with models for power system simulations are PowerSystems
(Franke and Wiesmann 2014) and ModPowerSystems (Mirz et al. 2016). The use of Mod-
elica for power system simulations is not limited to the academia but it is also applied
in real operation, especially with CIM based grid topologies as shown in (Viruez et al.
2017). However, in the presented approach an intermediate data format, called [IDM,
is used.

The main contribution of this paper is the presentation of our open-source tool called
CIMverter that transforms CIM documents into Modelica system models based on arbi-
trary Modelica libraries, as specified by the user. This allows for executing any kind of
Modelica simulations which shall make use of informations stored in CIM documents.
To achieve this, CIMverter utilizes a template engine that processes template files writ-
ten in Modelica, containing placeholders. These placeholders are filled by the template
engine with data from the CIM document and combined to a complete system model
that can be simulated in a Modelica environment. The use of a template engine leads
to encapsulation, clarity, division of labor, component reuse, single point-of-change, inter-
changable views, and so forth, as stated in (Parr 2004). For instance, this means that
in case of many interface changes of a component model, the Modelica user does not
need to modify the CIMverter source files but just the templates written in Model-
ica. Hence, there is no special knowledge of CIMverter’s programming language or any
Domain-Specific Language (DSL) needed. Furthermore, this paper presents examples on
how CIM objects can be mapped to objects of a usual Modelica power system library.
Our template based approach can also be used for conversions to formats other than
Modelica.

This paper gives a short introduction to data formats as well as the main soft-
ware components used in CIMverter followed by an overview of the overall con-
cept. Then it describes how the mapping from CIM to Modelica is performed
at top level and on bottom level with the usage of a C++ representation of the
Modelica classes in the so-called Modelica Workshop. Following this, the approach
and implementation is evaluated with the aid of two Modelica power system

Razik et al. Energy Informatics 2018, 1(Suppl 1):47 Page 197 of 428

libraries and validated with a commercial simulation tool. Finally, related work is
discussed and the paper is concluded by a roundup and an outlook of future
work.

Fundamentals

CIM RDF/XML Documents

The CIM specification is based on the Unified Modeling Language (UML), a formalism
for graphical object-oriented modeling (Rumbaugh et al. 2004). With UML class dia-
grams and relations between them (e. g. inheritance, associations, aggregations, etc.) the
CIM standards specify which kind of objects a CIM document can contain and how these
objects are interlinked, which is called an ontology. The UML class diagrams contain
attributes only, as there is no need for function definitions in case of CIM as information
model specification. Machine readable CIM drafts are provided by the CIM User Group
(CIMug) and a brief introduction to CIM is provided by (McMorran 2007). While UML is
used for the definition of all CIM classes and their relations, the actual data (i. e. the CIM
objects) in CIM documents is encapsulated through RDF/XML.

In fact, the widely-used Extensible Markup Language (XML) is a text-based formalism
for arbitrary human- and machine readable documents (Bray et al. 1997). Unfortunately,
the tree structure of XML documents does not allow the link of different XML elements,
except for parent-child relationship. As a result, the World Wide Web Consortium (W3C)
has proposed the Resource Description Framework (RDF) which can be used in combi-
nation with XML for the representation of arbitrary relations between a <subject>
and an <object> by so-called RDF triples of the form “<subject> <predicates
<objects>” (Pan 2009). In the triple “a car has an engine’, the <predicate> “has”
would represent an aggregation between the <subject>, “a car’;, and the <object>,
“an engine”. This is the way how links (i. e. instances of aggregations, compositions, etc.),
as specified by CIM UML, can be expressed. For the deserialization of CIM documents,
the open-source CIM++ Deserializer is used. It reads the CIM document and outputs
them in C++ as a list of CIM objects which are interlinked as defined by the RDF state-
ments in the CIM document. More on CIM++ and CIM RDF/XML can be found in
(Razik et al. 2018).

Modelica
The design of Modelica enables engineers to focus on the formulation of the physi-
cal model by the implementation of the underlying equations in a declarative manner
(Fritzson 2015). The physical model can readily be implemented without the necessity to
fix any causality through the definition of input and output variables, thus, increasing the
flexibility and reusability of the models (Tiller 2001). Besides, existing Modelica environ-
ments relieve the engineer from the implementation of numerical methods to solve the
specified equation system. The concept of component modeling by equations is shown
exemplarily in Fig. 1 Listing 1 for a constant power load, which is typically employed to
represent residential and industrial load characteristics in electrical grid simulations.
The presented PQLoad model is part of the ModPowerSystems (Mirz et al. 2016) library
and is derived from the base model OnePortGrounded using the keyword extends,
underlining that the Modelica language supports object-oriented modeling by inheri-
tance. In the equation section, the physical behavior of the model is defined in a

Razik et al. Energy Informatics 2018, 1(Suppl 1):47 Page 198 of 428

model PQLoad
extends ModPowerSystems.Base.Interfaces.
ComplexPhasor.SinglePhase.OnePortGrounded;

parameter SI.ActivePower Pnom = 0.5e6 ;

parameter SI.ReactivePower Qnom = 0.5e6 H
equation

Pnom/3 = real(vxconj(i));

Qnom/3 = imag(v*conj(i));

end PQLoad;

Fig. 1 Listing 1: Component model of a constant power load

declarative manner by the common equations for active and reactive power. The param-
eters employed in the equations are declared in the PQLoad model beforehand, while
the declarations of the complex variables voltage and current are inherited from
the base model OnePortGrounded. A complex system, e.g. an entire electrical grid,
can be implemented as system model by instantiating multiple components and specify-
ing their interaction by means of connection equations, see line 25 in Fig. 10 Listing 6.
The connect construct involves two connectors and introduces a fixed relation between
their respective variables, e.g. between their voltages (equality coupling) and currents
(sum-to-zero coupling).

Typically, Modelica environments provide a GUI for the graphical composition of mod-
els. After finishing the modeling process, the Modelica code is parsed, analysis and
optimization steps are performed to obtain a minimum equation system, and then C code
is generated, linked against a numerical library, and executed for the solution of the model
(Fritzson 2015).

Template Engine

A template engine (also called template processor or template system and common in web
site development) generates the Modelica code. Template engines allow the separation of
model (i. e. logic and data) and view (i. e. resulting code). For CIMverter it shortly means
that there is no Modelica code within the C++ source code of CIMverter. To achieve this,
template engines have a

— data model: for instance based on a database, a text / binary file, or a container type of
the template engine’s programming language,

— template files (also called templates): written in the language of the resulting
documents together with special template language statements, and

— result documents: which are generated after the processing of data and template files,

so-called expanding,

as illustrated in Fig. 2, where an example HTML code template with a place holder
{{name}} is filled with the name from a database, resulting in a complete HTML
document. Such place holders are one type of template markers.

Two famous template engines which can be used in C++ are Teng and Clear-
Silver. The template engine chosen for CIMverter is CTemplate (Silverstein). It is
already used by the CIM++ Unmarshalling Generator (Razik et al. 2018). Besides,
it makes no difference on the language in which the templates are written.

Razik et al. Energy Informatics 2018, 1(Suppl 1):47 Page 199 of 428

Template

<title>Hello {{name}}!</title> Output

Fig. 2 Template engine example with HTML code

Template Engine <title>Hello World! </title>

For CTemplate these are just strings containing template markers which can be i.a. of
following types:

— Variable markers of the form { { VAR} } which are replaced by text from data
dictionaries as described later.

— Start and End Section markers of the form { {#SECTION}}..{{/SECTION}},
enclosing sections which may appear zero to N times.

— Template include markers of the form { { >5TEMPLATE INCLUDE } }, advising
CTemplate to insert and expand another template (subtemplate) at the marker’s
location, which also can be repeated zero to N times in the output with different
dictionaries.

— Comment markers of the form { { ! Comment Your Code}}.

The data dictionaries provide mappings from keys (e. g. name) to values (e.g. World).
Both, keys and values are strings and it is on the application using CTemplate to provide
well formatted values to be inserted. Furthermore, on the one hand not all dictionary
values must be used and on the other hand not all markers must exist in a dictionary
during expanding. In such cases, the values resp. markers are being ignored by CTemplate.
For more details on CTemplate, please refer to (Silverstein).

Concept

The concept of CIMverter is depicted in Fig. 3. It uses and extends the concept of CIM++
as introduced in (Razik et al. 2018). The CIM UML ontology can be edited by a visual
UML editor and exported to a CIM C++ codebase which is not compilable and there-
fore needs to be completed by the CIM++ code toolchain. The resulting adapted CIM
C++ codebase, representing all CIM classes with their relations, is compilable and used
by the CIM++ Unmarshalling Generator for the generation of code which is needed for
the actual deserialization process of the CIM++ Deserializer. The CIM++ toolchain and
the Unmarshalling Generator are applied in an automated way, whenever the ontology
is changed. This keeps the CIM++ Deserializer compatible with newest CIM RDF/XML
documents.

CIMverter uses the CIM++ Deserializer for deserialization of CIM objects from
RDF/XML documents to C++ objects. Therefore, CIMverter also includes the adapted
CIM C++ codebase, especially the headers for all CIM classes. Due to ongoing develop-
ment of CIM and the concomitant automated modifications of these headers, one might
suppose that the CIMverter development has to keep track of all CIM modifications but
in the vast majority of cases a subsequent modification of CIMverter code is unneeded.
This is because the continuous development of CIM mostly leads to new CIM classes with

Razik et al. Energy Informatics 2018, 1(Suppl 1):47

= “_p| Ccmcs CIM++ Adapted
= = Codebase Code Toolchain CIM C++
‘ Codebase

CIM++ Unmarshalling Generator

CIM++
Deserializer

CIM RDF/XML
Topology
Document(s)

Template
Engine

=
in

1

]

CIM based Topology

. . Modelica User
Modelica Editor

Modelica
Templates

Modelica
Libraries

Modelica
Workshop

_>

CIM Load1 |
VnCIM_Load1_H

Component Model(s) System Model

Fig. 3 Overall concept of the CIMverter project: The upper part shows the automated code generation
process from the definition of the ontology by CIM UML to the unmarshalling code generation of the CIM++
Deserializer. The middle part shows the transformation process from a given topology (based on the
specified CIM ontology) to a Modelica system model, based on Modelica libraries which are addressed by
appropriate Modelica templates

further relations or new attributes in existing classes. Such extensions of existing CIM
classes require no changes on CIMverter code using them.

With a Modelica Editor, the component models of Modelica libraries can be edited.
In case the interface of a component model is changed, the appropriate Modelica tem-
plate files have to be adapted by the CIMverter user who wants to generate the complete
Modelica system models out of the given CIM topology documents. Thereby, using
the template engine with the concomitant model-view separation leads to the following
advantages:

— clarity: the templates are written in Modelica with only few kind of template
keywords (i. e. markers).

— division of labor: the CIMverter user, typically a person with electrical engineering
background and knowledge of Modelica, can adapt the Modelica templates easily in
parallel with the CIMverter programmer reducing conflicts during their
developments. While the engineer does neither need any C++ programming skills
nor any knowledge of CIMverter internals, the programmer does not need to keep
CIMverter up-to-date with all Modelica libraries that could be used with CIMverter.

— component reuse: for better readability, templates can include other templates,
which can be reused for different component models of the same or further Modelica
libraries.

— interchangable views: some Modelica models can be compiled with various options,
e.g. for the use of different model equations, which can be defined directly in the

Page 200 of 428

Razik et al. Energy Informatics 2018, 1(Suppl 1):47 Page 201 of 428

code of the system model. For this purpose, the user can easily specify another set of
templates.

— maintenance: changes to the Modelica code to be generated, which are needed e. g.
due to changes of component model interfaces, can be achieved by editings of
template files in a multitude of cases. Changing a template, by the way, is less riskier
than changing a program which can lead to bugs. Furthermore, recompiling and
reinstalling of CIMverter is unnecessary.

As already pointed out, some changes to the Modelica libraries require more than a tem-
plate adaption which is related to the mapping of the deserialized CIM C++ objects to
the dictionaries of the template engine used to complete the Modelica templates to full
system models.

For a clear mapping between relevant data from the CIM C++ objects to the template
dictionaries, the Modelica Workshop was introduced. For each Modelica component,
the Workshop contains a C++ class with attributes holding the values to be inserted
in the appropriate dictionary, which will be used for the Modelica code fragment
expansion of the belonging component within the Modelica system model. The map-
ping from CIM C++ objects to these Modelica Workshop objects is defined by C++
code. An alternative would have been the introduction of a DSL for a more flexible
mapping definition. However, a really flexible DSL would have to support data con-
versions and computations for data mappings from CIM to Modelica class instances.
Despite tools for DSL specification and parser generation etc., the complexity of the
CIMverter project would increase. Moreover, CIMverter users as well as the program-
mers would need to get familiar with the DSL. Both reasons would make CIMverter’s
maintenance and further development more sophisticated and therefore less attractive
to potential developers. For instance, the co-simulation framework mosaik at the begin-
ning also made use of a specially developed DSL for scenario definitions (Schiitte 2011)
but it was removed later on and now the scenarios are described by Python code,
in which mosaik is implemented, as it is more flexible and powerful. The Modelica
Workshop and other implementation design aspects, as described in the next sections,
shall perform the C++ coded mappings in an intuitive and understandable way, mak-
ing CIMverter therefore easily extensible by further Modelica component models and
libraries.

Overall implementation

As described in the Concept, CIMverter utilizes CIM++ for deserialization of the CIM
topology documents (e. g. power grids) for the generation of full system models based on
the chosen Modelica library (e. g. ModPowerSystems). C++ was selected as programming
language because of the CIM++ Deserializer, with its including CIM C++ codebase, as
well as CTemplate, both written in C++. As a static, strong type-checking language with
less Runtime Type Information (RTTI) capabilities than a dynamic language such as e. g.
Python, speculative dynamic typecasts are used for a return of the correct CIM C++ class
object. Anyway, the times for the conversion of CIM to Modelica models in comparison
to the compile time of the generated Modelica models is negligible. The usage of C++ also
allows to look up CIM details in the Doxygen documentation generated from the adapted
CIM C++ codebase of CIM++.

Razik et al. Energy Informatics 2018, 1(Suppl 1):47 Page 202 of 428

CIMverter has a Command Line Interface (CLI) and follows the UNIX philosophy of
writing one program for one task (Mcllroy et al. 1978; Raymond 2003). Therefore, it can
be simply integrated into a chain of tasks which need to be performed between the cre-
ation of a CIM topology and the simulations by a Modelica environment as realized in the
SINERGIEN Co-Simulation project (Mirz et al. 2018).

A configuration file is handled with the aid of the libconfig++ library, where i.a.
the default graphical extent of each Modelica component can be adjusted. It also
allows the definition of default CIM datatype multipliers (e.g. M for MW in case of
IEC61970: :Base: :Domain: : ActivePower) which are not defined in some CIM
RDF/XML documents such as the ones from NEPLAN based on the ENTSO-E pro-
file, specified by (ENTSO-E 2018). After these implementation details, in following
subsections the main aspects of the overall implementation are presented.

Mapping from CIM to Modelica
The mapping from CIM documents to Modelica system models can be divided in three
levels of consideration as in (Cao et al. 2015).

At first level, there are the library mappings. The relevant data from CIM C++ objects,
as deserialized by CIM++, is first stored in an intermediate object representation (i. e. in
the Modelica Workshop) with a class structure similar to the one of the Modelica library.
Hence, for each Modelica library there can be a set of appropriate C++ class definitions
in the Modelica Workshop.

Object mappings are part of the second level. There are not just one-to-one mappings, es
illustrated in Fig. 4. Sometimes, several CIM objects are mapped to one Modelica object
resp. component, such as the ITEC61970: :Base: :Wires: : PowerTransformer.
There are also CIM objects like TEC61970: :Base: :Core: : Terminal (electrical
connection points, linked to other CIM objects) which are not mapped to any Modelica
component models.

Parameters and unit conversions are performed at the third level between the CIM C++
objects and the Modelica Workshop objects. Examples are voltages, coordinates, and so
forth. The next section faces the second and third level mappings as part of the Modelica
Workshop but before, the CIM object handling is explained.

CIM Object Handler

The CIMObjectHandler is in charge of the CIM objects handling. Figure 5 Listing 2
shows a part of its main routine ModelicaCodeGenerator. Topological nodes have a
central role in CIM topologies of power grids. Therefore, finding a TopologicalNode

Fig. 4 Mapping at second level between CIM and Modelica objects

Razik et al. Energy Informatics 2018, 1(Suppl 1):47 Page 203 of 428

ctemplate::TemplateDictionary *dict =
new ctemplate::TemplateDictionary ("MODELICA");

for (BaseClass *0bject : this->_CIMObjects) {
if (auto *tp_node = dynamic_cast<TPNodePtr>(0Object)) {
BusBar busbar = this->TopologicalNodeHandler (tp_node, dict);

std::1list<TerminalPtr>::iterator terminal_it;

for(terminal_it = tp_node—>Terminal.begin();
terminal_it != tp_node->Terminal.end(); ++terminal_it) {
if (auto *power_trafo = dynamic_cast<PowerTrafoPtr >(

(*terminal_it)->ConductingEquipment)) {
Transformer trafo =
PowerTransformerHandler (tp_node, (*terminal_it),
power_trafo, dict);
Connection conn(&busbar, &trafo);
connectionQueue.push(conn);

}

Fig. 5 Listing 2: Snippet of the routine ModelicaCodeGenerator

(saved as tp_node), a busbar object of the Modelica Workshop class BusBar is ini-
tialized with it. busbar is needed later on, for the connections of all kind of conducting
equipment (i. e. power grid components) that is connected to it.

Then, the inner loop iterates over all terminals of the found tp node and
checks which kind of ConductingEquipment is connected by the respective ter-
minal to the tp node. In case of a PowerTransformer, a trafo object of
the Modelica Workshop class Transformer is initialized with the data from the
PowerTransformerHandler. Furthermore, a new connection between the previ-
ously created busbar and the trafo is constructed and pushed on a queue of all
connections. These steps are performed for all other kinds of components, which is why
the ModelicaCodeGenerator calls handlers for all of them.

The tp node with the terminal connected to the regarding compo-
nent (here: trafo) are passed to the appropriate component handler (here:
PowerTransformerHandler). Besides, the handler also gets the main template
directory dict, called “MODELICA”. Within a handler, the conversions from the
required CIM C++ object(s) to the Modelica Workshop object trafo are performed.
Furthermore, a subdirectory (here called *“TRANSFORMER” used for the Transformer
subtemplate, see e.g. Fig. 8 Listing 4) is created and linked to the given main template
directory (see Fig. 7 Listing 3).

Some conversions are related to the graphical representation of the CIM objects. This
is because a graphical power grid editor, which can export CIM documents, can link a
IEC61970: :Base: :DiagramLayout : : DiagramObject to each component, with
information about the position of this component, i.e. (¥, y)-coordinates, in the coordi-
nate system of the graphical editor. Since the coordinate system of the CIM exporting
editor (e.g. NEPLAN) can differ from the one of the Modelica editor (e. g. OMEdit), the
coordinates are converted by following code lines:

t_points.xPosition = trans_para[0] *x + trans_paralll;
t_points.yPosition = trans_paral[2]xy + trans paral3];

For reasons of flexibility, the four parameters trans_para can be set in the configu-
ration file and in case of NEPLAN and OMEdit are defined by |1,0,-1,0|. Furthermore,
the NEPLAN generated CIM documents have several DiagramObject instances linked

Razik et al. Energy Informatics 2018, 1(Suppl 1):47 Page 204 of 428

to one component. To avoid multiple occurrences of the same component in the Mod-
elica connections diagram, the middle point of these DiagramObject coordinates is
calculated. This middle point then defines the component’s position in the Modelica
connections diagram.

Another conversion must be performed for the instance names of Modelica classes
which are derived from the name attribute of the CIM object and may not begin or con-
tain certain characters. Each such object derives its name attribute from the elementary
IEC61970: :Base: :Core: : IdentifiedObject superclass. More on the electrics
related conversion details will be given in the next section.

Modelica workshop implementation

In Fig. 5 Listing 2, different CIM object handlers (e. g. PowerTransformerHandler)
return appropriate Modelica Workshop objects which represent components of the
targeted Modelica library. It should be stated at this juncture that CIM is not only
related to power grid components and, for instance, also includes energy market
players (e.g. Customer), Asset, and so forth. Moreover, as presented in (Mirz
et al. 2018), CIM also can be extended by further classes of different domains.
Hence, the Modelica Workshop does not need to be reduced to power grid com-
ponents, even though the current Modelica Workshop is related to components for
power grid simulations. This is due to ModPowerSystems as first Modelica library
targeted by the CIMverter converter. Nonetheless, the current Modelica Workshop
can be used as is for the utilization of another Modelica library as presented in
the Evaluation. To avoid reimplementations, each Modelica Workshop class repre-
senting a Modelica component, such as Slack or Transformer, inherits from the

so-called ModBaseClass.

Base Class of the Modelica Workshop

All Modelica components need an annotation information which defines the visibility of
the component, its extent, rotation, etc. Each Modelica Workshop class, inheriting from
ModBaseClass, therefore has an annotation member holding the annotation data in
a form as used in the Modelica component’s annotation statement. For this purpose,
ModBaseClass also holds several member functions which combine the annotation
data to well structured strings as needed for the template dictionary used for filling the
annotation statements of all Modelica template files as the annotation statements of
all Modelica components have the same structure and the same markers (see lines 12-14
and 20-22 of Fig. 10 Listing 6).

For the Modelica statements which differ between different Modelica compo-
nents (see lines 8-11 and 16-19 of Fig. 10 Listing 6) there exists a virtual function
set template values. In each of the component subclasses this function will be
overridden with a specialized one which sets all markers that are needed for a complete filling
of the belonging Modelica component template, such as presented in Fig. 8 Listing 4.

Further member variables of ModBaseClass hold the name of the object and the spec-
ified units information, whose default values are set in the configuration file. The object’s
name is read from the name attribute of the CIM class IdentifiedObject. Besides,
it accumulates objects of the CIM class DiagramObjects, where the objects rotation
and points on the GUI coordinate systems are stored.

Razik et al. Energy Informatics 2018, 1(Suppl 1):47 Page 205 of 428

Table 1 CIM PowerTransformer to Modelica Workshop Transformer mapping

M Contained / Accumulated Modelica Workshop
PowerTransformer Member Variables Transformer
PowerTransformerEnd; BaseVoltage-> Vnoml

nominalVoltage.value *my
PowerTransformerEnd, BaseVoltage-> Vnom2

nominalVoltage.value *my

PowerTransformerEnd; ratedS.value x mp Sr
PowerTransformerEnd; r.value
PowerTransformerEnd; x.value x
re st’ -100 Pcur
nom|1
24 x2 —st’ -100 Vscr

The left column shows the primary and secondary PowerTransformerEnd which accumulate further CIM objects, as listed in
the middle column, holding the information needed for the initialization of the Transformer attributes as listed in the right
column. The constants my and mp stand for the voltage and power value multipliers. The bottom of the table shows that
additionally two conversions are needed to calculate the rated short circuit voltage V¢, and the short circuit losses Pe,, in percent

CIM to Modelica Object Mapping

One of the most interesting mappings is from the CIM PowerTransformer
to the Modelica Workshop Transformer class, as presented in Table 1. The
PowerTransformer consists of two or more coupled windings and therefore accu-
mulates objects of the class PowerTransformerEnd which represent the connectors
of the PowerTransformer (FEIN Aachen e.V. 2018). Further important mappings
implemented in the Modelica Workshop are listed in Table 2.

Component Connections

After the instantiations of all components in the Modelica system model, the connections
must be defined as well. In Fig. 5 Listing 2 for each newly created component a connection
(i. e. instance of Connection class) to the corresponding busbar is created. Therefore,
a function template of Connection with the signature

template<typename T> void cal _middle points (T xcomponent) ;

is called in the constructors of Connection and computes one or two middle points
between the endpoints of the connection line. The four different cases for the middle
points are illustrated in Fig. 6.

Furthermore, the connectors of the different components can vary between differ-
ent Modelica libraries. Therefore, the connector names can be configured in a separate
configuration file, called connectors.cfg, which is included in the directory of the
belonging Modelica template files. Its settings are read by all Connection constructors,

Table 2 Excerpt of further important mappings from CIM to ModPowerSystems as implemented in
the Modelica Workshop

CIM ModPowerSystems
TopologicalNode

. . Slack
ExternalNetwoorkInjection
ACLineSegment PiLine
TopologicalNode
EnergyConsumer PQLoad

SvPowerFlow

Razik et al. Energy Informatics 2018, 1(Suppl 1):47

Zero one two
Fig. 6 Connections with zero, one, and two middle points between the endpoints. The endpoints are
marked with circles

combined, and fed into the dictionary which is used for filling the connections subtem-
plate, included by the main template file. The final Modelica code generation will be
exemplarily presented in the next section.

Evaluation

For evaluation of the approach and implementation, we show exemplary templates as
well as the resulting Modelica models. To demonstrate the flexibility and applicability
of CIMverter, we use two different power system libraries, the ModPowerSystems and
the PowerSystems library. Besides, we validate the simulation results obtained with the
generated models against the commercial simulation tool NEPLAN.

The main Modelica template defines the overall structure of the Modelica system model
and contains markers for component instantiations and connection equations, Fig. 7
Listing 3. The inserted subtemplates hold information regarding the library and pack-
age from which the models are taken, e. g. see line 1 in the corresponding subtemplates,
Fig. 8 Listing 4 (for ModPowerSystems) and Fig. 9 Listing 5 (for PowerSystems), of the
Transformer model. As use case, we generate the components for a steady-state sim-
ulation of a symmetrical power system in balanced operation. For the ModPowerSystems
library, we utilize models from the PhasorSinglePhase package, since complex pha-
sor variables and a single phase representation are functional for this type of simulation.
In case of the PowerSystems library, we perform the simulation with models from the
AC3ph package, obtaining comparable results by considering the dq0 transform in the
synchronously rotating reference frame. Other types of simulation might be performed

{{#HEADER_FOOTER_SECTION}}model {{GRID_NAMEZ}}
{{/HEADER_FOOTER_SECTION}}
{{#SYSTEM_SETTINGS_SECTIONZ}}
inner ModPowerSystems.Base.System
{{NAME}} (freq_nom(displayUnit = "{{FNOM_UNIT}}") = {{FNOM}})
annotation(Placement (visible = {{VISIBLE}},
transformation(extent = {{TRANS_EXTENT_POINTS}},
rotation = {{ROTATION}})));
{{/SYSTEM_SETTINGS_SECTIONZ}}

{{>PQLOAD}}
{{>TRANSFORMER}}

equation
{{>CONNECTIONS}}
{{#HEADER_FOOTER_SECTIONZ}}

end {{GRID_NAME}}; {{/HEADER_FOOTER_SECTIONZ}}

Fig. 7 Listing 3: Main Modelica template related to ModPowerSystems, including several sections (e.g.
SYSTEM_ SETTINGS) and subtemplates (e.g. PQLOAD)

Page 206 of 428

Razik et al. Energy Informatics 2018, 1(Suppl 1):47 Page 207 of 428

ModPowerSystems.PhasorSinglePhase.Transformers.Transformer
{{NAME}}(Vnom1 = {{VNOM1}}, Vnom2 = {{VNOM2}},
Sr(displayUnit = "{{SR_DISPLAYUNIT}}") = {{SR}},

Pcur = {{PCUR}}, Vscr = {{VSCR}})

annotation (Placement(visible = {{VISIBLE}},
transformation(extent = {{TRANS_EXTENT_POINTS}},
rotation = {{ROTATION}}, origin = {{ORIGIN_POINT}})));

Fig. 8 Listing 4: Transformer subtemplate related to ModPowerSystems library

by changing package and model names accordingly in the subtemplates. The consid-
ered Transformer subtemplates, Fig. 8 Listing 4 and Fig. 9 Listing 5, contain markers
to define primary and secondary nominal voltage as well as rated apparent power. The
interface of the ModPowerSystems component specifies the Transformer’s electrical
characteristics by rated short circuit voltage V., and short circuit losses P, ,, while
resistance R and reactance X are defined for the PowerSystems component.

In our use case, we model the benchmark system described in (Rudion et al. 2006),
which is a medium-voltage distribution network with rural character. Integrated com-
ponents are a slack bus, busbars, transformers, Pilines, and PQloads. An extract of
the resulting Modelica system model generated from the CIM data with the presented
CIMverter converter shows Fig. 10 Listing 6. The system model of the benchmark grid
was additionally generated for the use of the PowerSystems library, simply by switching
from the ModPowerSystems to the PowerSystems template set. The connection diagrams
of the resulting models, Fig. 11, show the same grid topology involving the respective
components from both libraries. For the validation of both Modelica system models, they
were built and simulated. Afterwards, the simulation results were compared with the ones
of the proprietary simulation tool NEPLAN, Table 3.

Related work and discussion

CIM itself as well as the conversion from CIM to different formats for power systems
simulations is subject to scientific research for about 15years (McMorran et al. 2004;
Popovic et al. 2007). Since CIM is a flexible but comparatively complex format suitable
for huge data sets, there is ongoing research on processing and storage of CIM based data
such as grid topologies (Pavkovi¢ et al. 2017; Ravikumar and Khaparde 2015; Requardt et
al. 2017).

Only in the last few years, efforts have been made to power system related modeling
in Modelica (Franke and Wiesmann 2014; Casella et al. 2016). Moreover, converters from
various document formats to Modelica were developed in the past. In (Cao et al. 2015),
for instance, a flexible model transformation from Building Information Models (BIM) to

PowerSystems.AC3ph.Transformers.TrafoStray
{{NAME}}(redeclare record Data =
PowerSystems.AC3ph.Transformers.Parameters.TrafoStray
(puUnits = false, V_nom = { {{vNOM1}}, {{VNOM2}} },
r ={ {{R}}, 0}, x = { {{X}}, 0 }, S_nom = {{SR}}))
annotation (Placement (visible = {{VISIBLE}},
transformation(extent = {{TRANS_EXTENT_POINTS}},
rotation = {{ROTATION}}, origin = {{ORIGIN_POINT}})));

Fig. 9 Listing 5: Transformer subtemplate related to PowerSystems library

Razik et al. Energy Informatics 2018, 1(Suppl 1):47

© 00O U W~

model modpowersystems_mv_benchmark_grid
inner ModPowerSystems.Base.System
System(freq_nom(displayUnit =) =
annotation(Placement (visible = true,
transformation(extent = {{0.0,-30.0},{30.0,0.0}},
rotation = 0)));

50.0)

ModPowerSystems.PhasorSinglePhase.Loads.PQLoad
CIM_Load12_H(Pnom(displayUnit =) = 15000000.000,
Qnom(displayUnit =) = 3000000.000,
Vnom(displayUnit =) = 20000.000)

annotation (Placement(visible = true,
transformation(extent = {{-8.0,-8.0},{8.0,8.0}},
rotation = 0, origin = {237.1,-107.8})));

ModPowerSystems.PhasorSinglePhase.Transformers.Transformer

CIM_TR1(Vnoml = 110000.000, Vnom2 = 20000.000,
Sr(displayUnit =) = 40000000.000,
Pcur = 0.63000, Vscr = 12.04000)

annotation (Placement(visible = true,

transformation(extent = {{-8.0,-8.0},{8.0,8.0}},
rotation = -90, origin = {86.0,-64.3})));
equation
connect (CIM_NO.Pin1,CIM_TR1.Pin1)
annotation(Line(points={{153.80,-40.00},{163.80,-56.15},
{86.00,-56.15},{86.00,-72.30}},
smooth = Smooth.None));

color = {0,0,0},

end modpowersystems_mv_benchmark_grid;

Fig. 10 Listing 6: Medium-voltage benchmark grid (Rudion et al. 2006) as converted from CIM to a system

model based on the ModPowerSystems library

different Modelica Libraries is presented. Actually, the approach handles SimModel doc-
uments which are a kind of BIMs and based on pure XML (without RDF) which allows the
direct use of an XML data binding framework for XML data unmarshalling. The mapping
rules are specified in an XML format and the Modelica code generation is hard coded in

Python scripts.

CIM_HY_Netz
d
ard1

[

e Losa 1

cn_Loads 1

D o %
%—FQ . 5%

m i CIM_Load7_t

2 5 R

e EAR

3 5

2, 3

nﬂj

g'h’?l/% > o (.”j"’\‘—“- 7
- cll_cimLonar | = fiim Coureondiz 1
Sige

' V]

oR AP

i ,{\hb N i -
CIM_Latd_thad3 | el
. |
L 2 s
7IM7Lnad4j§' -i!l [CIM_LoHd18ok14 |
) = offe>
8 gﬂoamﬁ :
I>dns ?%‘ > ~lwo
= Syl
M Loals 1 oM loagsH

, L

ofl
(b)

CIM_Loads_H

Fig. 11 Medium-voltage benchmark grid (Rudion et al. 2006) as converted from CIM to a system model in
Modelica based on the a ModPowerSystems and b PowerSystems library

Page 208 of 428

Razik et al. Energy Informatics 2018, 1(Suppl 1):47 Page 209 of 428

Table 3 Excerpt from the numerical results for node phase-to-phase voltage magnitude and angle
regarding the medium-voltage benchmark grid

Grid NEPLAN ModPowerSystems PowerSystems

Node VI kV] ZVI[°] [V kV] ZV[°] VI kV] ZV[°]
No 110.000 0.000 110.000 0.000 110.000 0.000
Ny 19.531 -4.300 19.532 -4.268 19.532 -4.268
Nig 18.828 -4.900 18.828 -4.852 18.828 -4.852
Ny 18.825 -4.900 18.826 -4.852 18.826 -4.852

The models based on the ModPowerSystems and PowerSystems libraries yield equal results using the Dymola environment and
dassl solver. The results deviate mariginally from the reference results obtained with the proprietary tool NEPLAN, which might be
explained by numerical rounding and different solution methods

Recently, the software project cim2modelica was published (Gomez et al. 2018). It
allows for defining direct mappings from CIM object attributes to the ones in Modelica
by a DSL as it is not possible in CIMverter. The disadvantages of this approach are: a pro-
grammer as well as the Modelica user have to make familiar with the DSL and it allows
no data conversions, as it can be completely flexibly performed in CIMverter by C++
code within the Modelica Workshop. Currently, cim2modelica supports the OpenIPSL
Modelica library only and it was not proofed if the mapping approach can be used on
any other existing Modelica library or for more complex mappings such as in case of the
PowerTransformer. Besides, it does not process any diagram related data which is
why no proper connection diagrams of the outputted system model can be printed by the
Modelica environment.

Conclusion and outlook

This paper presents an approach for the transformation from CIM to Modelica. The map-
ping of CIM RDF/XML documents to Modelica system models is based on a CIM to
C++ deserializer, a Modelica Workshop representing the Modelica classes in C++, and a
template engine. CIMverter, the implementation of this approach, is flexible enough to
address arbitrary Modelica libraries as presented by the generation of system models for
two power system libraries. In case of ModPowerSystems, there is no need of modifying
the mappings as implemented in the CIM object handlers while switching to the Power-
Systems library. Also, the Modelica Workshop classes are compatible with both libraries.
Subsequently, the generated system models simulated with a Modelica environment are
successfully validated against a common power systems simulation tool. CIMverter has
already been successfully applied in the research area of power grid simulations as, for
instance, in (Dinkelbach et al. 2018).

It is obvious that the current implementation can also be used for conversions into
other formats than Modelica even with the current Modelica Workshop as the introduced
template markers can be used in every file format. Therefore, the Modelica Workshop
could be cleaned up and extended to a general Power Systems Workshop, addressing data
formats used by other power system analysis and simulation tools.

Additionally, the current middle point calculations for the Modelica connections dia-
grams could be improved by the usage of a graph layout library such as Graphviz (Ellson
et al. 2001). This would allow CIMverter to equip the outputted document with proper
diagram data even if the CIM topology to be converted contains no diagram data at all.

Razik et al. Energy Informatics 2018, 1(Suppl 1):47 Page 210 of 428

Availability and requirements
e Project name: CIMverter
e Project home page: http://fein-aachen.org
e Operating system: platform independent
e Programming language: C++
e Other requirements: CIM++, CTemplate, libconfig++, etc.
e License: GNU General Public License v3.0
® Any restrictions to use by non-academics: see GPL v3.0

Abbreviations

BIM: Building information models; CIM: Common information model; CIMug: CIM user group; CLI: Command line
interface; DSL: Domain-specific language; EA: Enterprise architect; ENTSO-E: European network of transmission system
operators for electricity; RDF: Resource description framework; RTE: Round-trip engineering; RTTI: Runtime type
information; UML: Unified modeling language; W3C: World wide web consortium; XMI: XML metadata interchange; XML:
Extensible markup language

Acknowledgements
We thank Taojun Li, Maximilian KiBgen, and Achim Volker for the co-development of CIMverter.

Funding

This research was funded by the German Federal Ministry of Education and Research (BMBF) within the SINERGIEN and
ENSURE research projects under funding codes 03EK3567B and 03SFK1CO. Publication costs for this article were
sponsored by the Smart Energy Showcases - Digital Agenda for the Energy Transition (SINTEG) programme.

Availability of data and materials
The datasets used and /or analysed during the current study are available from the corresponding author on reasonable
request.

About this Supplement

This article has been published as part of Energy Informatics Volume 1 Supplement 1, 2018: Proceedings of the 7th
DACH+ Conference on Energy Informatics. The full contents of the supplement are available online at https://
energyinformatics.springeropen.com/articles/supplements/volume- 1-supplement-1.

Authors’ contributions

LR leads the development of CIMverter and was the major contributor in writing the manuscript. JD is a developer of
CIMverter as well as ModPowerSystems and performed the power system simulations for the Evaluation. MM assisted in
the development of CIMverter and is the founder of ModPowerSystems. AM is the leader of the aforementioned research
projects at the Institute for Automation of Complex Power Systems. All authors read and approved the final manuscript.

Authors’ information

Lukas Razik received his diploma (German equivalent of a master’s degree) in Computer Science from RWTH Aachen
University, Germany in 2013. After graduation he worked as research associate at the Institute for Software and Tools for
Computational Engineering and the Institute for Experimental Molecular Imaging, both at RWTH Aachen University, in
the field of computational differentiation methods. Since 2015 he is with the Institute for Automation of Complex Power
Systems, EON Energy Research Center, RWTH Aachen University, where he is a Ph. D. student. His current research
interests focus on high-performance and cloud computing approaches in the area of energy management and
distribution systems as well as power grid simulations.

Jan Dinkelbach received his M. Sc. degree in Electrical Engineering, Information Technology and Computer Engineering
from RWTH Aachen University, Germany, in 2016. Since 2017 he pursues his Ph. D. at the Institute for Automation of
Complex Power Systems, E.ON Energy Research Center, RWTH Aachen University. His research focuses on modeling of
electrical grid components and the development of power system simulators.

Markus Mirz received his M. Sc. degree in electrical power engineering from RWTH Aachen University, Aachen, Germany,
in 2014. Since 2015 he is research associate and Ph.D. student at the Institute for Automation of Complex Power Systems,
E.ON Energy Research Center, RWTH Aachen University. His current research interests are modeling and simulation of
power system components as well as co-simulation.

Antonello Monti received his master's degree (summa cum laude) and his Ph. D. in Electrical Engineering from
Politecnico di Milano, Italy in 1989 and 1994 respectively. He started his career in Ansaldo Industria and then moved in
1995 to Politecnico di Milano as Assistant Professor. In 2000 he joined the Department of Electrical Engineering of the
University of South Carolina, USA as Associate and then Full Professor. Since 2008 he is the director of the Institute for
Automation of Complex Power System within the E.ON Energy Research Center at RWTH Aachen University. Dr. Monti is
author or co-author of more than 300 peer-reviewed papers published in international Journals and in the proceedings
of international conferences. He is a Senior Member of IEEE, Associate Editor of the IEEE System Journal, Associate Editor of
IEEE Electrification Magazine, Member of the Editorial Board of the Elsevier Journal SEGAN and member of the founding
board of the SpringerOpen Journal Energy Informatics. Dr. Monti is the recipient of the 2017 IEEE Innovation in Societal
Infrastructure Award.

http://fein-aachen.org
https://energyinformatics.springeropen.com/articles/supplements/volume-1-supplement-1
https://energyinformatics.springeropen.com/articles/supplements/volume-1-supplement-1

Razik et al. Energy Informatics 2018, 1(Suppl 1):47 Page 211 of 428

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Published: 10 October 2018

References

Akesson J, Arzén KE, Gafvert M, Bergdahl T, Tummescheit H (2010) Modeling and optimization with Optimica and
JModelica. org—Languages and tools for solving large-scale dynamic optimization problems. Comput Chem Eng
34(11):1737-1749

Bray T, Paoli J, Sperberg-McQueen CM, Maler E, Yergeau F (1997) Extensible Markup Language (XML). World Wide Web J
2(4):27-66

Cao J, Wimmer R, Thorade M, Maile T, O'Donnel J, Radler J, et al. (2015) A flexible model transformation to link BIM with
different Modelica libraries for building energy performance simulation. In: Proceedings of the 14th IBPSA Conference

Casella F, Bartolini A, Pasquini S, Bonuglia L (2016) Object-oriented modelling and simulation of large-scale electrical
power systems using Modelica: A first feasibility study. In: Industrial Electronics Society, [IECON 2016-42nd Annual
Conference of the IEEE. IEEE. pp 6298-6304

Dinkelbach J, Mirz M, Schiésser T, Monti A (2018) Hosting Capacity Improvement Unlocked by Control Strategies for
Photovoltaic and Battery Storage Systems

Ellson J, Gansner E, Koutsofios L, North SC, Woodhull G (2001) Graphviz—open source graph drawing tools. In:
International Symposium on Graph Drawing. Springer. pp 483-484

ENTSO-E (2018) COMMON INFORMATION MODEL (CIM) — MODEL EXCHANGE PROFILE 1. Available from: https://
docstore.entsoe.eu/Documents/CIM_documents/Grid_Model_CIM/140610_ENTSO-
E_CIM_Profile_v1_UpdatelOP2013.pdf. Accessed 13 May 2018

European Commission (2018) Renewable energy - European Commission. Available from: https://ec.europa.eu/energy/
en/topics/renewable-energy. Accessed 28 May 2018

FEIN Aachen e.V. (2018) Doxygen generated webpages of CIM++ Adapted CIM_SINERGIEN Codebase: PowerTransformer
Class Reference. Available from: http://cim.fein-aachen.org/libcimpp/doc/IEC61970_16v29a_IEC61968_12v08/
classIEC61970_1_1Base_1_1Wires_1_1PowerTransformer.html. Accessed 31 May 2018

Franke R, Wiesmann H (2014) Flexible modeling of electrical power systems—the Modelica PowerSystems library. In:
Proceedings of the 10 th International Modelica Conference; March 10-12; 2014; Lund; Sweden. 096. Linkoping
University Electronic Press. pp 515-522

Fritzson PA (2015) Principles of object oriented modeling and simulation with Modelica 3.3. 2nd ed. John Wiley & Sons

Fritzson P, Aronsson P, Pop A, Lundvall H, Nystrom K, Saldamli L, et al. (2006) OpenModelica-A free open-source
environment for system modeling, simulation, and teaching. In: Computer Aided Control System Design, 2006 IEEE
International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control, 2006
IEEE. IEEE. pp 1588-1595

Gémez FJ, Vanfretti L, Olsen SH (2018) CIM-compliant power system dynamic model-to-model transformation and
modelica simulation. IEEE Trans Ind Inf 14(9):3989-3996

IEC (2012a) IEC 61968-11:2013 Application integration at electric utilities - System interfaces for distribution management
— Part 11: Common information model (CIM) extensions for distribution

IEC (2012b) IEC 61970-301:2012 Energy management system application program interface (EMS-API) — Part 301:
Common Information Model (CIM) base

IEC (2014) IEC 62325-301:2014 Framework for energy market communications — Part 301: Common information model
(CIM) extensions for markets

IEC (2016) IEC/TR 62357-1:2016 Power systems management and associated information exchange - Part 1: Reference
architecture

Mcllroy MD, Pinson E, Tague B (1978) UNIX Time-Sharing System: Foreword. Bell Labs Tech J 57(6):1899-1904

McMorran AW (2007) An Introduction to IEC 61970-301 & 61968-11: The Common Information Model. Univ Strathclyde
93:124

McMorran AW, Ault GW, Elders IM, Foote CE, Burt GM, McDonald JR, Translating CIMXML (2004) power system data to a
proprietary format for system simulation. IEEE Trans Power Syst 19(1):229-235

Mirz M, Netze L, Monti A (2016) A multi-level approach to power system modelica models. In: Control and Modeling for
Power Electronics (COMPEL), 2016 IEEE 17th Workshop on. IEEE. pp 1-7

Mirz M, Razik L, Dinkelbach J, Tokel HA, Alirezaei G, Mathar R, et al. (2018) A Cosimulation Architecture for Power System,
Communication, and Market in the Smart Grid. Hindawi Complexity

Pan JZ (2009) Resource Description Framework. In: Handbook on Ontologies. Springer. pp 71-90

Parr TJ (2004) Enforcing strict model-view separation in template engines. In: Proceedings of the 13th international
conference on World Wide Web. ACM. pp 224-233

Pavkovi¢ V, Capko D, Vukmirovi¢ S, Erdeljan A (2017) Modeling power system data using NoSQL database. In:
Telecommunication Forum (TELFOR), 2017 25th. IEEE. pp 1-4

Popovic DS, Varga E, Perlic Z (2007) Extension of the Common Information Model With a Catalog of Topologies. IEEE
Trans Power Syst 22(2):770-777

Ravikumar G, Khaparde S (2015) CIM oriented graph database for network topology processing and applications
integration. In: Power Engineering Conference (UPEC), 2015 50th International Universities. IEEE. pp 1-7

Raymond ES (2003) The art of Unix programming. Addison-Wesley Professional

Razik L, Mirz M, Knibbe D, Lankes S, Monti A. (2018) Automated deserializer generation from CIM ontologies: CIM++—an
easy-to-use and automated adaptable open-source library for object deserialization in C++ from documents based

https://docstore.entsoe.eu/Documents/CIM_documents/Grid_Model_CIM/140610_ENTSO-E_CIM_Profile_v1_UpdateIOP2013.pdf
https://docstore.entsoe.eu/Documents/CIM_documents/Grid_Model_CIM/140610_ENTSO-E_CIM_Profile_v1_UpdateIOP2013.pdf
https://docstore.entsoe.eu/Documents/CIM_documents/Grid_Model_CIM/140610_ENTSO-E_CIM_Profile_v1_UpdateIOP2013.pdf
https://ec.europa.eu/energy/en/topics/renewable-energy
https://ec.europa.eu/energy/en/topics/renewable-energy
http://cim.fein-aachen.org/libcimpp/doc/IEC61970_16v29a_IEC61968_12v08/classIEC61970_1_1Base_1_1Wires_1_1PowerTransformer.html
http://cim.fein-aachen.org/libcimpp/doc/IEC61970_16v29a_IEC61968_12v08/classIEC61970_1_1Base_1_1Wires_1_1PowerTransformer.html

Razik et al. Energy Informatics 2018, 1(Suppl 1):47 Page 212 of 428

on user-specified UML models following the Common Information Model (CIM) standards for the energy sector.
Comput Sci Res Dev 33(1):93-103

Requardt B, Wende-von Berg S, Wagner T, Toebermann C, Braun M (2017) Modular system architecture for processing of
CIM. In: International ETG Congress 2017; Proceedings of. VDE. pp 1-6

Rudion K, Orths A, Styczynski ZA, Strunz K (2006) Design of benchmark of medium voltage distribution network for
investigation of DG integration. In: Power Engineering Society General Meeting, 2006. IEEE. IEEE. pp 6-pp

Rumbaugh J, Jacobson |, Booch G (2004) Unified Modeling Language Reference Manual, The (2Nd Edition). Pearson
Higher Education

Schutte S (2011) A Domain-Specific Language For Simulation Composition. In: ECMS. pp 146-152

Silverstein C CTemplate System Documentation. Available from: https://htmlpreview.github.io/?https://github.com/
OlafvdSpek/ctemplate/blob/master/doc/index.html. Accessed 31 May 2018

Tiller M (2001) Introduction to physical modeling with Modelica. Kluwer Academic Publishers, Boston

Uslar M, Specht M, Rohjans S, Trefke J, Gonzélez JM (2012) The Common Information Model CIM: IEC 61968/61970 and
62325-A practical introduction to the CIM. Springer Science & Business Media

Viruez R, Machado S, Zamarrefio LM, Ledn G, Beaude F, Petitrenaud S, et al. (2017) A Modelica-based Tool for Power
System Dynamic Simulations. In: Proceedings of the 12th International Modelica Conference, Prague, Czech Republic,
May 15-17,2017.132. Linkdping University Electronic Press. pp 235-239

Zimmerman RD, Murillo-Sénchez CE, Thomas RJ (2011) MATPOWER: Steady-state operations, planning, and analysis tools
for power systems research and education. IEEE Trans Power Syst 26(1):12-19

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Immediate publication on acceptance

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com

https://htmlpreview.github.io/?https://github.com/OlafvdSpek/ctemplate/blob/master/doc/index.html
https://htmlpreview.github.io/?https://github.com/OlafvdSpek/ctemplate/blob/master/doc/index.html

	Abstract
	Keywords

	Introduction
	Fundamentals
	CIM RDF/XML Documents
	Modelica
	Template Engine

	Concept
	Overall implementation
	Mapping from CIM to Modelica
	CIM Object Handler

	Modelica workshop implementation
	Base Class of the Modelica Workshop
	CIM to Modelica Object Mapping
	Component Connections

	Evaluation
	Related work and discussion
	Conclusion and outlook
	Availability and requirements
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	About this Supplement
	Authors' contributions
	Authors' information
	Competing interests
	Publisher's Note
	References

