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time mechanism for supporting the Power Quality (PQ) in electric distribution grids in
terms of congestion and voltage management. In the paper, we propose a distributed
smart charging approach that considers real-time conditions of the distribution grid
provided by an event-driven architecture that collects data from different points in the
grid. Our approach adopts the traffic light model, which allows smooth changing of
the charging power to avoid drastic changes of the grid state. In order to be ready for
real-world application, the algorithm is validated by a series of experiments on two
setups: Pure software (co-)simulation and Power Hardware In the Loop (PHIL) where
physical charging stations and electric cars are controlled in a laboratory setup.
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Introduction
New requirements on low voltage distribution grids have to be fulfilled due to an
increased number of renewable producers, but also due to electric vehicles as new net-
work participators. This goes along with a paradigm shift. It can be expected that with
increasing connection of electric vehicles supply equipment in distribution networks,
infrastructure dimensioning can no longer be based on worst-case conditions in all cases.
State-of-the-art 22 kW charging power (Longo et al. 2016) by far exceeds the 4 kW
estimate for a residential grid connection in central Europe. Consequently, more on-
line monitoring and even active interventions during grid operation will be necessary to
maintain critical boundary conditions such as line voltages and asset loading within safe
limits.

Undoubtedly, guaranteed immediate and fast charging can only be realized with suffi-
cient grid capacities at the connection point, which are e.g. required for public Charging

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0

@ Springer Open International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
— reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.


http://crossmark.crossref.org/dialog/?doi=10.1186/s42162-018-0027-1&domain=pdf
mailto: ammar.alyousef@uni-passau.de
http://creativecommons.org/licenses/by/4.0/

Alyousef et al. Energy Informatics 2018, 1(Suppl 1):28 Page 128 of 428

Station(s) (CSs). However, for the expected large number of private or home CSs, a “smart
approach” that makes use of currently available excess capacities can help to reduce
grid connection costs. Therefore, this paper proposes a solution for an active network
operation at the low voltage level.

While a wide spectrum of charging management algorithms have been proposed in
literature already, e.g. (Lopes et al. 2009; Cortés and Martinez 2016; Pipattanasomporn
et al. 2012; Fan 2012; Li et al. 2014), most approaches do only consider line loading and
the resulting scheduling problem. The algorithm developed in this work is intended not
only to avoid asset overloading but also to improve PQ parameters such as node voltage
variations. This is analyzed in a field test region in Bavaria, Germany, where the system is
practically operated by a Distribution System Operator (DSO).

For achieving a reliable implementation for field use of the algorithm in short time,
we follow a rapid prototyping approach for networked smart grid systems based on co-
simulation and hardware-in-the-loop testing (Faschang et al. 2013). This approach allows
seamless and stepwise migration from a simulated environment to a laboratory evalua-
tion with physical charging stations and e-cars, and finally closed-loop field operation.
Key to this approach is the message passing middleware AIT Lablink!. The developer of
the algorithm is always using the same interface to the physical hardware, while Lablink
routes messages to simulated, emulated or real components. In this paper, simulation and
laboratory results are presented.

The remainder of this paper is structured as follows: In “Related work” section we
discuss related work. The proposed architecture is described in “Architecture” section,
after that, we introduce the designed algorithms in detail in “Algorithms” section. The
results of different scenarios using pure (co-)simulation and PHIL are presented in
“Evaluation” section. Finally, we highlight the future work and conclude the paper in

“Conclusion and future work” section.

Related work

Potential impacts of introducing a large number of Electrical Vehicle(s) (EVs) to the power
distribution network have been studied extensively in the literature and many ideas have
been introduced to use the (EV) penetration for supporting the grid stability and power
quality.

Approaches of charging management
We can classify solutions of charging management in the following categories:

e Challenges in terms of power quality are tackled by the design of a new charging
connector or a completely new design of a charging station with power quality
compensation for electric vehicles as in Tanaka et al. (2012), Restrepo et al. (2018),
Vahedi and Al-Haddad (2016), Zhong et al. (2017), Yong et al. (2015). In contrast, we
solve the problem using the off-the-shelf hardware and software and validate our
proposed architecture with hardware in the loop simulation.

e Scheduling algorithms have been proposed to shift the EV charging load to off-peak
hours, thereby avoiding branch congestion and voltage drop in the distribution
network. Most existing work suggest a centralized controller. For example, authors of

Chung et al. (2014) propose master-slave control scheme for Plug-in Electrical
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Vehicle(s) (PEVs) smart charging in purpose of increasing the number of PEVs that
can be plugged into a single circuit avoiding grid bottlenecks. Other centralized
solutions are investigated by the authors of Lopes et al. (2009),Deilami et al. (2011).
However, as discussed in a white paper (Taft and Martini 2013), coordinated control
at different levels of a hierarchical distributed system such as the power grid becomes
infeasible with such centralized control.

e Instead of using a centralized approach, some authors propose a decentralized or
hierarchical charging schedule (Cortés and Martinez 2016; Rivera et al. 2015; Alonso
et al. 2014; Kong et al. 2016). Most solutions are off-line algorithms that make
decisions based on collected grid data 24 h ahead of time. Furthermore, they consider
real-time load balancing as the only grid stability constraint and completely ignore
voltage control.

e The distributed control algorithm proposed in Ardakanian et al. (2013) adapts the
charging rate of EVs to the available capacity of the network while ensuring that
network resources are used efficiently and each EV charger receives a fair share.
Their algorithm requires a heavy and synchronous communication overhead and
only considers the stability of the grid in terms of load balancing, ignoring voltage
control completely.

Approaches of Charge Control

Another way of increasing the penetration of EVs into the power grid is establishing a
controlled charging process that reacts in real-time on changes of the different local or
global parameters of the grid. Authors in Lehfuss and No6hrer (2017) discuss three dif-
ferent types of charge control approaches: local-voltage driven, central-power driven and
a combination of both. In contrast, our architecture considers a dynamic change of the
charging power regarding to different situations of the grid in a more advanced way. A
(PEV) charging policy is proposed in Foster et al. (2013) that considers transmission and
distribution integration issues and reacts to market signals across time scales and sys-
tems. Furthermore, voltage support for the distribution network is introduced in terms
of allowing increased penetrations of distributed Solar Photovoltaic (PV) solar arrays.
The authors consider only the local voltage near to the CS and ignore the overall state of
the low voltage grid and the fairness between running charging processes, which are the
main concerns of our proposed architecture. Other solutions propose local smart charg-
ing algorithms based on a droop controller (Martinenas et al. 2017; Alvarez et al. 2016)
and mitigate line voltage drops and voltage unbalances, without relying on any vehicle-
to-grid capability. These solutions are limited on estimating the voltage locally without
considering the situations at other critical points in the grid which probably need different

reactions at certain times.

Grid constraints versus energy markets

The Bundesverband der Energie- und Wasserwirtschaft e.V (BDEW) proposes a roadmap
(BDEW Bundesverband der Energie- und Wasserwirtschaft eV 2013) for a realization of
smart grids in Germany in order to ensure stability and efficiency through flexibility of
both, the networks themselves and their users. This roadmap introduces the concept of
traffic light model to the smart grid, which “governs the fundamental interaction between
market and network on the basis of system conditions of green, amber(yellow) and red”.



Alyousef et al. Energy Informatics 2018, 1(Suppl 1):28 Page 130 of 428

This concept aims to describe the energy market in which DSOs or Transmission System
Operator(s) (TSOs) may demand local and temporal flexibility depending on their net-
work situation (amber phase). The authors of BDEW Bundesverband der Energie- und
Wasserwirtschaft eV (2015) describe the traffic light concept in more detail and a pre-
liminary design of the amber state is proposed. However, DSOs calculate present and
forecast status of their network segment and allocate one of the three traffic light phases
accordingly:

e Green - Market Phase: No critical network situations exist and no intervention of the
DSO in the market.

e Amber - Interaction Phase: Potential or actual network shortage in the defined
network segment exists and the DSO utilizes the flexibility offered by market
participants to mitigate the damage.

e Red - Network Phase: The DSO must intervene directly to remedy the direct risk to
the stability of the system.

The authors of Deutsch et al. (2014), Medved et al. (2016) propose an implementation
of the yellow state based on forecasts. In case of a predicted power quality problem, the
market mechanisms are used to buy flexibility for this time window. An updated version
of the traffic light concept is introduced in Medved et al. (2016) which may be used by
the DSO to control Demand Response (DR) units. The proposed approach depends on
information from power flow calculation based on the joint load schedule of DR units and
the residual loads.

The proposed approach in this paper can be seen as an implementation of the amber
state of the aforementioned traffic light model, that depends on real-time conditions and
creates its own colored states by predefined thresholds. In this way, the flexibility intro-
duced by e-mobility sector can be used more efficiently considering the requirements of
both the grid and the running charging processes.

Contribution

The large majority of related work studies scheduling for peak power reduction. However,
besides line and transformer loading, voltage constraints play a significant role in host-
ing capacity restriction of European distribution grids (Varela et al. 2017). Therefore, our
work differs from the aforementioned categories in the following points: We propose a
completely distributed smart charging approach by considering the real-time conditions
of the grid using an event-driven architecture to collect data from the grid. Additionally,
our approach considers a smooth change of the charging power capacity to avoid drastic
grid state changes. As input parameters of our smart charging solution we consider both
the overloading of grid elements (specifically the transformer and feeder lines) and volt-
age magnitude at certain points in the grid, e.g. at the charging station or at critical points
in the grid. Furthermore, a rapid prototyping approach for networked smart systems is
followed (Faschang et al. 2013) in order to test the proposed architecture and ensure a
safe deployment in real-world environments.

Architecture
The objective of the proposed architecture in this paper is to stabilize the grid and
its power quality. The proposed mechanism complies with two design criteria. Firstly,
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it needs to be scalable in terms of number of involved CSs. Secondly, it is based as
much as possible on locally available data at the CS, such that it can even react in case
there is a communication problem with the monitoring mechanism of the grid. Hence,
the proposed architecture is distributed and located on the actuator side which in our
case is the CS.

In order to monitor the power quality, it is essential to measure voltage, current, fre-
quency, harmonic distortion and waveform at different points of the grid (Sankaran 2002).
In this paper, a monitored point is referred to as a Measurment Point (MP). In this regard,
power quality is indicated by Key Performance Indicator(s) (KPIs), e.g. voltage level or
overloading of grid elements, such as the transformer or feeder lines. Furthermore, these
(KPI) classes are computed/measured directly at MPs in real-time, e.g calculation of Root
Mean Square (RMS) values, or are computed using multiple measured KPI values at
different measurement points, e.g. the minimum voltage on a certain feeder line.

As the proposed architecture enables the response to different power quality issues in
real-time, a data stream in high resolution is required (e.g in a 3 s interval). On one hand,
real-time handling of big data streams requires a data processing architecture which needs
to be generic, scalable and fault tolerant. On the other hand, the measured KPI values
are most interesting when they are beyond a certain threshold, e.g. the voltage is greater
or lower than + 10% of the nominal voltage (Standard 1994). In our architecture shown
in Fig. 1 we assume an event-driven streaming service, like Apache KAFKA (Foundation
2018), to be existing as real-time data handling for events from the power grid (Shyam et
al. 2015; Simonov 2013; Fernandez et al. 2014). These events are triggered by MPs due to
unusual KPI values and sent to the Kafka cluster, e.g. using Power Line Communication
(PLC) or dedicated Internet access.

However, the collected KPI values are forwarded to controller components, that are
located at CSs. The responsibility of theses controllers is to indicate the present status
of the low voltage grid and to choose appropriate actions in order to mitigate stress on
the power grid arising from emerging power quality issues. As depicted in Fig. 1, power
quality estimation is performed by a component called PQ-Indicator (In this paper, we
use PQ as an abbreviation of the Power Quality), which responds to triggered events

Low Voltage Grid Event-Engine (KAFKA) P g

PQ- Smart
Indicator Charger
g
PQ- Smart

Indicator Charger
|
PQ- g Smart
Indicator Charger
OCPP
P3 OCPP
(P1,P2,P3)

Fig. 1 Schematic Smart Charging Architecture
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from Kafka. For example in case of voltage fluctuations, which refer to degradation of
the power quality, it gradually estimates the power quality and asks the so-called Smart
Charger (SC) to decreases/increases the charging rate in order to counteract the voltage
fluctuation and, hence, improve the power quality. This power quality indication, called
"PQ-Indic’, is defined within the range of [ —1, 1]. Within this normalized range, (-1) cor-
responds to either a complete shutdown of the charging process or a reduction to the
minimum required power in order to be able to control the EV later. In contrast, the value
(+1) represents the maximum power capacity of the CS. The Smart Charger applies a
smooth or drastic change on the used charging power capacity depending on value the
PQ-Indic. The reason behind separating power quality indication and control logic is due
to different interests of the involved parties. From the Charging Service Provider (CSP)
perspective, the PQ-Indicator is a black box, which is configured by the DSO depending
on the characteristics of each low voltage grid individually, e.g. applying different thresh-
olds for voltage boundaries. In contrast, the CSP configures the Smart Charger according
to its business model.

A main requirement of this architecture is continuous charging power capacity limita-
tion at the charging station during a charging process. The Open Charge Point Protocol
(OCPP) in version 2.0 supports communication between SC and CS using smart charging
profiles (Open Charge Alliance 2017). This profiles can set constraints to the maximum
amount of power that is delivered during the charging transaction and enable dynamic
charging profiles for smart charging purposes. Hence, charging stations are able to react
on specific behaviors directly without further control signals. Furthermore, the concept
of using such charging profiles is seen as a promising direction for better power planning
of charging processes in the future since these profiles are generated based on the power
constraints of both the vehicle and the grid.

Algorithms
In this section, we describe the main components of the proposed architecture in detail.
The logic of each component is introduced, including the used algorithms.

PQ-indicator
The goal of the PQ-Indicator is to estimate the grid status based on different KPI values
at different MPs in the grid. Furthermore, the output of the PQ-Indicator is used by the
Smart Charger in order to decide about suitable actions of the charging station based
on real-time measured KPI values. Since most low voltage networks are built as 3-phase
systems, the PQ-Indicator estimates the status of each phase individually. In this regard,
the grid status estimation process is equal for each phase and the output is a normalized
value within the range [ —1, 1] called PQ-Indic.

The input value of the PQ-Indicator is modeled as m x n matrix (M, x, in Eq. 1) where
m is the number of MPs and # is the number of KPI classes.

Vi1 V1,2 V1,3 - ..
Mypscn = | V21 V22 V23 -+ | € (RU{L})"™" (1)

where v;; € R is the value of KPI class Ky at MP P;. In case the input data does not include
a KPIvalue at a MP, the value is set to vjx = L.



Alyousef et al. Energy Informatics 2018, 1(Suppl 1):28 Page 133 of 428

Using this input matrix, additional KPI classes can be calculated. E.g. the average, min
or max values of a KPI class K over several MPs P;. The used aggregation function
g: (RU{L})™ — R ignores the L entries of the matrix. The resulting new KPI class is
denoted as

Ki = gWj),j = Lm. v)

Furthermore, we can define a function % : (R U {L})” — R which calculates a new
KPI class using the existing KPI values at the same MP P;. The resulting new KPI class is

denoted as
K = h(jp), k = L.n. 3)

In the remainder of this paper we do not distinguish between composed KPI classes
K; (2) or I?, (3) and the original KPI classes K, but always refer to them by K.

The situation of the power grid can be distinguished between very good, near to critical
and critical. In the last case, upcoming problems can be avoided by requesting smooth
changes in the behavior of high loads such as CSs. Hence, the design of the PQ-Indicator
adapts the traffic light model with three colors that specify the electric vehicle charging
capability of the grid. The colors are defined on top of the calculated PQ-Indic as depicted
in Fig. 2.

e Green: The situation of the grid is stable. Increasing or decreasing the CSs’ capacity
is possible, but not required. The charging station determines the best reaction. The
value of the PQ-Indic is within the range of (YG, GY), where YG = —0.3 and
GY =0.3.

¢ Yellow: A slight change of the charging power is required, since the power quality of
the grid is not optimal but still above or below a certain critical threshold. This
change can be in form of proactive increase or decrease of the charging power. In the
yellow state, the grid has high priority and requirements of the charging process can
be taken into account only to a certain degree. The PQ-Indic value is within (RY, YG]
U [GY, YR), where RY = —0.7, YG = —0.3, GY = 0.3 and YR = 0.7.

e Red: The situation of the grid is critical and the load at the charging station must be
reduced or increased according to a certain factor. The red color is defined for a
PQ-Indic value within [ ER, RY] U [ YR, RE], where ER = —1, RY = —0.7, YR = 0.7
and RE = 1.

In that regard, the six thresholds, ERy, RY}, YGy, GYk, YR, RE, for the red, yellow and
green area are defined for each KPI class k separately. As a guideline, power quality stan-
dards such as EN50160 (Standard 1994) can be used. The values of K are translated
according to a piece-wise linear interpolation function #x(Eq. 4 and Fig. 3) to the range of
[ —1,1]. The PQ-Indicy for KPI class Ky is equal to ;. (Ky).

-1.0 0.7 -0.3 0.0 0.3 0.7 1.0
ER RY YG 0.0 GY YR RE
Fig. 2 Traffic light model on top of PQ-Indic
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Fig. 3 The translation function tx(x) that translates KPI values to PQ-Indic

For simplicity we use the piece-wise linear interpolation function Eq. 4, which pre-

serves the order of the KPI values and maps the range of different KPI classes to the same

smaller range of [ —1, 1]. The piece-wise nature allows weighting and shifting of the range

of individual KPI classes.

ER
RY - (ERx —x) + ER - (x — RYy)
ERy — RY
YG - (RYx = %) + RY - (x — YGy)
RY;, — YG
o= | GG+ YC - (x — GYy)
K= YGi — GYx
YR (GYj — x) + GY - (x — YRy)
GYr — YRy
RE - (YR — x) + YR - (x — REy)
YRy — REy
RE

ifx € (—o0, ERy)
ifx €[ ERy, RY]

ifx € (RYy, YGi]
ifx € (YGi, GYy) (4)
ifx €[ GYy, YRy)

ifx €[ YRy, RE;]
ifx € (RE, o0)

Afterwards, the different PQ-Indicy are combined using the following criteria A; and

Ajy, which are ordered according to their importance in terms of grid stability. In this

paper we focus on these two criteria because existing charging stations have the capability

to mitigate overloading and voltage level by limiting the charging power. Nevertheless,

this list may be extended to include additional criteria such as harmonics and frequency

deviation.
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Table 1 The thresholds of KPI class from criteria Aq
ERk RYy YGg GYy YRk REx
Smax Y+ Smax Z - Smax W - Smax X - Smax 0

The constant values x < w < z < y are chosen in a way that the grid element is operated within its physical boundaries and/or at
its most efficient range

(A1) Overloading an element of the grid
Power distribution equipment, such as transformers or cables, have an upper
thermal limit which should only be exceeded for a short time. The specific
thresholds can vary with the equipment type. An example that depends on the
maximum allowed apparent capacity S, is given in Table 1. In case of a
transformer the values are chosen in a way, such that the transformer is operated
below its maximum apparent power and optimally with highest efficiency.

(A2)  Voltage level
Different load and generation scenarios can cause the voltage level to increase or
decrease in certain areas of the low voltage distribution system. According to
EN 50160 standard, this variation should be in the boundaries of £ 10% of the
nominal voltage Uy during 95% of the week measured by 10-min mean RMS
voltage values. As we are estimating the grid phase-by-phase, the voltage level is
measured between the phase and the neutral (conductor). Generally defined

thresholds for the voltage KPI class are shown in Table 2.

As the considered criteria have different priorities in terms of grid stability and the
main concern of the Smart Charger is the local stability as part of the global one, the
PQ-Indicator uses a 3-layer hierarchical logic to decide about the (local) grid state as
depicted in Fig. 4. As highest priority, criteria A; represents the transformer loading. For
this purpose, the translation function #(x) (in Eq. 4) is applied on the measured load of
the transformer to calculate PQ-Indica, . In case PQ-Indicy, is colored red, a critical load
reduction or increase is required and the PQ-indicator will ignore criteria Ay returning
PQ-Indicy, as overall PQ-Indic of the grid. Otherwise, the PQ-Indicator will compute
three more values regarding to the criteria Ay describing the voltage in three places in
the grid: PQ—Indic/%g at the CS, PQ—IndicZ “" at the transformer and PQ—Indicg; itical gt q
critical point in the low voltage grid. In order to determine the critical point for each
charging station, we identify several points with low and high voltage magnitude in the
low voltage grid and choose the one which is most influenced by changes of the stations’
charging behavior.

In the second level, the PQ-Indicator will use Algorithm 1 to indicate the state of
the grid regarding A». In case PQ-Indicy, is colored yellow or red, this value is directly
returned. Otherwise, the output is calculated by the third level taking the situation at the
critical point into account. Hence, if the PQ-Indic at the critical point is colored yellow or
red, PQ—Indicgg itical i ysed as output of the PQ-Indicator, otherwise, the PQ-Indic at the

charging station (PQ—Indicgf ) defines the return value.

Table 2 Thresholds of the voltage KPI class from criteria A
ERk RYy YGy GYy YRk REx
0.9 Uy 0.95 Uy 0.99 Uy 1.01 Uy 1.05 Uy 1.1 Uy
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| | Criteria A, at CS
~» PQ-Indic | : Transformer
I

critical point

|
|
i Criteria A, at
|
PQ-Indic <—‘ ! : ‘

Fig. 4 Hierarchical decision logic of the PQ-Indicator based on the traffic light model

Smart Charger

According to OCPP 2.0 (Open Charge Alliance 2017), charging stations can handle dif-
ferent types of the charging profiles. The ChargingStationMaxProfile is usually based
on a 24 h forecast from the DSO, TxProfiles are used for single charging transactions
and ChargingStationExternalConstraints profile represent limits set from external sys-
tems. This different profiles are stacked and used by their prioritized stack level. The
Composite Schedule combines the different profile types by calculating the minimum in
each time interval. During the charging process, our smart charging algorithm controls
the charging process using external profiles at a high stack level.

The smart charging algorithm starts once a vehicle is plugged into a connector. The
algorithm of the Smart Charger is modeled as Finite State Machine (FSM), which stores
the last PQ traffic light estimation of the gird. In order to differentiate the positive and
negative PQ-Indic value of each color in the aforementioned traffic light model, we split
the two states red and yellow into two states from each color. As a result there is a low-red
state (light diagonal red in Fig. 5) representing the state of having a negative value of red-
colored PQ-Indic, which requires a load reduction. In addition there is a high-red state
(dark vertical red in Eq. 5) representing the positive value of red-colored PQ-Indic, which
requires a load increase. The yellow state is split accordingly (large grid and diagonal brick
in Fig. 5). Because nowadays charging stations cannot control the charging process per
phase and, therefore, the design of the FSM only considers the overall charging power, we
aggregate the input PQ-Indic values as follows:

avg(PQ;) ifVi e {A,B, C}: PQ; is green

ic{A,B,C}
max(PQ;) elseif Vi € {A, B, C}: PQ; is green
ic{A,B,C}
agg(PQi) = VPQ; is high-yellow (5)

i€{A,B,C)
VPQ; is high-red

min(PQ;) otherwise
i€{A,B,C}
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Algorithm 1: Indication of power quality regarding criteria A,.

Data: Voltage at CS and Transformer on a certain phase € R4
ER=-1,RY=-0.7, YG=-0.3, GY=0.3, YR=0.7, RE=+1

Result: PQ-Indicy, €[ —1,1]
if (PQ-Indic{5)< RY then
‘ return (PQ—Imiicg;9 )

else

end

end

if PQ-Indic;/" < YG then

if (PQ-Indic$®) > YR then
‘ return (PQ—Indicgf . |PQ—IndicZ “/2)
else
if (GY < PQ—Indicgf < YR) then
| Return (GY)
else
if (YG < PQ-Indic§’ < GY ) then
| return (YG)
else
‘ return (min (PQ—Indich , PQ—]ndz’cz )
end
end

end

else

if PQ-Indic}" > GY then
if RY < (PQ-Indicgf ) < YG then
| return (YG)
else
if (YG < PQ-Indic§? < GY ) then
| return (GY)
else
‘ return (max (PQ—Indicz an PQ—Indicgf )
end
end

else
‘ return (PQ—Indicgf )
end

where PQ; is the 'PQ-Indic’ value of phase i. We intend to use a conservative aggregation
when phases are in different colored states since phase balancing is performed by the CS.
In contrast, aggressive aggregation is used when the grid is asking for load increase on
one or more phases while other states are at least green. In that case a charging increase
is allowed on all phases, hence we choose the maximum in order to mitigate the biggest
problem first. In the case of green states on all phases, the average perfectly reflects the

situation.

Finite state machine

The FSM used within the Smart Charger is shown in Fig. 5 and its definition is described
in the following section. The FSM consists of seven states that are grouped to three

different types:

e Operational states: low red, low yellow, green, high yellow, and high-red state

representing the different 'PQ-Indic’ color ranges.

Page 137 of 428
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PQ[PQ-Indic < YR]

PQIPQ-Indic >= YR]/\_{

Transition;: Event[Guard]
T;: PQ[PQ-Indic <= RY]

T,: PQ[RY<PQ-Indic <= YG]

T3: PQ[YG<PQ-Indic < GY]

T4 PQ[GY<=PQ-Indic < YR]

Ts: PQ[PQ-Indic => YR]

Fig.5 FSM of the Smart Charger based on the traffic light model: For simplification within the box containing
the operational states, only the outgoing and incoming transitions of the “low red” state are shown. All other
states are connected similarly to each other. Furthermore, the state machine can transit from any operational
states to the standby and end state

e Standby state: The gray state models the charging state after the desired State of
Charge (SoC) is reached.

e End state (blue state with horizontal lines): With maximum SoC or unplugged EV it
is not longer possible to control the charging operation.

The transitions in the FSM are labeled by two parts: Event and Guard. In the proposed
FSM we have three kinds of events that can trigger the state transition: Input of a new PQ-
Indic value, unplugging of the vehicle and changing of the SoC of the battery. Each state
transition can have a prerequisite, which is modeled by the logical condition of a guard. If
the condition of a guard does not match, the FSM remains in the last state. Finally, each
state transition can have an action which specifies the output of the Smart Charger. In our
case, the action defines the new charging power of the ongoing charging process.

The low-red state is considered as the start state, since the charging operation will
start slowly and it adapts a conservative approach concerning the grid stability. The tran-
sition to the end state occurs whenever the driver unplugs the vehicle or the battery
is fully charged (equals SoC = 100). If the desired SoC,,; (defined by the end user) is
reached, the FSM transits to the charging standby state (gray state). Within this state the
Smart Charger can react on critical grid situations using the still plugged EV, only in case
the 'PQ-Indic’ value is positive red-colored, hence requires increase of charging power

capacity.

Transitions and actions

In this section, the used capacity of an active charging process at charging station C; at
time ¢ is denoted as U;(¢), the maximum capacity is written as M; and the users’ charg-
ing profile is denoted as C;(¢). In all cases, the action of transitions, which reveals the
new charging power, should not be bigger than M;. A safety upper margin is defined by
w in order to stay aligned with the users charging profile regarding the battery state of
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health and the charging duration. This safety margin is used as a buffer to compensate
grid problems that may lead to a short reduction of charging power. Other way round,
the minimum charging power needs to be set to a value C,,;;, higher than zero to avoid
disconnection of the vehicle.

The action of the transitions mainly rely on the destination state, which is equal to the
color of the new input PQ-Indic value. In the following, the single transitions are given by
source — destination. The source and destination can also be an asterisk.

® & — low-red state
If the new PQ-Indic value is colored low-red, the Smart Charger needs to reduce the
charging power. Since this state is considered to be highly critical for the grid, the
resulting action is defined in a polynomial way. We calculate § as the percentage of
change in the currently used power.

8 = (PQ-Indic + 1)*

(6)
U;(t + 1) = max (5 -L{i(t),Cmm)

The parameter « in Eq. 6 needs to be greater than 1 in order to match a polynomial
decrease. Therefore, § €[ 0, 0.3) because PQ-Indic €[ —1, —0.7]. As a result, in any
case the decrease of the charging power is greater than 70% of the currently used
charging power.
The parameter « can be defined depending on the source of the transition or by
comparing with the last PQ-Indic value.

e & — (low and high)-yellow states
Within the boundaries of the yellow-colored PQ-Indic, the gird is not stable, but it is
not highly critical like in the red states. Hence, the transitions to this state can
consider the users’ charging profile. The change in the charging power capacity is
calculated by a linear function, which depends on the PQ-Indic value and can be
parameterized by the source state of the transition.

81 =1+ (B1 - (PQ-Indic + YG + 0.1))
8y = 1+ (By - (PQ-Indic + GY — 0.1))

@)

min (81 - U;(t), (1 +2u) - Ci(t + 1), M;) PQ-Indic > GY
max (82 - Ui(t), Crin) PQ-Indic < YG

The parameter 81 and B3 in Eq. 7 are taken from R and can in example be configured

Ut +1) =

by the source of the transition. However, in any case the new charging power is
limited by the minimum of C,,;, and the maximum of M.

® x — green state
Within the boundaries of the green-colored PQ-Indic, the gird is stable. In this
regard, a linear increase or decrease of the currently used charging power is applied
until the charging profile plus the safety margin is reached.

X = (PQ-Indic + GY + 0.1)/2
S1=A-(0+mw-Ct+1) ®)
8 =(Ci(t) — A+ ) -Ci(t+1))/2

min@(¢) + 61, A+ ) -Gt + 1) Ui(®) =1+ p) - Cit+ 1)

i 1) =
UETD =1 ) — 5, U) > L+ 1) - Cile + 1).
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e x — high-red state
If the new PQ-Indic value equals the high-red state, the grid is in a highly critical
status and the Smart Charger must increase the charging power. Hence, a polynomial
function is defined for transitions to this state.

§ = w - (PQ-Indic)® +1
U;(t 4+ 1) = min (8 - U;(t), M)

)

The parameters @ and ¢ in Eq. 10 can be defined depending on the source of the
transition or by comparing with the last PQ-Indic value. The parameter w must at
least be lower than Z//{:/(‘t’) and bigger than 1 and ¢ must be lower than 1 in order to
match a polynomial increase. Obviously, § is bigger than one, because w is bigger or

equal to 1 and PQ-Indic is a positive value.

® x — gray state
The gray state represents the standby phase of the charging process. In this phase,
the Smart Charger only responses to highly critical grid situations by increasing the
charging rate. Otherwise, the charging power is reduced continuously until it reaches
Cimin again in a linear way.

§ = w - (PQ-Indic)® +1

min (8 - U;(¢), M;) PQ-Indic > YR (10)

Uit +1) =
¢+1) max(u - Ui (t), Coin) PQ-Indic < YR

The parameters ¢ and w in Eq. 10 are similarly defined like with transitions to the
high-red state and u €[ 0, 1).

Finally, oscillations between two different states (low and high red) needs to be avoided,
because this affects the stability of the Smart Charger. Hence, the parameters o and ¢
which are used as exponential factors in the aforementioned definitions of both states,
need to be different.

Evaluation

The objective of this section is to evaluate the smart charging algorithm and the reaction
of EVs on control commands. The evaluation is carried out using pure (co)-simulation
and PHIL. The smart charging algorithm is evaluated based on the achieved improvement
of the power quality in a simulated grid. Furthermore, we compare the charging process
of a simulated EV with a real and an emulated EV in order to study the reaction of EVs on
the control signals from the algorithm.

Setup

For all the following evaluation scenarios, the co-simulation framework AIT Lablink is
used (Faschang et al. 2013). With Lablink it is possible to replace software simulation com-
ponents by different PHIL equipment in the laboratory, e.g. a hardware charging station
with a Type 2 charging connector or either a real or an emulated EV based on a Resistor
- Indicator - Capacitor (RLC) load model. The smart charging is carried out on the sim-
ulation of a realistic low voltage network, which is located in a small city in Bavaria. This
grid connects 22 households, 21 industries, three PV systems and four charging stations
to a transformer using 64 cables. The maximum distance to the transformer is given by a
cable with the length of 485 meters. As power gird simulation tool we use PowerFactory
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(DIgSILENT 2018) from DIgSILENT. The simulation is fed with BDEW load profiles for
industries, realistic load profiles for households (Tjaden et al. 2015) and real PV genera-
tion profiles. The Event-Engine is simulated by a locally installed Apache KAFKA cluster
with only one node and default configuration.

The hardware charging station communicates the charging signal via a IEC 62196 Type
2 connector to the EV emulator and the real EV. This standard supports a Pulse Width
Modulation (PWM) current signal, which indicates the amount of current that can be
provided by the charging station. Since this value is valid for all three phase, phase-
balancing is not possible with that protocol. Furthermore, only integer current values are
allowed, hence the charging power capacity can only be controlled in discrete steps. The
real charging station supports 3-phase charging from 6 to 32 A, resulting in a maximum
charging power of 22 kW.

The grid simulator, Event-Engine, PQ-Indicators, Smart Chargers and the charging
stations in Fig. 6 are implemented as LabLink clients. These clients can communicate
with each other using a Message Queuing Telemetry Transport (MQTT) message bus.
The KPI values from the power simulation tool are published to the Event-Engine. The
PQ-Indicator subscribes the KPI values from the Event-Engine, calculates its internal
equations and forwards the output to the Smart Charger, which produces a charging sig-
nal that is either sent to the real charging station hardware or to a simulated charging
station. In both cases, the measured or calculated power demand of the EV is injected
into the power simulation tool for the next simulation step.

The KPI thresholds for voltage and loading of the transformer are configured in the PQ-
Indicator as shown in Table 3. From EN 50160 we know that in low and medium voltage
networks the voltage level must be within 4= 10% of the nominal voltage during 95% of the
week measured by 10 min mean RMS values (Standard 1994). As the maximum allowed
voltage deviation includes the medium voltage network and is constantly transmitted to
the low voltage grid in case no On Load Tap Changer (OLTC) is installed, we decided to
use a smaller range of + 10 volt (which is about 4= 5%) and a time interval of one minute.

PQ- Smart
Indicator Charger

PQ- Smart
Indicator Charger

0
PQ- Smart
Indicator Charger

Fig. 6 Evaluation Setup




Alyousef et al. Energy Informatics 2018, 1(Suppl 1):28 Page 142 of 428

Table 3 The thresholds of the overloading KPI class (first part) and the voltage KPI class (second part)

ERy RY; YGy GYs YR1 RE4
400kVA 300kVA 150kVA OkVA 0kVA 0kVA
ERy RY> YG) GY; YRy RE>
220.94vV 22294V 223.94V 237.94V 238.94V 240.94V

Due to the setup of our test grid, overloading of the transformer starts at 37.5% of the
rated apparent power of the transformer, which is given by 400kVA.

The parameters of the smart charging algorithm are configured according to Table 4.
The Smart Charger needs to provide at least a minimum of 1.3 kW (6 A) in order that
the EV does not disconnect and the maximum is given by the limitation of the hardware
charging station. For simplicity, we configured the charging profile to be the maximum
charging power for the whole charging process. The remaining parameters are chosen in
a way such that the charging control signal changes smoothly and result in a reasonable
reaction on the PQ-Indic.

We simulate a whole working day during the winter in the realistic Bavarian grid with
four charging stations equipped with our Smart Charger connected to different connec-
tion points in the grid. As depicted in Fig. 7, one charging station is located as far as
possible from the transformer at the critical point of the grid in terms of voltage drop
(Cy), the second charging station is located at the second main feeder line that is supplied
by the transformer (C4) and the remaining two charging stations are located near to the
transformer, like it is the case in the real Bavarian grid.

Analysis

In order to evaluate the impact of our smart charging algorithm on the power quality, we
assume the worst case scenario, where EVs are connected to all charging stations and they
charge for the whole simulation time period, without disconnection. Furthermore, the
EVs charge with a constant load over the whole period, e.g. without the saturation phase
of the battery. The result of our smart charging algorithm is compared against two base-
line scenarios: (1) All charging stations are charging for the whole time period with their
maximum charging power and (II) No charging station is charging at all. Our evaluation
answers the following two questions:

(Q1) To which extend can our smart charging algorithm improve the voltage level in the
grid using simulation?
(Q2) Is the result of the Smart Charger also valid using PHIL simulation?

First, comparing the voltage level at the critical point of our grid using the proposed
smart charging algorithm against the two baseline scenarios in Fig. 8, it can be seen that
even the lower bound baseline scenario, with no car charging at all, results in a voltage
drop greater than 3% during the morning and evening peak at 08:00 - 12:15 and 15:45 -
19:30. As we only consider EV charging and no Vehicle-to-Grid solution, the Smart
Charger cannot compensate under-voltage by discharging the EV and the charging power

Table 4 Parameter configuration of the smart charging algorithm
Crin Ci(t) M, o B B2 123 &
1.3 kW 22 kw 22 kW 12 15 12 0.1 0.7

ENEN IS

(1+ %)
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403

Fig. 7 Schematic location of the four charging station in the tested grid

is reduced to the minimum at that time. During the other times, the smart charging
algorithm controls the charging station and keeps the voltage level above the 3% limit.
Every time when the voltage threshold is crossed, the Smart Charger sends a reduction
charging control signal to the charging station and the voltage level returns to the allowed
range. With the worst case baseline scenario, where all cars are charging simultaneously
with maximum charging power, the voltage drop resides in a critical level for the whole
day with a minimum value of 213.5 V.

The second criteria we are taking into account is the loading of the transformer. During
noon on our simulated day, the smart charging algorithm reacts on transformer overload-
ing similar as on voltage bandwidth violations. The simulated apparent power, measured
at the transformer, is shown in Fig. 9 and compared with the two baseline scenarios. With
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Fig. 8 Voltage level at the critical point in the Bavarian grid during a whole day. The orange line and the
green line represent the baseline scenarios, while the blue line shows the voltage level when all charging
stations are controlled by our smart charging algorithm. The dotted red line is the lowest allowed voltage
level for the algorithm
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Fig. 9 Apparent power at the transformer station during a whole day. The orange and green line represent
the baseline scenario, while the blue line shows the apparent power when all charging stations are
controlled by our smart charging algorithm

the worst case baseline scenario the transformer is overloaded 66.7% of the day, whereas
the Smart Charger reduces this value to 1.4% with only short overloading periods.

Because our charging stations are located at different points in the grid, we also take
a look at the fairness between the controllers of the charging stations. Figure 10 shows
the active power of all four charging stations and the overall utilization. Within the time
range 00:00 - 06:30, when the voltage at the critical point is green, the charging stations
at non-critical locations can charge with nearly their maximum charging power, while
the charging station at the critical point is limited to a lower level. However, starting at
06:30 when the critical point is indicated with yellow or red voltage level all charging
stations react and reduce their charging power accordingly, even so the voltage at the
other charging stations is still in the green range.

Furthermore, we verified our simulation results of the smart charging algorithm using
PHIL. There are a number of different aspects that need to be considered when move
from simulated to real charging operations. First of all, the real and emulated cars have
a charging initialization phase and the battery runs into a saturation phase at high SoC
(Zhang et al. 2006). In addition, environmental circumstances can influence the charging
process and the minimum accepted charging current varies with the type of the car. Apart
from these points, the tested real EV and the emulated EV behave quite similar to the
simulated one and both follow the control signal sent from the hardware charging station
via PWM signal. In Fig. 11 the saturation phase of the emulated car starts at around 22:06,
while the rest of the time, the emulated car follows the simulated charging curve. The
plot in Fig. 12 compares the simulated with the real EV, where only the starting phase,
efficiency and reaction time differs. These results point out that in general our smart
charging approach is applicable to real charging station hardware in the field.
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Fig. 10 Power of charging stations. The colored lines represent the power of each single charging station
and the gray line depicts the sum of their charging power. The dotted red line shows the rated maximum
power of all four charging station
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Fig. 11 Comparison of the simulated charging signal with the reaction of an emulated car. At the end of the
charging process the emulated car reaches its saturation phase and reduces its charging power gradually
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Fig. 12 Comparison of a the simulated charging signal with the reaction of a real car. The tested real car
follows nearly the simulated power, except from the starting phase which takes some time. Contrarily to the
Fig. 11, the SoC of the tested car is low, hence, the saturation phase does not show in this figure
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Conclusion and future work

In this work, a smart charging architecture based on real-time data stream for triggering
events in the grid is presented. It is intended to be a scalable, decentralized architecture,
and it targets the fairness among the different running charging processes as well. The
traffic light model is applied to use the introduced grid flexibility to the e-mobility sector
in a convenient way. The Smart Charger shows the ability to drastically increase the qual-
ity of power with regard to the voltage level and load at the transformer by controlling
the active power used by the charging stations. In the future, other control strategies for
voltage control can be investigated, for example power factor correction, stationary bat-
teries and OLTC mechanism of the transformers. However, considering further factors of
power quality beyond the voltage such as harmonics and unbalance of load can be seen
as a promising direction even so existing hardware does not support this functionalities.
Furthermore, the mathematical stability analysis of the proposed architecture is missing
and placed on the top of to-do list in the future. Finally, the fairness among the charging
processes should be investigated more deeply, e.g. optimizing it by a centralized compo-
nent which has a global view on the grid and instructs the local Smart Charger to react in
a way to improve the power quality in the grid in total.

Endnote
Uhttps://www.ait.ac.at/themen/smart-grids/network-operators-and-energy-service-
providers/ait-lablink/

Funding

This project has received funding from the European Union'’s Horizon 2020 research and innovation programme under
grant agreement No. 713864 (ELECTRIFIC). In addition, the validation and test of the proposed approach has been
performed using the ERIGrid Research Infrastructure and is part of a project that has received funding from the European
Union’s Horizon 2020 Research and Innovation Programme under the Grant Agreement No. 654113. The support of the
European Research Infrastructure ERIGrid and its partner 'AlT Austria’ is very much appreciated.

Furthermore, Publication costs for this article were sponsored by the Smart Energy Showcases - Digital Agenda for the
Energy Transition (SINTEG) programme.

Availability of data and materials
The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable
request.

About this supplement

This article has been published as part of Energy Informatics Volume 1 Supplement 1, 2018: Proceedings of the 7th
DACH+ Conference on Energy Informatics. The full contents of the supplement are available online at https://
energyinformatics.springeropen.com/articles/supplements/volume-1-supplement-1.

Authors’ contributions

AA and DD were responsible for proposing the architecture, carrying out simulations, and reporting on the results. They
also wrote the first draft of the paper. FK and HdM provided research direction, supervision, and funding. They also
helped to write the final version of the paper. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details
University of Passau, Innstrae 43, 94032 Passau, Germany. 2AlT Austrian Institute of Technology GmbH, Giefinggasse 2,
1210 Vienna, Austria.

Published: 10 October 2018
References

Alonso M, Amaris H, Germain J, Galan J (2014) Optimal charging scheduling of electric vehicles in smart grids by heuristic
algorithms. Energies 7(4):2449-2475. https://doi.org/10.3390/en7042449


https://www.ait.ac.at/themen/smart-grids/network-operators-and-energy-service-providers/ait-lablink/
https://www.ait.ac.at/themen/smart-grids/network-operators-and-energy-service-providers/ait-lablink/
https://energyinformatics.springeropen.com/articles/supplements/volume-1-supplement-1
https://energyinformatics.springeropen.com/articles/supplements/volume-1-supplement-1
https://doi.org/10.3390/en7042449

Alyousef et al. Energy Informatics 2018, 1(Suppl 1):28 Page 147 of 428

Alvarez JN, Knezovi¢ K, Marinelli M (2016) Analysis and comparison of voltage dependent charging strategies for
single-phase electric vehicles in an unbalanced danish distribution grid. In: 2016 51st International Universities Power
Engineering Conference (UPEQ). IEEE, Coimbra. pp 1-6. https://doi.org/10.1109/UPEC.2016.8114062. Accessed on 20
Aug 2018. https://ieeexplore.ieee.org/document/8114062/

Ardakanian O, Rosenberg C, Keshav S (2013) Distributed control of electric vehicle charging. In: Proceedings of the Fourth
International Conference on Future Energy Systems. e-Energy '13. ACM, New York. pp 101-112. https://doi.org/10.
1145/2487166.2487178. Accessed on 20 Aug 2018. http://doi.acm.org/10.1145/2487166.2487178

BDEW Bundesverband der Energie- und Wasserwirtschaft eV (2013) BDEW Roadmap, Realistic Steps for the
Implementation of Smart Grids in Germany. Accessed on 2 Jan 2018. https://www.bdew.de/energie/bdew-
roadmap-smart-grids/

BDEW Bundesverband der Energie- und Wasserwirtschaft eV (2015) Smart Grid Traffic Light Concept. Accessed on 2 Jan
2018. https://www.bdew.de/media/documents/Stn_20150310_Smart-Grids-Traffic-Light-Concept_english.pdf

Chung C, Chynoweth J, Chu C, Gadh R (2014) Master-slave control scheme in electric vehicle smart charging
infrastructure. Sci World J 2014. https://www.hindawi.com/journals/tswj/2014/462312/abs/

Cortés A, Martinez S (2016) A hierarchical algorithm for optimal plug-in electric vehicle charging with usage constraints.
Automatica 68:119-131. https://doi.org/10.1016/j.automatica.2016.01.060. Accessed on 20 Aug 2018

Deilami S, Masoum AS, Moses PS, Masoum MAS (2011) Real-time coordination of plug-in electric vehicle charging in
smart grids to minimize power losses and improve voltage profile. IEEE Trans Smart Grid 2(3):456—-467. https://doi.
0rg/10.1109/T5G.2011.2159816. Accessed on 20 Aug 2018

Deutsch T, Kupzog F, Einfalt A, Ghaemi S (2014) Avoiding grid congestions with traffic light approach and the flexibility
operator. Challenges Implementing Act Distrib Syst Manag CIRED 1:1-4. Accessed on 20 Aug 2018

DIgSILENT (2018) Digital Simulation and Network Calculation. Accessed on 20 Aug 2018. www.digsilent.de/en/
powerfactory.html

Fan Z (2012) A distributed demand response algorithm and its application to phev charging in smart grids. IEEE Trans
Smart Grid 3(3):1280-1290. https://doi.org/10.1109/TSG.2012.2185075. Accessed on 20 Aug 2018

Faschang M, Kupzog F, Mosshammer R, Einfalt A (2013) Rapid control prototyping platform for networked smart grid
systems. In: [ECON 2013 - 39th Annual Conference of the IEEE Industrial Electronics Society. IEEE, Vienna.
pp 8172-8176. https://doi.org/10.1109/IECON.2013.6700500. Accessed on 20 Aug 2018. https://ieeexplore.ieee.org/
document/6700500/

Fernandez RC, Weidlich M, Pietzuch P, Gal A (2014) Scalable stateful stream processing for smart grids. In: Proceedings of
the 8th ACM International Conference on Distributed Event-Based Systems - DEBS '14. ACM Press, New York.
pp 276-281. https://doi.org/10.1145/2611286.2611326. Accessed on 20 Aug 2018. http://dl.acm.org/citation.cfm?
doid=2611286.2611326

Foster JM, Trevino G, Kuss M, Caramanis MC (2013) Plug-in electric vehicle and voltage support for distributed solar:
Theory and application. IEEE Syst J 7(4):881-888. https://doi.org/10.1109/JSYST.2012.2223534. Accessed on 20 Aug
2018

Foundation AS (2018) Apache Kafka: A Distributed Streaming Platform. Accessed on 8 Jan 2018. https://kafka.apache.org/

Kong F, Liu X, Sun Z, Wang Q (2016) Smart Rate Control and Demand Balancing for Electric Vehicle Charging. In: 2016
ACMV/IEEE 7th International Conference on Cyber-Physical Systems (ICCPS). IEEE, Vienna. pp 1-10. https://doi.org/10.
1109/ICCPS.2016.7479118. Accessed on 20 Aug 2018. http://ieeexplore.ieee.org/document/7479118/

Lehfuss F, Nohrer M (2017) Evaluation of different control algorithm with low-level communication requirements to
increase the maximum electric vehicle penetration. CIRED - Open Access Proc J 2017(1):1750-1754. https://doi.org/
10.1049/0ap-cired.2017.0265. Accessed on 20 Aug 2018

Li R, Wu Q, Oren SS (2014) Distribution locational marginal pricing for optimal electric vehicle charging management.
IEEE Trans Power Syst 29(1):203-211. https://doi.org/10.1109/TPWRS.2013.2278952. Accessed on 20 Aug 2018

Lopes JAP, Soares FJ, Almeida PMR (2009) Identifying management procedures to deal with connection of electric
vehicles in the grid. In: 2009 IEEE Bucharest PowerTech. IEEE, Bucharest. pp 1-8. https://doi.org/10.1109/PTC.2009.
5282155. Accessed on 20 Aug 2018. https://ieeexplore.ieee.org/document/5282155/

Longo M, Zaninelli D, Viola F, Romano P, Miceli R, Caruso M, Pellitteri F (2016) Recharge stations: A review. In: 2016 Eleventh
International Conference on Ecological Vehicles and Renewable Energies (EVER). IEEE, Monte Carlo. pp 1-8. https://
doi.org/10.1109/EVER.2016.7476390. Accessed on 20 Aug 2018. https://ieeexplore.ieee.org/document/7476390/

Martinenas S, Knezovi¢ K, Marinelli M (2017) Management of power quality issues in low voltage networks using electric
vehicles: Experimental validation. IEEE Trans Power Deliv 32(2):971-979. https://doi.org/10.1109/TPWRD.2016.
2614582. Accessed on 20 Aug 2018

Medved T, Prislan B, Zupanci¢ J, Gubina A (2016) A traffic light system for enhancing the utilization of demand response
in v distribution networks. In: 2016 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe).
IEEE, Ljubljana. pp 1-5. https://doi.org/10.1109/ISGTEurope.2016.7856303. Accessed on 20 Aug 2018. https:.//
ieeexplore.ieee.org/document/7856303/

Open Charge Alliance (2017) OCPP 2.0 Specification. https://www.openchargealliance.org/uploads/files/protected/
OCPP-2.0zip

Pipattanasomporn M, Kuzlu M, Rahman S (2012) An algorithm for intelligent home energy management and demand
response analysis. [EEE Trans Smart Grid 3(4):2166-2173. https://doi.org/10.1109/TSG.2012.2201182. Accessed on 20
Aug 2018

Restrepo M, Morris J, Kazerani M, Cafizares CA (2018) Modeling and testing of a bidirectional smart charger for
distribution system ev integration. IEEE Trans Smart Grid 9(1):152-162. https://doi.org/10.1109/75G.2016.2547178.
Accessed on 20 Aug 2018

Rivera J, Goebel C, Jacobsen H-A (2015) A distributed anytime algorithm for real-time ev charging congestion control. In:
Proceedings of the 2015 ACM Sixth International Conference on Future Energy Systems. e-Energy '15. ACM, New
York. pp 67-76. https://doi.org/10.1145/2768510.2768544. Accessed on 20 Aug 2018. http://doi.acm.org/10.1145/
2768510.2768544

Sankaran C (2002) Power Quality. The electric power engineering series. CRC Press, Boca Raton


https://doi.org/10.1109/UPEC.2016.8114062
https://ieeexplore.ieee.org/document/8114062/
https://doi.org/10.1145/2487166.2487178
https://doi.org/10.1145/2487166.2487178
http://doi.acm.org/10.1145/2487166.2487178
https://www.bdew.de/energie/bdew-roadmap-smart-grids/
https://www.bdew.de/energie/bdew-roadmap-smart-grids/
https://www.bdew.de/media/documents/Stn_20150310_Smart-Grids-Traffic-Light-Concept_english.pdf
https://www.hindawi.com/journals/tswj/2014/462312/abs/
https://doi.org/10.1016/j.automatica.2016.01.060
https://doi.org/10.1109/TSG.2011.2159816
https://doi.org/10.1109/TSG.2011.2159816
www.digsilent.de/en/powerfactory.html
www.digsilent.de/en/powerfactory.html
https://doi.org/10.1109/TSG.2012.2185075
https://doi.org/10.1109/IECON.2013.6700500
https://ieeexplore.ieee.org/document/6700500/
https://ieeexplore.ieee.org/document/6700500/
https://doi.org/10.1145/2611286.2611326
http://dl.acm.org/citation.cfm?doid=2611286.2611326
http://dl.acm.org/citation.cfm?doid=2611286.2611326
https://doi.org/10.1109/JSYST.2012.2223534
https://kafka.apache.org/
https://doi.org/10.1109/ICCPS.2016.7479118
https://doi.org/10.1109/ICCPS.2016.7479118
http://ieeexplore.ieee.org/document/7479118/
https://doi.org/10.1049/oap-cired.2017.0265
https://doi.org/10.1049/oap-cired.2017.0265
https://doi.org/10.1109/TPWRS.2013.2278952
https://doi.org/10.1109/PTC.2009.5282155
https://doi.org/10.1109/PTC.2009.5282155
https://ieeexplore.ieee.org/document/5282155/
https://doi.org/10.1109/EVER.2016.7476390
https://doi.org/10.1109/EVER.2016.7476390
https://ieeexplore.ieee.org/document/7476390/
https://doi.org/10.1109/TPWRD.2016.2614582
https://doi.org/10.1109/TPWRD.2016.2614582
https://doi.org/10.1109/ISGTEurope.2016.7856303
https://ieeexplore.ieee.org/document/7856303/
https://ieeexplore.ieee.org/document/7856303/
https://www.openchargealliance.org/uploads/files/protected/OCPP-2.0.zip
https://www.openchargealliance.org/uploads/files/protected/OCPP-2.0.zip
https://doi.org/10.1109/TSG.2012.2201182
https://doi.org/10.1109/TSG.2016.2547178
https://doi.org/10.1145/2768510.2768544
http://doi.acm.org/10.1145/2768510.2768544
http://doi.acm.org/10.1145/2768510.2768544

Alyousef et al. Energy Informatics 2018, 1(Suppl 1):28 Page 148 of 428

Shyam R, Ganesh HBB, Kumar SS, Poornachandran P, Soman KP (2015) Apache spark a big data analytics platform for
smart grid. Procedia Technol 21:171-178. https://doi.org/10.1016/j.protcy.2015.10.085. SMART GRID TECHNOLOGIES

Simonov M (2013) Event-driven communication in smart grid. IEEE Commun Lett 17(6):1061-1064. https://doi.org/10.
1109/LCOMM.2013.043013.122798. Accessed on 20 Aug 2018

Standard EN (1994) 50160: Voltage characteristics of electricity supplied by public distribution systems. Eur Stand CLC,
BTTF 68-6

Taft J, Martini PD (2013) Ultra-large scale control architecture. In: 2013 IEEE PES Innovative Smart Grid Technologies
Conference (ISGT). [EEE, Washington, DC. pp 1-6. https://doi.org/10.1109/ISGT.2013.6497906. Accessed on 20 Aug
2018. https://ieeexplore.ieee.org/document/6497906/

Tanaka T, Sekiya T, Tanaka H, Hiraki E, Okamoto M (2012) Smart charger for electric vehicles with power quality
compensator on single-phase three-wire distribution feeders. In: 2012 IEEE Energy Conversion Congress and
Exposition (ECCE). IEEE, Raleigh. pp 3075-3081. https://doi.org/10.1109/ECCE.2012.6342512. Accessed on 20th of
Aug. 2018. https://ieeexplore.ieee.org/document/6342512/

Tjaden T, Joseph B, Quaschning V (2015) Reprasentative elektrische Lastprofile fir Wohngeb&ude in Deutschland auf
1-sekindiger Datenbasis. HTW Berlin. p 8. https://doi.org/10.13140/RG.2.1.5112.0080

Vahedi H, Al-Haddad K (2016) A novel multilevel multioutput bidirectional active buck pfc rectifier. IEEE Trans Ind Electron
63(9):5442-5450. https://doi.org/10.1109/TIE.2016.2555279. Accessed on 20 Aug 2018

Varela J, Hatziargyriou N, Puglisi LJ, Rossi M, Abart A, Bletterie B (2017) The igreengrid project: Increasing hosting capacity
in distribution grids. IEEE Power Energy Mag 15(3):30-40. https://doi.org/10.1109/MPE.2017.2662338. Accessed on 20
Aug 2018

Yong JY, Ramachandaramurthy VK, Tan KM, Mithulananthan N (2015) Bi-directional electric vehicle fast charging station
with novel reactive power compensation for voltage regulation. Int J Electr Power Energy Syst 64:300-310. https://
doi.org/10.1016/j.ijepes.2014.07.025. Accessed on 20 Aug 2018

Zhang SS, Xu K, Jow TR (2006) Charge and discharge characteristics of a commercial LiCoO2-based 18650 Li-ion battery. J
Power Sources 160(2):1403-1409. https://doi.org/10.1016/j jpowsour.2006.03.037. Accessed on 20 Aug 2018

Zhong Y, Xia M, Chiang H (2017) Electric vehicle charging station microgrid providing unified power quality conditioner
support to local power distribution networks. Int Trans Electr Energy Syst 27(3):2262. https://doi.org/10.1002/etep.
2262. Accessed on 20 Aug 2018

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Immediate publication on acceptance

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com



https://doi.org/10.1016/j.protcy.2015.10.085
https://doi.org/10.1109/LCOMM.2013.043013.122798
https://doi.org/10.1109/LCOMM.2013.043013.122798
https://doi.org/10.1109/ISGT.2013.6497906
https://ieeexplore.ieee.org/document/6497906/
https://doi.org/10.1109/ECCE.2012.6342512
https://ieeexplore.ieee.org/document/6342512/
https://doi.org/10.13140/RG.2.1.5112.0080
https://doi.org/10.1109/TIE.2016.2555279
https://doi.org/10.1109/MPE.2017.2662338
https://doi.org/10.1016/j.ijepes.2014.07.025
https://doi.org/10.1016/j.ijepes.2014.07.025
https://doi.org/10.1016/j.jpowsour.2006.03.037
https://doi.org/10.1002/etep.2262
https://doi.org/10.1002/etep.2262

	Abstract
	Keywords

	Introduction
	Related work
	Approaches of charging management
	Approaches of Charge Control
	Grid constraints versus energy markets
	Contribution

	Architecture
	Algorithms
	PQ-indicator
	Smart Charger
	Finite state machine
	Transitions and actions


	Evaluation
	Setup
	Analysis

	Conclusion and future work
	Funding
	Availability of data and materials
	About this supplement
	Authors' contributions
	Competing interests
	Publisher's Note
	Author details
	References

