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Abstract

This paper analyzes the management of a large number of distributed battery energy
storage systems (BESSs) by a energy utility in order to provide some market services. A
heuristic algorithm based on two parts is proposed for this task. The first part, the
aggregation, combines the abilities and behavior of the fleet of BESS into a virtual
power plant (VPP) by a concise but flexible model. This VPP can be used by the utility as
they are used to with traditional power plants. The second part, the disaggregation,
distributes VPP control schedules back to the individual BESS by a greedy first-fit
decreasing heuristic.
The management of a fleet of BESS can also be modeled as a mathematical linear
optimization program. The proposed heuristic is compared to and evaluated against
this global optimization regarding computational performance and quality of results. It
is shown, that the heuristic provides a remarkable speedup when applied to larger
number of units. With it, it is possible to handle a group of at least 100,000 individual
BESS. Further, the quality of the results are shown. First, the solution of the heuristic is
compared to the optimal one of the mathematical program. Second, the methods are
both applied and compared in a realistic case study.

Keywords: Scaling, Algorithms, Suboptimal control, Distributed battery energy
storage systems, Scheduling

Background
In most deregulated electricity market environments, the active management of dis-
tributed energy resources, here referred to as active demand and supply (ADS) units,
is commonly regarded as becoming increasingly important to manage. There are some
types of ADS units, which can be managed in a similar way as traditional power plants
(e.g. large cooling facilities). However, the management of relatively small and distributed
ADS units is different: First, it is well known that the isolated management of such indi-
vidual ADS units is seldommeaningful. This is because the economic potential of electric
energy and grid services of such units does not justify their management effort. Second,
the central control of many diverse ADS units in an aggregated way is also troublesome
to ensure various local constraints and computational efficiency.
The presented work here is done within the scope of a project which addresses

this problem, named Scaling ADS Management to large Swarms (ScaleADS). The goal
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of the project ScaleADS is to enable the management of more than 100,000; het-
erogeneous ADS units. Therefore, the project focuses on making existing techniques
applicable here, that is, providing adequate scaling of scheduling methods. The idea
is to construct a virtual power plant (VPP) representing the electrical and thermal
flexibilities of the fleet of ADS units. Thus, only the necessary information shall be
considered and aggregated. Such a VPP shall be used by energy utilities in a similar
way as they are used to with traditional power plants. Then, the VPP can be opti-
mized together with the pool of other power plants for providing various services and
obligations. For an example, the utility may foresee that its balance group gets short
in energy and to provide this energy by the ADS VPP instead of using other plants
or balancing markets. Such a methodology requires apart from an aggregation part a
complementary disaggregation of the flexibility requests of the VPP to the individual
ADS units.
In other words, four phases are needed in this project. (1), a pre-processing constructing

the VPP out of the ADS units by identifying the combined flexibility (aggregation). (2),
the capabilities of the VPP are exploited by the energy utility for its specific needs. Then
(3), a post-processing is necessary to distribute a VPP schedule/requests back to the ADS
units (disaggregation) and finally (4), the ADS units are to be controlled to follow their
individual schedules.
This paper analyzes one part of this problem, the management of a large number of dis-

tributed battery energy storage systems (BESSs), as one type of ADS units, for the phases
1–3. The major contribution of this paper is to propose and analyze a methodology able
to do that. The framework is based on a concise but flexible model for the behavior of the
fleet of BESS units for the aggregation part, and a greedy first-fit decreasing heuristic for
the disaggregation phase. This methodology is evaluated regarding its computational per-
formance and quality of solution in a realistic setting. Further, it is compared to concepts
typically applied in such contexts, which is solving a mathematical linear optimization
program.

Related research

The management of BESS can be considered to be similar to the field of hydro power
scheduling, especially for pumped hydro without natural water inflows. There, the
research has matured and many concepts are available, e.g. as reviewed in Wallace and
Fleten (2003); Labadie (2004) and Yamin (2004). The concepts were also applied and
mildly adapted specifically to the management of BESS, as in Mégel et al. (2013); Koller
et al. (2013) and Galus et al. (2013). Compared to hydro power, BESS have a higher power
to energy ratio. Therefore, the time scales are different, e.g. models for BESS consider
time steps of minutes for time horizon of a few days whereas for hydro power plants it is
hours for a few years. Mathematically, such differences are not relevant: by representing
each BESS as one hydro reservoir with associated plant, the ideas from the scheduling of
hydro power plants can be also applied to the management of BESS. Roughly, the compu-
tational complexity of such models are driven either by the number of time steps and/or
the number of state variables (number of BESS / hydro reservoirs respectively). Different
mathematical techniques are available which can mitigate these complications. Whereas
number of time steps are similar, the number of state variables are not, with maximally
a few dozens state variables in hydro scheduling problems compared to 100,000 in the
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BESS problem addressed in the context here. Therefore, these techniques are not well
applicable.
There are also a few general methodologies for the modeling of ADS and their

aggregation proposed. They are obviously based either on energy quantities (Geidl and
Andersson 2007), power quantities (Heussen et al. 2010) or specifically for modeling
demand side flexibility (Barth et al. 2018). These concepts would also allow storage
abilities, but this is not their primary focus.
Further, many smart grid applications deal with some storage ability, see Fang

et al. (2012); Oldewurtel et al. (2013); Haider et al. (2016) for an overview of
the developments there. The research about the integration of distributed BESS
systems in the low- and medium voltage grids is as well academically advanced,
with a good overview given in Fortenbacher (2017). Finally, in Nosratabadi et
al. (2017), research about the concept of VPP for dealing with distributed ADS
is reviewed.
Despite having a large amount of relevant research available, most of these works con-

sider only a modest number of maximally a few thousands ADS and/or BESS units. There,
mathematical programming can handle BESS individually without aggregation, or, as in
Asamov and Powell (2015), some aggregation or decomposition is performed but the
number of manageable systems is too low to be applicable here.
Another relevant line of research is the one of co-simulation processes. The prob-

lem of controlling heterogeneous ADS units or BESS can be modeled with the help
of agents interacting in some environment (e.g. Steinbrink et al. (2018); Schütte and
Sonnenschein (2012); Basso et al. (2015)). A major feature of such frameworks is
the handling and coordination of communication among the agents. Such aspects are
responsible for a considerable part of the computational effort needed there. Since
agents’ communication is not important in the context here, such frameworks are
not well applicable. This is, since the handling of a large amount of BESS requires
an as efficient approach as possible and, therefore, a custom-made framework is
introduced here.
A fourth line of mentionable research is the one dealing with scaling issues. It seems that

simple heuristics can deal well with the management of large number of devices, as long
as the implementation of the algorithms are kept efficient. For example, in Petersen et
al. (2014) and Barth and Wagner (2018), 100,000 respectively 10,000 deferrable electrical
loads are scheduled for balancing and/or peak shaving. Both authors suggest using greedy
algorithms. They provide good results in acceptable computation time. This is also in line
with what is presented in the paper here, although a completely different setup with BESS
is analyzed.
As an alternative to the concepts presented in this paper, it would be also pos-

sible to cluster the fleet of ADS units in some way. Then, the total number of
units is reduced and concepts mentioned earlier are applicable. This clustering can
be done by some common attribute (e.g. type of BESS), spatial proximity and
others (see e.g. ?Sim4Blocks2018a ()).
The paper is organized as follows: the next section presents the basic optimization prob-

lem. Then, the proposed aggregation and disaggregation algorithms are described. Finally,
after explaining the physical setup of the case study, the proposed concepts are evaluated
regarding optimality and computational performance.
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Global optimization problem
The problem considered in this paper consists of the management of a large number of
independent BESS. The goal of this management can be manifold. Here in this paper for
the purpose of evaluating the concepts, the optimal deployment of the BESS in a day-
ahead and intra-day energy market is considered. Day-ahead and intra-day markets are
modeled as one aggregated time series of quarter-of-an-hour prices. This single time
series is possibly updated each quarter-of-an-hour. Reasons for that can be for instances
changes in the intra-day market offers, when new market information change the pre-
dictions of future day-ahead prices or after a day-ahead market clearing. This price time
series is given by external providers and its construction and analysis is outside of the
scope of this paper.
Given such a single time series of market prices π1, . . . ,πT , the problem reduces to

deploy all the individual BESS most profitably within this market of non-overlapping
products; in other words, charging “when the price is low” and discharging “when the
price is high”:

arg maxp
T∑

t=1

nbess∑

b=1
πt

[
pbt,dischar − pbt,char

]
(1)

The objective of this deterministic optimization problem sums up all charging and dis-
charging control decisions for the time horizon T and nbess number of BESS units. The
evolution of the state of charge (SoC) SoCb(t) for each discretized time point t and BESS
unit b is handled in (1a). To facilitate the notation, SoC variables are assumed to be
energy quantities, that is in units of MWh, whereas charging and discharging power vari-
ables Pchar/dischar denote power quantities in MW respectively. Note that the charging
and discharging efficiencies ηbchar , η

b
dischar remain constant for each BESS unit and are not

depending on the SoC. Therefore, the model remains linear. The problem is bounded by
the individual SoC and charging/discharging power limits in (1b) and (1d) respectively.
The variable bounds (1c) define starting and end SoCs. The starting SoC is given as the
current individual SoC of the BESS SoCb

start . In order to ensure high flexibility at the end
of the time horizon and to make comparisons between the different algorithms easier, the
ending SoC of each BESS is bounded to 50% of its energy capacity, that is to be charged
half full.
Note that in problem (1), all BESS devices are independent of each other. This

would allow to optimize each BESS individually. Then, problem (1) could be solved
centrally as a series of small optimization problems in parallel. This can be compu-
tationally advantageous if memory is limited or distributed computational resources
are available. As it will be shown later, memory is not an issue here. However,
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distributed computational resources are available since each BESS could solve its
own management problem. For problem (1) this would be possible by sending each
BESS the market price signal π1, . . . ,πT . This would require more intelligence at
each BESS instead of having the computational effort mostly centrally, but this
is manageable.
Anyways, as mentioned earlier and discussed later, the business case in this project

is to have the fleet of BESS represented as a single VPP. This VPP should be usable
as one equal power plant among other traditional ones owned by an energy utility. In
such a context, the BESS are not independent anymore but have to be coordinated
in some way.
The linear model (1) can be solved quite efficiently by standard linear programming

solvers in polynomial time. However, given a large number of around 100,000 BESS,
together with a meaningful time horizon of a day and a time step of a few minutes, there
are easily dozens of millions variables and constraints. For such classes of problems, even
pure data handling can become an issue if not done in a proper way.
When managing thousands of distributed small BESSs, it is clear that there are many

aspects subject to uncertainty. This issue can be approached via extending the model
(1) with the introduction of some stochasticity, e.g. by concepts from stochastic control.
On the other hand, it seems to be questionable, if it is even required to solve the simple
problem (1) to optimality or if such an approach is rather excessive and computationally
inefficient. The next section discusses an alternative concept, which will approach the
management of the fleet of BESS differently via simple heuristics.

Proposed heuristic algorithm
Instead of making an already difficult to solve optimization problem (1) even more com-
plex, another approach is proposed here: The fleet of BESS is aggregated to a simple VPP
model where it is clear that many aspects are simplified. In return, the optimized schedule
of the VPP is disaggregated to the individual BESS in a similar tolerant way.
Despite that, a good controlling performance may still be achieved. This is, because

the entire process has to be repeated anyways continuously based on updated market
information. Therefore, similar ideas in what is known as model predictive control in the
control community can be applied here.
Next, the aggregation with the proposed VPP model is explained, followed by the com-

plementary iterative heuristic for the disaggregation. The whole framework with both
aggregation and disaggregation is shown later in the section about the case study.

Aggregation: building the VPPmodel

Before doing an aggregation, it is important to examine the available information. In line
with the setup and business case of the overall ScaleADS project, the following informa-
tion are known or are measured by each individual BESS and are available centrally (see
also (1)) for constructing the VPP:

• maximum BESS energy storage size SoCb,max,
• maximum charging and discharging power Pb,max

char/dischar ,
• charging and discharging efficiencies ηbchar/dischar , and,
• current SoC: SoCb(t = 1) = SoCb

start .
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Whereas the first three information are constant parameters of the BESS, the last infor-
mation, the current SoC SoCb

start , is updated from time to time. Note that in the model
here no further aspects of BESS are considered, e.g. battery degradation due to cycling
etc..
The proposed model of the VPP of the fleet of BESS is a modified “super”-BESS with

the following parameters:

• VPP BESS energy storage size and current SoC:

SoCvpp,max =
nbess∑

b=1
SoCb,max, SoCvpp

start =
nbess∑

b=1
SoCb

start (2)

The energy content for the VPP is simply the sum of the individual ones for each
BESS.

• maximum charging / discharging power:

Pvpp,max
char/dischar =

nbess∑

b=1
Pb,max
char/dischar , P

vpp,now
char/dischar =

nbess∑

b=1
Pb,nowchar/dischar (3)

A valid upper bound for the maximum available charging and discharging power for
the VPP is the sum for the ones from the BESS. Additionally, for the next time step,
with high probability the current available maximum charging and discharging
power Pvpp,nowchar/dischar can be deduced, where Pb,nowchar/dischar denotes current maximal
available charging or discharing power per individual BESS. This entity can be limited
by the available SoC to charge or discharge, e.g. when the BESS is too depleted to
deliver full discharging power:

Pb,nowchar = min
(
Pb,max
char ,

SoCb,max − SoCb
start

ηbchar · �t

)
(4)

Pb,nowdischar = min
(
Pb,max
dischar , η

b
dischar

SoCb
start

�t

)

The minimum of two given values are denoted bymin (.., ..) and �t is the duration of
the time step, in the here considered setup it is 15 min. Note here, that the charging
and discharging power as in (1) is assumed to be constant for each individual BESS
and also for the VPP for the duration of the time step.

• weighted charging and discharging efficiencies:

η
vpp
char/dischar = 1

Pvpp,max
char/dischar

nbess∑

b=1
Pb,max
char/dischar · ηbchar/dischar (5)

The efficiencies are weighted by the associated maximum charging or discharging
power as a proxy for the amount an individual BESS contributes to the power
delivery of the VPP.

• limited charging and discharging power of the VPP:

pvppchar/dischar(t) ≤ Pvpp,max
char/dischar · fchar/dischar(SoCvpp(t)) (6)

Since the SoCs of all individual BESS are not homogeneous, some batteries may be
full and some depleted, resulting in a reduced charging and discharging power of the
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VPP: the lower the overall SoC of the VPP, the higher the probability that some
batteries may be empty and vice versa. This relationship is modeled here as some
function fchar/dischar of the SoC of the VPP SoCvpp.

In problem (1), it was assumed that all BESS can be perfectly controlled. Therefore
the future evolution of their SoCs can be tracked. This is not possible with the model
here. Basically, two important information are lost due to the aggregation: First, about the
distribution of charging/discharging power with the energy content of the BESS (hetero-
geneity of the fleet) and second, about the distribution of the SoC of the individual BESS.
Both elements affect the capabilities of the VPP. To illustrate this, see the example of an
extreme VPP in Table 1.
In order to address this lost information, Eq. 6 tries to model it in a simple way via

the function fchar/dischar . This function is not only a parameter of the fleet of BESS, but
depends on various aspects:

• heterogeneity of the parameters of the BESS (as already discussed and illustrated in
Table 1),

• control (requested schedule) of the VPP, and,
• disaggregation algorithm.

Some examples of this influences and possible functions are shown in Figs. 1 and 3
respectively. One can state, that themore homogeneous the individual BESS are, themore
randomly the schedule of the VPP to follow is, and, the “smarter” the disaggregation is
performed, the less influence a higher or lower VPP SoC has on the maximum charging
or discharging power. As it will be shown in the next section, the performance of the
proposed aggregation scheme depends significantly on the choice of this function.
These “super”-BESS parameters constructs the VPP BESSmodel, which can be included

directly as a plant to be optimized within a power plant pool optimization of an energy
utility. To illustrate its usage and to evaluate its performance, the same setup as in Eq. 1 is
followed: the optimization problem of scheduling the VPP most profitable in respect to a
single market price process π = π1, . . . ,πT :

arg maxp
T∑

t=1
πt

[
pvppt,dischar − pvppt,char

]
(7)

Table 1 Illustration of importance of heterogeneity: Consider a VPP consisted of two extreme BESSs,
with one having the power capabilities of the VPP but with little energy storage and the other BESS
having the energy storage of the VPP but with a very limited amount of charging power

SoCmax Pmax
char SoCstart

BESS 1 0.001 kWh 0.999 kW 0.001 kWh

BESS 2 0.999 kWh 0.001 kW 0 kWh

VPP 1 kWh 1 kW 0.1%

VPP abilities: pchar = 0.001 kW

Basically, such an extreme VPP can not be used much, although the power and energy parameters of the VPP would suggest
differently. The example gets even worse, if it is assumed, that the first BESS is fully discharged. Then, the VPP charging ability is
nearly zero, although the VPP is with 0.1% almost fully depleted
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Heterogeneity of set of BESS: normal set from case study
VPP schedule to follow: cyclic or random
Disagreggation algorithm: first-fit decreasing or random selection

Influence of heterogeneity of BESS parameters Influence of VPP schedule and disaggregation algorithm

normal
heterogen random vpp schedule / random disaggragation

cyclic vpp schedule

random vpp schedule

Fig. 1 Analysis of the discharging abilities of the VPP depending on its SoC: One important property of a fleet
of BESSs is the relationship of aggregated SoC versus its aggregated charging and discharging abilities. For
lower (higher) SoC of the VPP, more individual BESS are fully discharged (charged), and therefore cannot
discharge (charge) any further and, thus, the discharging (charging) ability of the VPP reduces. This property
depends not only on the BESSs themselves, but also on what is requested from the VPP (VPP schedule) and
how this schedule is implemented via the BESS (disaggregation algorithm). The two figures here illustrates
this by showing the calculated normalized VPP SoC and its associated maximum discharging ability. The
figure on the left varies the heterogeneity of the fleet of BESSs (see also Table 1, that is different distributions
of energy content to charging power ratios, while having the same aggregated VPP energy storage size and
discharging power). Total number of BESS are 370, with homogenousmeaning all BESS being identical,
normal a set of BESS from the case study and heterogenous a set with diverse BESS properties. The
heterogenous set performs worst since with a maximum discharging schedule all BESS have to contribute
and the BESS with high power but small energy content quickly gets depleted. In contrast, the homogenous
set can all be discharged uniformly until all BESS are depleted at the same moment. The figure on the right
shows the influence for varying VPP schedules and disaggregation algorithms for a normal set of 370 BESSs
and one month of operation. The BESS are tried to be operated so that the VPP follows a cyclic or random
schedule. Each dot in the figure corresponds to the SoC and discharging situation for one quarter of an hour
in this month. Clearly, a more random schedule is beneficial to allow the fleet of BESSs to recover and, thus,
provide more discharging flexibility. Further, the first-fit decreasing algorithm achieves a much better
exploitation of the abilities of the fleet than a random disaggregation

As noted before, for the function fchar/dischar , different models can be meaningful. Later
on tested are linear, concave and non-concave piece-wise linear functions. Therefore, in
contrast to the optimization problem (1), the model (7) may become a mixed-integer lin-
ear program. However note, that the problem is much smaller with having only one set of
variables for the single VPP instead of for each BESS b ∈ {1, . . . , nbess}.
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Disaggregation: first-fit decreasing heuristic

The outcome of an optimization problem like (7) is a policy for charging and discharging
of the VPP over some time horizon. From the point of the VPP, this policy defines the
production schedule of it, with charging associated to VPP consumption and discharging
to production. In order to realize this schedule, a disaggregation of it to send control
signals to the individual BESSs is required.
This disaggregation task is a variant of the standard bin packing problem. In the context

here, the problem is to choose for the next time step a number of BESS so that the VPP
schedule is fulfilled. This task is performed each time step, e.g. each quarter of an hour,
with updated SoC for all BESS.
There are a few simplifications to the bin packing problem meaningful: First, because

of the high number of BESSs and their relative individual unimportance, the schedule
of the VPP does not have to be fulfilled exactly. In the proposed heuristic, this leads to
over-fulfilling the schedule in the worst case by selecting one BESS too much, e.g. for a
homogeneous fleet of 100,000 BESS the maximum error would be 0.01�. Second, the
amount of BESS to choose does not have to be minimized, but rather they should be
chosen “in a good way”, so that high capabilities of the VPP remain.
Proposed for the disaggregation is the greedy Algorithm 1, which is based

on a first-fit decreasing heuristic: If charging is requested, the list of all
BESS are sorted with increasing SoC, and iteratively from this list BESS are
selected until the request is fulfilled. If discharging is requested, the same pro-
cedure is done but for decreasing SoCs. Such a type of heuristic is natural
to be applied and is therefore also proposed by many other authors, e.g. as
in Petersen et al. (2014) and Barth and Wagner (2018).
The computational effort in such a disaggregation is, therefore, quite modest with need-

ing to sort once a list and to iterate over a part of it. Despite the modest effort, such a
first-fit decreasing heuristic may perform quite well for a bin packing problem with pro-
viding a possibly non-optimal but fast answer. This is also the case here as shown in the
next section. Note, that the effort of sorting the list is typically acceptable, since then
the BESS are driven towards a homogeneous SoC of around 50%, which allows better
exploiting the abilities of the VPP.

Case study
The case study to test and evaluate the proposed algorithms is based on a realistic business
case. This is explained next in this section. Further, the co-simulation framework, which
mimics the management of the BESS, is introduced and described.

Underlying business case

In the near future, it is not realistic that market environments and regulations may
(economically) allow a management of distributed ADS units individually. In order for
energy utilities to exploit electrical flexibility of their customers, one option is to manage
the ADS units as a single entity, a VPP. In line with the strategy of the industry partner in
this project, the business case motivating this paper is as follows: Supporting utilities in
the management of distributed BESSs.
The BESSs are installed in the low and medium voltage electricity grid out of

various reasons (e.g. peak shaving etc.). All BESSs can be controlled centrally, but
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Algorithm 1 Disaggregation algorithm: First-fit decreasing
Require: Disjunct VPP charging/discharging requests pvppt=0,char · pvppt=0,dischar = 0 � either

one is zero
Require: List of current SoC for all BESS: SOC = {SoC1

start , . . . , SoC
nbess
start}

Require: Empty lists of BESS to charge and discharge CHAR,DISCHAR

1: if pvppt=0,char > 0 then � if charging is requested
2: sort list SOC in ascending order � depleted BESS first
3: while pvppt=0,char > 0 do
4: pop first element in list SOC and consider associated BESS bnext
5: fill list CHAR with bnext
6: pvppt=0,char = pvppt=0,char − Pbnext ,nowchar � update charging request
7: end while
8: end if
9: if pvppt=0,dischar > 0 then � if discharging is requested

10: sort set SOC in descending order � full BESS first
11: while pvppt=0,dischar > 0 do
12: pop first element in list SOC and consider associated BESS bnext
13: fill list DISCHAR with bnext
14: pvppt=0,char = pvppt=0,char − Pbnext ,nowdischar � update discharging request
15: end while
16: end if

17: return list of BESS to charge CHAR
18: return list of BESS to discharge DISCHAR

individual BESS may have local constraints. The BESSs can be controlled by forc-
ing them to charge or discharge. As it is typically the case with controllable BESS,
the local storage management system prevents invalid operation of individual BESS.
Therefore, while it is not guaranteed that all BESS follow their control signals, the cen-
tralized control is not responsible for safe operation of individual BESS. The BESSs
shall be used in the available energy markets, that is primarily day-ahead and intra-
day energy power markets. Further, the methodology should allow a management of
at least 100,000 entities of BESS, in order to be future-proof and to allow for further
complications of it.
Note that although BESS would allow usage for grid stabilization services (e.g. fre-

quency containment reserves etc.), this is not regarded here. Additionally, BESS in
households are not considered although the concepts would be applicable for them as
well and its evaluation is left for future work.
The VPP shall be used in a pool optimization of the energy utility together with other

traditional power plants. There are multiple possible usages there, e.g. fulfilling load obli-
gations with least costs, managing foreseeable balance group deviations, operations in
the intra-day market etc.. Note that for such purposes the quantity of energy or power
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to distribute among the plant is given. Therefore, the single BESS cannot be operated
individually but must be coordinated.
The main aim of the case study in this paper is the analysis of possible aggre-

gation schemes for the fleet of BESSs and disaggregation of the VPP requests
back to the BESSs. Communication to and from the BESSs is realized via a cen-
tral database. The realization of the control signals within the BESSs, manage-
ment of the VPP and interfaces to the power markets are not discussed further in
this paper.

Co-simulation framework to allow the evaluation of different strategies

In order to test the performance of the aggregation and disaggregation concepts, a simu-
lation of the overall system is required. For this, a co-simulation framework is proposed,
consisting of the following interacting simulators:

• of each individual BESS and its operation, and
• of the operation of the VPP, that is how an energy utility would use the VPP in the

power markets.

Such a co-simulation framework allows to mimic a realistic usage of the fleet of BESSs
by a utility with one of the proposed concepts. This custom-made framework with its
middleware for the simulators and interfaces to external data providers accounts for most
of the coding work, whereas the actual aggregation and disaggregation algorithms do not
contribute much.
The main computational burden is supposed to be happen centrally, that is the process-

ing of the information coming from the BESS and the calculation of their control signals.
Overall computation time should not exceedmore than a couple of minutes, in order to be
able to deal with typical market lead times of 15 min and to allow for future complications
of the models.
All simulations are performed with a basic time step of 5 min. The course of

it is illustrated in Algorithm 2 if based on the global optimization (1) and Algo-
rithm 3 for the proposed heuristic. All calculations are performed on a standard
notebook and for solving linear or mixed-integer problems the solver CPLEX 12.8
was used.

Algorithm 2 Procedure of co-simulation framework: based on global optimization (1)
Require: Starting SoC for all BESS: SOCτ=0 = {SoC1

start , . . . , SoC
nbess
start}

1: for all τ ∈ {0, 15min, . . . ,T } do
2: perform optimization:

look ahead next 24 h: t ← {τ , τ + 5min, . . . , τ + 24h}
find individual BESS schedules pbt,char/dischar ,∀b,∀t, by solving problem (1)

3: perform simulation of individual BESS:
apply individual BESS schedules if possible
update SoC of BESS: SOCτ ,τ+5min,τ+10min

4: end for
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Algorithm 3 Procedure of co-simulation framework: based on aggregated optimization
problem (7) and first-fit decreasing algorithm 1
Require: Starting SoC for all BESS: SOCτ=0 = {SoC1

start , . . . , SoC
nbess
start}

1: for all τ ∈ {0, 15min, . . . , T } do
2: aggregation: build VPP:

by using Eqs. 2-(6)

3: perform optimization of VPP:
look ahead next 24 h: t ← {τ , τ + 5min, . . . , τ + 24h}
find VPP schedule pvppt,char/dischar ,∀t, by solving problem (7)

4: disaggregation: find individual BESS schedules pbt,char/dischar ,∀b,∀t
apply first-fit decreasing algorithm 1 to VPP schedule pvppt,char/dischar , t = τ

5: perform simulation of individual BESS:
apply individual BESS schedules if possible
update SoC of BESSe: SOCτ ,τ+5min,τ+10min

6: end for

Evaluation
There are two fundamental analysis needed to evaluate the different concepts. (1), using
the optimization and/or heuristic once for scheduling the fleet of BESS for a given deter-
ministic time horizon. (2), managing the BESS by executing the algorithms repetitively in
a simulation with receding horizon and applying each time only the first control decisions.
For the first analysis, the computational complexity of the algorithms are investigated.

Then, it is analyzed, how well the heuristic approximate the global optimization problem
(1). In order to do so, different models for the function fchar/dischar are introduced for the
heuristic.
For the second analysis, the algorithms are tested if they perform well if applied for

managing the BESS in a one week simulation.

Computational complexity: scaling of the algorithms

One motivation of using heuristics in this paper is their computational efficiency. At
first, it may seem to be quite ambitious to try to beat the performance of solving a lin-
ear problem with a custom made heuristic and implementation. However, when dealing
with a large number of variables even simple calculations can become troublesome and a
heuristic meaningful when it is implementable in a computationally efficient way.
In Fig. 2, the computational effort is compared with the global optimization approach

for increasing number of BESS. A speed-up of more than 10 can be achieved with the
heuristic. Within a time frame of 15 min this would allow a consideration of 100,000 BESS
while still having some slack time allowing further complications of the model. Note here
that all computations were performed on a standard laptop and parallelization was not
used so far for the heuristic.



Abgottspon et al. Energy Informatics 2018, 1(Suppl 1):20 Page 67 of 428

0

2

4

6

8

10

12

14

16

18

0

2

4

6

8

10

12

14

16

18

20

1 10 100 1000 10000 100000 1000000

sp
ee

du
p

el
ap

se
d

ti
m

e
[m

in
]

Number of BESS

Global Optimization Meta-Heuristic Speedup

Fig. 2 Scaling of computational effort for the global optimization (1) and the proposed heuristic: For the
heuristic, the elapsed time over doing the aggregation, optimization of the VPP and disaggregation is
measured and shown. In Algorithm 3 these are lines 2 - 4. For the global optimization, only the time used for
solving the linear problem is measured. Further, the speedup of the heuristic relative to the global
optimization is depicted. All values are shown for increasing number of BESS from one up to 200,000 BESS. As
long as there is enough memory available, the effort of both algorithms does not increase exponentially
(note the logarithmic scale of the x-axis). Nevertheless, the heuristic provides already a speed-up of more
than 10 and allows at least the consideration of 100,000 BESS giving a time frame of maximally 15 min
whereas the global optimization can handle only 15,000 BESS. Note that the implementation of the heuristic
did not even exploited the use of parallelization

Approximating the global optimization problem (1)

As described earlier and shown in Fig. 1, one property of the fleet of BESSs is the relation-
ship of VPP SoC versus its charging and discharging abilities. This property is important
for approximating the global optimization problem (1). In the proposed heuristic, it is
described as some function fchar/dischar in (6). The idea here is to consider this function
as some kind of tuning parameter which has to be adapted based on the experience when
applying the algorithms to a specific case. Shown here are a few promising candidates for
this function in Fig. 3.
Each candidate is based on a differentmodel, either based onmodifying variable bounds

or based on a linear, concave piece-wise linear or non-concave piece-wise linear model.
The concrete parameters for each of the candidate were chosen to meet the behavior of
the case study.
Only themodel of the fifth candidate complicates the VPPmodel by introducingmixed-

integer variables. The problem remains small and the mixed-integer variables are within a
special ordered set. Nevertheless, it turns out that is not easy to close the optimization gap
fast but a few minutes are required. One reason could be that the problem is not much
constrained so that it is not clear to the solver “where” to look for good solutions. But note
that this may change if the problem is incorporated in a bigger optimization problem.
The global optimization problem (1) can be solved to optimality which is the baseline

for the evaluation here. The setup is as follows:

• simulation for one day of 24 h;
• given market price signal, with perfect foresight of 24 h;
• 370 different BESS, which are typical for the considered business case, are considered;
• only one single optimization is performed, that is, calculated control schedules are

tried to be applied for the full 24h.
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Fig. 3 Candidates for fchar/dischar models: The function fchar/dischar models the relationship of VPP SoC versus
its charging and discharging capabilities (see also Fig. 1). Tested in this paper are the performance of 5
different promising candidates. The first candidate, does not take this relationship into account. The second
model bounds the SoC, so that only 20% to 80% of the VPP SoC can be used. The third model uses simply a
linear, the fourth a concave and the fifth a non-concave piece-wise linear relationship. The fifth model is most
precicse, however, the resulting VPP optimization problem turns into a mixed-integer one

Table 2 shows a comparison of the achieved profits for the heuristics with different
fchar/dischar models with the one from the optimal solution of the global optimization
problem. Additionally, Fig. 4 illustrates the evolution of the VPP SoC and the violations
when individual BESS can not follow the control. One can state that themore complicated
the model is, the better the optimization problem is approximated. The non-concave
piece-wise linear model leads to a quite impressive approximation with having a differ-
ence from the optimal value of only 6%. But also the concave piece-wise linear model,
which avoids complicating the optimization problem, is less than 10% from the optimal
value. Further note, that although the heuristic 2 shows a poor performance, it could be
still a good model. This is, since only the first control actions are to be implemented and
therefore, avoiding overestimation of charging and discharging abilities could be valuable.

Table 2 Performance of solving the global optimization problem (1): The heuristic candidates with
different fchar/dischar models are compared to the optimal solution from solving the global
optimization problem as a linear program

Algorithms Revenue [Euro] average violations discharging

Global Optimization 7949 0%

Heuristic 1: without function 4749 21.6%

Heuristic 2: bounded SoC 2859 9.8%

Heuristic 3: linear 6694 12.2%

Heuristic 4: concave piece-wise linear 7311 13.2%

Heuristic 5: non-concave piece-wise linear 7473 6.0%

The heuristic without a function modeled approximates this daily deterministic problem quite poorly, resulting in trying to
schedule more charging or discharging than what is available. This leads to a bad policy since on average 21.6% of the control
(relative to maximum VPP discharging power) is not possible to be implemented by the individual BESS. In order to avoid critical
operation where some individual BESS may be full or depleted, heuristic 2 bounds the SoC of the VPP. This leads to much less
violations, however, at the costs of using only a fraction of the energy storage of the VPP. Having more complicated models leads
to better results up to the non-concave piece-wise linear model with a difference from the optimal value of only 6% and average
violations of also 6%
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Fig. 4 Results of performing the optimization once for one day: The results from performing a single
optimization step of one day are the basis for the proposed framework for managing the BESS. The results are
illustrated for the global optimization as the baseline, heuristic 1 without any fchar/dischar modeled and
heuristic 4 with a concave piece-wise linear model. The optimal solution clearly exploits the VPP SoC more
than the heuristic (zero violations, since all BESS can follow the control). Without any function modeled, a
substantial part of the charging and discharging control cannot be implemented by the individual BESS. As
shown in the figure on the right, up to 90% of a control can not be met. This hinders using the full range of
VPP capabilities. Considering a concave piece-wise linear model reduces the violations and also allows to
exploit the VPP better. But note that next only the first control decisions are implemented and therefore, the
later violations are not that important

Performance for managing a fleet of BESS

The analysis so far did not answer the question if the different candidates are well appli-
cable in managing the fleet of BESS. For this, the procedures for the co-simulation in
Algorithms 2 and 3 are performed with the setup as before with following modifications:

• simulation for one week, T = 7 days;
• receding optimization time horizon of 24 h.

Such a simulation in style of a model predictive control algorithm leads to solving
repetitively optimization problems, in this case 672 loops in the co-simulation algorithm
procedures. There is a perfect foresight of 24 h modeled, therefore, the deterministic
global optimization problem in (1) still can be used as a baseline for all the other algo-
rithms. However note in practice with some involved stochasticity, such a deterministic
optimization may overfit.
Table 3 shows the result of this simulation. The results are mixed. On the one hand, one

can argue that there is a certain trade-off between optimality and robustness, either high
revenue or low violations in the control. Depending on the setup, the violations have to be
met with some sort of expensive balancing power making a more robust algorithm more
valuable. On the other hand, the heuristic without any fchar/dischar modeled performed
quite well. This may hint towards that too much effort in modeling an already substan-
tially simplified VPP is not worth the effort. Bottomline, one can state that some of the
heuristics achieve remarkable results within 90% of optimality.

Conclusions
In this paper, a methodology was proposed in order to allow the managing of a large
number of BESS by an energy utility. First, an aggregation of capabilities of the BESS into a
VPP is performed. The behavior of the fleet of BESS is modeled by a function relating SoC
of the VPP with its charging and discharging ability. It was shown, that this function has
to be adapted to the specific set of BESS (heterogeneity), the control of the VPP and how
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Table 3 Performance of one week simulation using different optimization frameworks

Algorithms Revenue [TEuro] average violations discharging

Global Optimization 34.60 (100%) 0%

Heuristic 1: without function 32.79 (95%) 11.1%

Heuristic 2: bounded SoC 24.53 (71%) 3.7%

Heuristic 3: linear 27.99 (81%) 8.5%

Heuristic 4: concave piece-wise linear 31.21 (90%) 9.3%

Heuristic 5: non-concave piece-wise linear 29.40 (85%) 10.4%

Interestingly, heuristic 1 without any function modeled performs quite well regarding revenue, however by taking into account
relatively high violations in the control. Vice versa, bounding the SoC with heuristic 2, provides poor performance while being
quite robust in provoking not many violations. Given its effort, heuristic 5 does not perform well. A reason could be the
mixed-integer problem, which was not always solved to optimality

this control is distributed among the individual BESS. This disaggregation was proposed
to be done by a first-fit decreasing heuristic.
The different concepts were analyzed and evaluated by a co-simulation framework.

This allows to test them by interacting simulators of each individual BESS and of how
an energy utility could schedule a VPP within energy markets. As a benchmark for most
comparisons, the problem was also modeled as a large linear mathematical program. The
evaluation analyzed first the computational complexity of the methods. It was shown,
that the proposed concepts provide a speedup of at least 10 compared to solving the lin-
ear program. This allows to manage more than 100,000 individual BESS within a time
frame of 15 min. Then, it was shown how well the heuristics approximate the optimiza-
tion problem. Depending on the considered model a difference to the optimal value of
around 5–15% was achieved. Finally, a simulation for time horizon of one week illustrated
the usage of the concepts. The heuristics achieved a performance within around 90% of
optimality. So it is confirmed, that the methodology to model the problem in a simpli-
fied way and solve this problem via heuristics provides an effective and pragmatic way in
managing distributed BESS. Further, its computational efficiency and scaling properties
makes it an interesting candidate for managing a very large number of BESS where linear
programs are not applicable.
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