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From The 7th DACH+ Conference on Energy Informatics
Oldenburg, Germany. 11-12 October 2018

*Correspondence:
vincent.becker@inf.ethz.ch
Department of Computer Science,
ETH Zurich, Universitätstrasse 6,
8092 Zurich, Switzerland

Abstract
Because space heating causes a large fraction of energy consumed in households,
occupancy-based heating systems have become more and more popular in recent
years. However, there is still no practical method to estimate the potential energy
savings before installing such a system. While substantial work has been done on
occupancy detection, previous work does not address a combination with heating
simulation in order to provide an easily applicable method to estimate this savings
potential. In this paper we present such a combination of an occupancy detection
algorithm based on smart electricity meter data and a building heating simulation,
which only requires publicly available weather data and some relevant building
characteristics. We apply our method to a dataset containing such data for several
thousand households and show that when taking occupancy into account, a
household can save over 9% heating energy on average, while certain groups, such as
employed single-person households, can even save 14% on average. Using our
approach, households with high potential for energy savings can be quickly identified
and their inhabitants could be more easily convinced to adopt an occupancy-based
heating strategy.

Keywords: Smart heating, Occupancy detection, Household heating simulation,
Energy savings, Smart energy

Introduction
Space heating is the main factor driving the energy consumption of households. Studies
show that it dominates the energy consumption of households in the European Union
(EU) with 67% of the total energy use (Lapillonne et al. 2015). The residential sec-
tor overall accounts for 25% of the final energy consumption, comparable to the EU’s
entire industry sector (Eurostat 2018). Other countries report similarly significant num-
bers (International Energy Agency 2015). Space heating in households thus bears great
potential for energy savings, leading to both financial and environmental benefits.

One way to decrease the amount of heating energy is to use a heating strategy based
on the occupancy of the dwelling: when a building is unoccupied, the heating is turned
down. Such a strategy could be carried out in different ways. The inhabitants could simply
take care to turn down the temperature themselves whenever they leave. Nowadays, this
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is becoming easier due to heating systems which can be controlled remotely via smart-
phone apps; however, the inhabitants still have to explicitly remember and take action
themselves on a daily basis. Alternatively, heating systems that automatically detect the
occupancy of a dwelling are slowly gaining interest and are being increasingly used in
households (Markit 2015; U.S. Department of Energy 2016).

The savings that occupancy-based heating can achieve, however, depend on numerous
parameters such as building size and insulation, climate, and in particular the occu-
pancy schedule of inhabitants. Given the large variation – and thus the uncertainty –
of achievable savings, home owners and tenants are understandably reluctant to install
smart heating systems. In this paper, we address this uncertainty by introducing a novel
method that quickly estimates the savings potential of a household. The method builds
upon previous work on non-intrusive occupancy detection (Becker and Kleiminger 2018),
combining it with a heating simulation. The occupancy detection relies on smart meter
data and derives the occupancy schedule from the observed electricity consumption. This
schedule serves as input to the simulation, which additionally takes weather data and a few
relevant building parameters into account. If a dwelling is already equipped with a smart
electricity meter, all data is easily available. The simulation of the household’s heating is
then adapted to the derived occupancy schedule, subsequently calculating the potential
savings as shown in Section “Method description”.

Not relying on special equipment, our method is suitable for any household equipped
with a smart meter. It can be used to easily estimate the energy saving potential of
occupancy-based smart heating for a given household. Additionally, the method read-
ily scales. Statistical data on buildings’ characteristics in an area provided, it could
be deployed by e.g. municipalities to identify the households with highest poten-
tial for energy savings in their territory, and target their energy efficiency measures
accordingly.

Related work
In the following we discuss different categories of related work aiming at saving heating
energy in households. We will not discuss occupancy detection, however, as our method
we build upon here is examined in (Becker and Kleiminger 2018) and overviews on
building occupancy estimation are available in the literature (Chen et al. 2018).

Smart heating

Many energy saving measures for households target electrical appliances. However, with
a proportion of about 67% of the total energy consumption in Europe (Lapillonne et al.
2015) and regions with a similar climate, heating (or, in a more general sense, HVAC:
Heating, Ventilation, and Air Conditioning) has a much greater impact on the total energy
consumption of a household. Approaches to decrease the heating energy of dwellings can
be separated into two categories: infrastructural approaches (e.g. retro-fit insulation) and
control measures (e.g. optimising the heating schedule).

While improvements to the building envelope may yield substantial savings, they are
relatively costly. Hence, control and automation approaches have gained traction recently.
Most commercially available systems work with manually set timers to control the heating
(Honeywell Thermostats 2018; British Gas 2018; Climote 2018; Starck 2018). In some
cases, an app is used to let the inhabitants easily and remotely control the heating via a
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smartphone (e.g. Heat Genius Ltd 2018), so they can turn it off while they are not at home,
and back on again before they return in order to heat the home prior to arrival.

More complex systems detect or even predict the occupancy of the inhabitants to
control the heating, for example by tracking the inhabitants’ smartphone locations and
thereby estimating their arrival in order to preheat the dwelling. Complementarily, they
might also employ motion sensors to detect the occupancy of individual rooms and heat
them as needed. Some of the commercial systems mentioned above exhibit such char-
acteristics (Tado 2018; Heatmiser 2018; Heat Genius Ltd 2018). Furthermore, there are
systems which try to learn the preferences of the inhabitants and apply these after a learn-
ing period. One of the more prominent systems is the Nest thermostat (Nest 2018). As
they automatically (at least after a certain training time) and autonomously control the
heating, these are typical instances of what is usually referred to as smart heating.

Occupancy-based building energy estimations

Using occupancy to estimate heating energy consumption has recently been pursued by
several researchers. Erickson et al. (2013) deploy a camera and passive infrared (PIR) sen-
sor network in an office and lab building. Features from both are fused using a particle
filter to detect occupancy. A Markov chain is then employed for occupancy prediction in
order to control the HVAC system. The savings are estimated both for a live deployment
in the building, as well as using a simulation model. The authors estimate savings for heat-
ing, cooling, and ventilation of up to 30%. In contrast to our system that only relies on
smart meters, the suggested method requires dedicated hardware, typically not available
in homes. Next to the costs for purchase, installation, and maintenance, this means above
all that the system does not scale well. The result was obtained for a particular office build-
ing in California where more energy is used for cooling and ventilation than for heating,
and where parts of the building (meeting rooms and some offices) have a low occupancy
rate. Hence, it does not apply to the heating of residential households which is the focus
of this paper.

Kim et al. (2017) employ linear regression based on electricity use data to estimate
the number of occupants in a building in order to calibrate energy building models to
improve the prediction of building energy consumption. Their system is evaluated on
data from an office and two campus buildings. Our approach differs in several ways: we
apply our system to residential households, which have a less regular schedule, use a sim-
ulation model to predict heating energy consumption, and finally we are able to calculate
potential savings by comparing different heating strategies.

Gluck et al. (2017) explore the trade-offs for a HVAC control system between the predic-
tion performance, energy savings, and comfort loss. They collect ground truth occupancy
data from an office building and simulate an occupancy prediction algorithm. Random
errors of varying number are inserted to evaluate different prediction performances and
their effect on savings and comfort. Additionally, the authors compare the predictive strat-
egy to a reactive strategy and a static one, and assess different target temperature ranges.
The estimated savings for a predictive strategy in relation to a static strategy are between
10% to 25% for an allowed deviation of 6°C from the setpoint temperature, depending
on the error rates of the occupancy prediction. In comparison, our target domain is resi-
dential households. The several thousand dwellings in the dataset we use are spread over
an entire country. We do not require occupancy ground truth, but employ an occupancy
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estimation algorithm based only on the electricity consumption available through smart
meters. Furthermore, we use a generic model which requires only the provision of a few
characteristic parameters regarding the dwelling and the local weather conditions. Thus,
our approach is immediately applicable to a large variety of households, and could directly
be used in a real-world setting.

Kruusimägi et al. (2018) create an occupancy-based heating control system for an elec-
tric heater in residential homes using simple hardware and a relatively simple prediction
approach. Furthermore, the inhabitants can interact with the system via a smartphone
app to rate their current comfort and enter irregular absences. To evaluate their system,
the authors employ a simulation and run it in three real households. In the simulation
they find significant energy savings when comparing to a standard fixed heating schedule.
Their evaluation step using the simulation appears similar to our approach, however, the
goals are different. While Kruusimagi et al. 2018 evaluate the savings when employing its
predictive heating system in specific model households, we intend to provide a method
which in general estimates the potential of such a system for any household and answers
the question whether its use seems reasonable.

Method description
Our aim is to estimate the potential heating energy savings of a dwelling for a period in
the past if an occupancy-based heating strategy had been applied, e.g. for the past year.
We first learn the occupancy pattern in that period from a household’s electricity con-
sumption and then simulate its thermal energy consumption optimised to this particular
occupancy pattern. The essential concept of our approach is the combination of these
two components, automatic occupancy detection and the heating simulation, as illus-
trated in Fig. 1. Both parts have been explored separately in previous works (Becker and
Kleiminger 2018; Kleiminger et al. 2014a, b), but only by integrating them, one obtains a
system to automatically estimate the savings potential of a particular household or to cal-
culate statistics from a large set of household and building data. The calculations rely on
four sets of parameters:

(1) Occupancy. The heating simulation requires the occupancy schedule, i.e. a timeline
when the home is occupied or unoccupied, which is computed prior to the simulation.
The lower the occupancy, the higher the potential savings, since the heating could be
turned down in times of absence. As an example for the importance of the latter, Fig. 2
shows the average weekly occupancy pattern of two households with distinctively differ-
ent occupancy schedules. For the first, the dwelling is occupied most of the time in the
early mornings and evenings. Here, a heating strategy based on occupancy may yield only
low savings. Conversely, the second dwelling is often unoccupied, even some nights. The
heating could be turned off during these long periods of absence. Since the savings poten-
tial heavily depends on the occupancy, and in particular on the length and frequency of
absence, detecting whether a dwelling was occupied or not during a given period of time
constitutes a crucial part of our approach. Previous research has shown that it is possi-
ble to detect occupancy automatically with sufficient accuracy from electrical load data
(even for coarse-grained 30 min measurement intervals) using machine learning (Becker
and Kleiminger 2018). Electricity consumption data is indeed a good proxy for a house-
hold’s occupancy since its magnitude and variation over time are indicators of human
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Fig. 1 An overview of our approach to determine the savings potential with inputs marked in red

activities (i.e. use of appliances) in the household. At the same time, smart meters, which
continuously measure the electrical power consumption of a household, are becoming
increasingly ubiquitous (cf. U.S. Energy Information Administration (EIA) 2017, Table
10.10 and European Commission 2014a) – a penetration rate of 95% is expected in sixteen
EU member countries by 2020 (European Commission 2014b).

(2) Characteristics of the dwelling. The amount of heating energy used strongly
depends on the characteristics of the dwelling, such as how well insulated and how large it
is. Heating an unoccupied dwelling consumes more energy if its insulation is poor, hence
the potential savings are high in such cases.

Fig. 2 Average weekly schedules for two different households (Becker and Kleiminger 2018). The higher the
value (as displayed by the colour) in a time slot, the likelier the home is occupied during that time slot
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(3) Weather. We take the local weather into account. In cold climates, it takes longer to
re-heat an unoccupied building, which affects the savings potential.

(4) Heating strategy. We distinguish different heating strategies, which influence the
way the dwelling is heated in the simulation environment. Since we are performing an
offline analysis of the potential benefits of smart heating systems and are working with
historical data taking an a-posteriori view, the simulated heating controller can take
advantage of perfect knowledge of future occupancy and weather conditions. Because the
time it takes to re-heat a house after it has cooled down is non-negligible, the so-called
oracle strategy takes future occupancy and weather into account in order to preheat the
dwelling before the residents return and thus to avoid comfort loss. While an ideal ora-
cle policy is adequate for an offline analysis of the savings potential (as in our case), a
controller driving an actual heating system based on occupancy prediction requires an
online prediction algorithm in practice. An analysis of the effects of various online pre-
diction algorithms on the achievable savings with respect to the oracle strategy is given
in (Kleiminger et al. 2014a), where the authors show that with a suitable prediction algo-
rithm the theoretical oracle strategy can be approximated with a prediction accuracy of
over 80% and negligible comfort reduction. Thus, a good approximation of the oracle
strategy can indeed be implemented in a real-world space heating system.

Two extreme strategies, reactive and always-on, are useful for the analysis of the saving
potential, as they represent boundary cases: The reactive strategy uses no future informa-
tion and only heats the dwelling when it is occupied; in particular, it does not preheat the
dwelling in anticipation of the inhabitants’ return. Hence, in a real-world application it
would only require occupancy detection, and no prediction. The energy required for heat-
ing is at most the demand of the oracle strategy (in the case the home is always occupied)
but typically less. Since there may be a comfort loss as the dwelling is not heated before
the residents actually return, one would in practice augment the reactive strategy with a
remote control for preheating (e.g. via an app). Additionally, we consider an always-on
strategy, which assumes the home is occupied all the time. This is equivalent to a fixed
setpoint operation mode. We use it as a baseline, to which we compare the occupancy-
based strategies. The occupancy-based strategies should use significantly less energy than
the always-on strategy. Figure 3 summarises the relationship of the three strategies.

Our approach can thus be summarised as follows: Based on a household’s auto-
matically determined occupancy schedule, the characteristics of the dwelling, and the

Fig. 3 The order of savings potential and key characteristics of our heating strategies. The practical
prediction strategy represents a system approximating the oracle strategy, however potentially suffering
from prediction inaccuracies, which affect either the comfort or the savings. If the home is predicted to be
unoccupied while it is occupied, it will not be heated, although the inhabitants are present. If the home is
predicted to be occupied although it is unoccupied, it will be heated unnecessarily.
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environmental conditions, we compute the required heating energy of the three strate-
gies (oracle, reactive, always-on) by controlling the temperature of the simulated building
using the occupancy schedule. The savings are calculated by comparing the results of the
occupancy-based strategies (oracle and reactive) to the always-on base-case strategy.

Occupancy detection

We briefly explain the applied occupancy detection algorithm, but refer the reader to the
relevant publication (Becker and Kleiminger 2018) for more details. The input consists of
sequences of electricity consumption samples. Here, each sample is the mean consump-
tion in a 30 min time slot as delivered by a typical smart meter. The core of the process is
a Hidden Markov Model (HMM), which is used for classification, i.e. making a decision
for each time slot about the occupancy state based on the electricity consumption. Since
the occupancy is binary, the model only has two states. The resulting sequence of occu-
pancy states is the schedule used as input to the simulation model. Note that we take an
a-posteriori view, i.e. the model can take all the available data into account when classify-
ing a sample. The parameters of the HMM are estimated from the available data and not
trained in a supervised manner to be able to handle data without an occupancy ground
truth as in our case.

An extra step is added to infer the occupancy at night. Since during sleep people do not
interact with electrical devices and most of them are turned off or in standby mode, it
is difficult to obtain occupancy information from the electricity consumption. A nightly
schedule is added using the following simple heuristic: If the dwelling is occupied for
at least one hour from 8 p.m. to midnight, we count the whole night (until 9 a.m.) as
occupied. If more information on the occupants specific schedule, such as working night
shifts, was available, this could also be taken into account.

The algorithm was validated on three datasets containing ground truth and achieved
an average accuracy of 83%. We believe this is high enough for our purpose of estimating
the heating savings. A sensitivity analysis on how the estimation reacts to changes in the
occupancy is given in Subsection “Sensitivity to the occupancy estimation”.

Household heating simulation

The heating simulation is based on the 5R1C model from the ISO 13790 standard
(ISO 2008) and a predictive controller which are described in detail in our previous
work (Kleiminger et al. 2014a, b). The model describes the transient heat conduction
between the building elements (e.g. its walls, windows, and roof) to the surroundings
using a resistance capacitance (RC) model. The use of RC circuits to model thermal
conduction dates back to Beuken (1936), and has since been widely used in simu-
lating the thermal behaviour of buildings (Mathews et al. 1994). We use a predictive
controller to control the temperature inside the simulated building based on its cur-
rent occupancy and the prediction of future occupancy. For every 30 min time slot,
the controller makes a decision whether to heat the dwelling or not depending on the
heating strategy (cf. Section “Method description”) which is being applied. For this, it
takes as input the occupancy, the target temperature, and weather conditions. The com-
fort temperature, which should be reached while the house is occupied, is set to 20°C.
The setback temperature, i.e. the minimum the temperature is allowed to drop to, is
set at 10°C. The Sustainable Energy Authority of Ireland recommends a temperature of
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20°C for living areas and a temperature of 15 - 18°C for hallways and bedrooms (Sus-
tainable Energy Authority of Ireland 2018). Similarly, the German Federal Environmental
Office advises to set the temperature to 20° - 22°C for the living room, 18°C for the kitchen
and 17° - 18°C for the bedroom (Umweltbundesamt 2017). For periods of absence the
temperature should be reduced to 18°C, to 15°C in case of an absence of a few days, or
even lower for longer periods of absence. Hence we think that the default temperature
values we choose for comfort and setback are reasonable. Note that a setback tempera-
ture of 10°C would only be reached after long periods of absence in winter, which are rare.
Other temperature settings and an analysis of the sensitivity to different settings will be
discussed in Subsection “Sensitivity to the thermostat settings”.

As the heating simulation requires the weather data and also building information for
the particular households, we explain how we obtain this data for the set of our test house-
holds in Subsection “The CER dataset”. Note, however, that our approach is not specific
to households in a certain dataset, but can be applied to any household for which the
necessary parameters are available.

Savings potential evaluation
In order to demonstrate our system and gather insights about possible saving potentials
when employing an occupancy-based heating regime, we apply it to a large dataset con-
taining smart meter data and relevant household characteristics. We use the CER dataset
from the Irish Commission for Energy Regulation, which is further described in the fol-
lowing subsection. As the CER dataset contains no occupancy ground truth, we cannot
verify the calculated occupancy values and rely on the algorithm’s validation carried out in
previous work (Becker and Kleiminger 2018). After applying our method to each house-
hold in the CER dataset and retrieving the potential savings for each of them, we analyse
the savings by groups, such as singles versus families, since we expect significant differ-
ences between them. Furthermore, we examine characteristic properties of households
with higher and lower potential savings, respectively.

The CER dataset

The CER dataset (Irish Social Science Data Archive 2018) contains the power consump-
tion data for over 4,000 households and small businesses in Ireland. The data we use
consists of 75 weeks’ worth of electricity consumption data measured at intervals of
30 min from July 2009 to December 2010. Additionally, the households participated in a
survey in which they had to answer questionnaires in order to assess their personal cir-
cumstances and characteristics of their home. Table 1 shows all the data from the CER
dataset we used for the occupancy schedules, the simulation, and the savings estimation.

Table 1 The data from the CER dataset relevant for our savings analysis

Data Description

Power consumption Overall electricity consumption of the household, measured at 30 min intervals over
a period of 75 weeks

Area The floor area of the dwelling in m2

Age The age of the building in order to estimate building-related simulation parameters

#Household members The number of people living in the household

Employment status The employment status of the chief income earner
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We remove all households for which the age of the building (which determines the
building-related parameters) is missing, and also all households for which there were at
least ten missing electricity consumption values a day on at least 10 days (e.g. due to smart
meter malfunctioning). The final set contains 3,476 households. The data for our analysis
consists only of the electricity load data and the basic information about the household (cf.
Table 1). A thorough analysis on more household characteristics and their classification
from electricity data can be found in (Beckel 2016).

Two characteristics of a household are especially important for our heating simulation,
namely the age of the building and the floor area. We use the age to estimate the insulation
quality of a dwelling. The insulation of a building element is usually given by its U-value,
which expresses its heat transfer coefficient measured in W/

(
m2K

)
. For example, a build-

ing which has a roof with a high U-value will thus lose a significant amount of energy
through the roof. For Ireland, appropriate values can be found in the Technical Guidance
Document L of the Irish Building Regulations (Irish Department of Housing Planning,
Community and Local Government 2017). Regarding the U-values, we create two sets of
parameters, one for “old” and one for “new” buildings. We divide the households into two
sets of equal cardinality and therefore consider all buildings built before 1980 as “old”, all
the others as “new”. According to this, 49.97% of the relevant buildings in the dataset are
considered old. For new buildings we use the U-values from the Irish Buildings Regula-
tion. For old buildings we use a list of high U-values for poor insulations from (Wikipedia
2018). Table 2 shows the U-values for the old and new buildings, respectively.

The size of the dwelling affects the heating energy consumption as well; the larger the
dwelling, the more heating energy is consumed. The floor area of the buildings is derived
from the CER dataset. Since we do not know the exact geometry of the buildings, we
assume that they have a square floor shape. Each of these buildings is given a total window
area of 25%, the default value as noted in the Irish building regulations (Irish Department
of Housing Planning, Community and Local Government 2017) (we note in passing that
while the window size has an important influence on the absolute heating energy demand,
we found that it is a negligible parameter when determining the relative savings of an
occupancy-based strategy compared to the always-on base case). As in the previous work,
the design heat load (maximum heating power) of the heating system was determined
according to the European standard EN 12831 (DIN 2008).

The temperature and solar radiation data for the period from July 2009 to December
2010 for Ireland were obtained from Met Éireann (The Irish Metrological Service Online
2018). Since the exact location of the buildings associated with the metering data was not
available, we used the data for Dublin Airport. The temperature and solar radiation data
were interpolated from hourly measurements to 30 min measurements.

Table 2 U-values
(
W/

(
m2K

))

Component Low U-Values High U-Values

(new building) (old building)

Walls, ceiling against outside 0.21 1.5

Ground plate 0.21 1.0

Roof 0.20 1.0

Windows 1.60 4.3

Doors 1.60 1.8
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We note that after running the occupancy detection algorithm on the CER dataset,
we observed an average estimated occupancy of 75.4%, which matches the rate of 73.6%
reported in the Irish national time use survey quite closely (McGinnity et al. 2005).

Savings calculations

From the heating simulation results we calculate the absolute and relative savings. We
calculate the savings for three different groups: all of the households, those in which the
chief income earner is employed, and those in which only a single person lives, who is
also employed. In the households we examined, 60.3% of the chief income earners were
employed or self-employed (which we count as employed). The reason why these groups
are interesting, is that we expect these characteristics to have a significant influence on
the occupancy and consequently also on the savings.

As explained in Section “Method description”, the savings we present here are the dif-
ference between the occupancy-based heating strategies, i.e. oracle and reactive on the
one side, and the always-on strategy as the base case on the other side. For each of the
occupancy-based strategies and the groups of households we show the mean and the sum
of absolute and relative savings over the full trial time of 75 weeks. The absolute savings
are savings in usable heating energy (i.e. the output of the heating system and not the
input). The resulting savings are shown in Table 3 and in Fig. 4. Since the results of the
oracle and the reactive strategies do not differ much (cf. Table 3) and since the oracle is the
more appropriate strategy for a smart heating system due to the lower comfort loss, we
mainly comment on the oracle results below, although the main conclusions apply to both
strategies and in particular to possible practical approaches using prediction algorithms
(Kleiminger et al. 2014a) which approximate an oracle occupancy schedule. Over all 3,476
households, we observe that on average over 9% energy could be saved in heating using
the oracle strategy (cf. Table 3; remarkably, this corresponds to the savings determined
for an exemplary scenario in Switzerland in Kleiminger et al. 2014). As we expected, we
find the highest average savings for the employed singles with nearly 14% savings, since
they are usually at work during daytime and consequently the home is unoccupied for
longer periods of time. These numbers show that applying occupancy-based strategies
could greatly contribute to reaching energy efficiency goals (cf. Section “Introduction”).
Moreover, such strategies can create financial benefits for households.

Identifying households with high savings potential

Figure 5 depicts the histogram of the relative savings for the oracle strategy. Over all
households the peak of the distribution is below 10%. Nevertheless, there are households

Table 3 The savings for each group over the period of 75 weeks. The numbers are rounded to two
decimals or zero decimals for large values

Group n
Savings oracle Savings reactive

Average Sum Average Sum

All 3476 4.83 MWh 16,798 MWh 5.48 MWh 19,036 MWh

9.24% - 10.81% -

Employed 2096 4.24 MWh 8,888 MWh 4.97 MWh 10,408 MWh

8.69% - 10.55% -

Employed singles 240 5.73 MWh 1,376 MWh 6.78 MWh 1,627 MWh

13.82% - 17.07% -
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Fig. 4 The absolute savings in kWh and relative savings in % for each group for the oracle strategy over the
period of 75 weeks

which can save over 15%. As mentioned in our initial motivation, one crucial contribution
of our approach is that we can quantify the savings for individual households and thereby
quickly identify households with a high savings potential for which changes in their heat-
ing behaviour make sense. In the dataset, 409 households (11.8%) could save at least 15%
and 180 of them (5.2%) could even save at least 20% (which are shown as red crosses in
the right plot of Fig. 4). The high savings for these households could help to convince the
residents to act upon their heating energy consumption, either by investing in a smart
heating system or changing their habits.

Fig. 5 Histograms of the relative savings for the oracle strategy
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We examine which characteristics explain the high saving potentials of these house-
holds. Figure 6 shows a comparison between all households, employed households, and
the 180 outliers (which would save at least 20%) for six different characteristics. We find
clear differences in four characteristics: the proportion of employed singles, old dwellings,
the average duration of absence, and the number of people per dwelling. As mentioned
in Section “Method description”, for old buildings the savings are higher. Interestingly,
the average occupancy is nearly the same for all the groups. However, there are great dif-
ferences in the average duration of continuous periods of absence. More energy can be
saved for long periods of absence since then the house does not have to be heated for a
long time and has to be reheated only once. If the occupancy state changed several times
per day, the dwelling would have to be heated even during short absences to be preheated
for the frequent occupied time slots. The length of these periods naturally correlates with
the number of people in a household, i.e. long average periods of absence are an effect of
only few people living in a household. As the group of employed people have the highest
average number of people per dwelling, this also explains why they have lower savings (cf.
Table 3).

Model assumptions and sensitivity analysis
We now discuss and justify some of our assumptions, and analyse the stability and
robustness of our method and results.

Nightly setback

Often, households have a timer-driven heating system which lets the temperature drop
to a certain setback temperature at night in order to save energy. One could argue
that for our analysis a baseline in which the temperature is decreased during the night
makes more sense than the always-on baseline. However, if we used a baseline with a
night-time setback temperature, we could also use this setback in the occupancy-based

Fig. 6 Analysis of six characteristics concerning all the households, the employed, and the outliers, which are
the 180 households with at least 20% calculated heating energy savings
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strategies, which then consequently would also use less energy (because at night a home
is typically occupied). For the setting with a nightly setback the savings are even higher
(6.64 MWh on average for the oracle strategy compared to 4.83 MWh over the 75
weeks period). This is due to the possibility of obtaining schedules with very long peri-
ods of absence, e.g. when the dwelling is unoccupied the whole day, it does not have
to be heated above the setback temperature for the previous night and that day. This
effect is naturally even stronger for reactive schedules (8.41 MWh instead of 5.48 MWh
energy savings).

Heating simulation model

For the heating simulation, we use a standardised (ISO 13790), but relatively simple
5R1C household heating model and additionally make some assumptions on the building,
such as the insulation characteristics, based on the year of construction. There are more
sophisticated and exact heating models available, which however require more detailed
information on each household and building. If this information is available, the 5R1C
model could be replaced by the more complex model without defying the purpose of
our method. For large-scale evaluations of several thousand households, such as the CER
dataset, this information is typically not available and hence more sophisticated models
are no viable option.

The simple model used in our evaluation might induce modelling errors in
the estimated heating energy. However, for each household the error will most
likely persist in all the strategies and have a similar value. Since we are only
interested in the difference between the strategies, the errors will largely coun-
terbalance each other, the resulting error in the savings estimate thus being
mitigated.

Sensitivity to the occupancy estimation

As we perform a post-analysis of a household’s energy consumption, employing occu-
pancy detection is sufficient for our calculations. In a real-world setting, this also applies
to the reactive strategy, as no future occupancy information is needed. However, to be
able to employ the oracle strategy in practice, occupancy prediction is required, which
is a more challenging problem. Approaches for neither of the estimation paradigms
are perfect. Prediction algorithms additionally face the fact that humans sometimes
behave inconsistently and not “according to plan”, e.g. spontaneously deciding to skip
their weekly sports training. Research has shown that detection and prediction can be
performed with reasonably high accuracy (e.g. for detection: on average 83% (Becker
and Kleiminger 2018), 82% (Kleiminger et al. 2013), 73% (Chen et al. 2013), e.g. for
prediction: 85% when using GPS data (Kleiminger et al. 2014a)). Other systems not
based on electricity consumption, such as Tado (2018), which uses the location of the
inhabitant’s smartphone from which the return time can be estimated, may be even
more accurate. Such a system requires an explicit opt-in, and is thus too cumbersome,
slow, and costly to be used in a first screening of the households. Once a household
has opted for a smart heating solution, changing the occupancy estimation from one
based on smart meters to a system tracking the inhabitants’ smartphones would allow
a highly accurate prediction, thus enabling both the savings and the comfort of the
oracle strategy.
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Errors in the detection or prediction may impair the savings potential when the false
positive rate is high, i.e. the dwelling is heated when nobody is at home. The comfort
may suffer from false-negatives, i.e. the dwelling is not heated or the temperature is not
yet high enough when the home is in fact occupied. However, in a real-world deploy-
ment there are several possibilities for technical measures to counteract this comfort loss,
e.g. an “override” button inside the home or a smartphone app to overrule the automatic
heating control. The discussion of these means is out of the scope of this paper.

As our simulation and as such our savings estimation depend on the output of the occu-
pancy detection, we might be facing second-order errors in the savings estimation due
to errors in the occupancy detection. Since we have no occupancy ground truth for the
CER dataset, we cannot directly validate our occupancy detection results. We acknowl-
edge that potentially there are errors in the detection, but the question is how strongly
the savings results react to errors in the occupancy detection: If the detection makes only
a few more errors, are the savings affected only a little, too, or possibly a lot? To address
this question, we simulate artificial households: one “new” and one “old” building with a
floor area of 149m2 each, the mean in the CER dataset. We vary the occupancy pattern to
examine how the savings are influenced by the changes. For a specific duration of contin-
uous absence we create artificial schedules which all have an average occupancy of 75%
(the average in the CER dataset), but different absence patterns. For example, for a period
of absence of two hours, we set the first four 30 min slots to unoccupied and the following
twelve slots to occupied, then the next four to unoccupied again and so on. Figure 7 shows
how the relative savings increase as the duration of absence increases. This is because for
longer absences the dwelling has to be pre-heated less often. The curves show that small
changes only have a small impact and thus few errors in the occupancy detection will only
have a minor influence on the results. The interdependence of energy savings, discomfort
due to prediction errors, and occupancy estimation performance is explored in greater
detail in (Gluck et al. 2017).

Fig. 7 The relative savings for two artificial households (one “new” and one “old”) depending on the duration
of continuous absence. The average occupancy always is 75%. Since in any case the household is
unoccupied for 25% of the time, the savings are at least 5% even for short periods of absence and better
insulated new houses. For longer periods of absence, they converge towards a certain level around 18% – a
limit imposed by the 10°C setback temperature and the fact that the building is occupied 75% of the time
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Sensitivity to the thermostat settings

Another interesting point is to examine how the savings depend on the temperature set-
tings. Our simulation has two temperature parameters, the comfort temperature, which
is the target to be reached when the dwelling is occupied, and the setback temperature,
the value to which the temperature is allowed to drop when the dwelling is unoccupied.
A low setback temperature is important to benefit from longer absences (in particular
for old houses with poor insulation). While the overall savings for a setback temperature
of 10°C are 9.2% for the oracle strategy (cf. Section “Savings potential evaluation”), they
drop to 7.6% if we let the setback temperature increase to 15°C. Similarly, the comfort
temperature has a significant influence on how much energy is consumed for heating.
Applying an occupancy-based heating strategy, the absolute savings will be higher when
the comfort temperature is increased due to saving the greater amount of energy required
for heating to higher temperatures. The question is how strongly this affects the rela-
tive savings, i.e. the ratio of estimated absolute savings and absolute consumption for the
“always-on” baseline strategy. To explore this, we run simulations for two artificial but
typical schedules, “employed singles” and “family”, varying the comfort temperature. In
the “employed singles” schedule, the dwelling is unoccupied from 9 a.m. to 6 p.m. from
Monday to Friday, and from 8 p.m. to 11 p.m. on Fridays and Saturdays. In the “family”
schedule, the dwelling is unoccupied from 9 a.m. to 2 p.m. Monday to Friday. Additionally,
for each schedule we simulate a “new” and an “old” dwelling, i.e. we obtain four artificial
households. The comfort temperature is varied from 18°C to 25°C in steps of a quar-
ter of a degree. The range corresponds to advice on temperature settings for households
published by the Sustainable Energy Authority of Ireland (2018) and the German Fed-
eral Environmental Office (Umweltbundesamt 2017). The results are depicted in Fig. 8.
It shows that the relative savings only slightly increase when increasing the comfort tem-
perature. This effect is strongest for the “employed singles” setting with an “old” dwelling
and employing the reactive strategy – however the increase is still less than two percent
points over the full range. For the “family” setting the relative savings are nearly constant.
As usual, the savings are smaller for the oracle strategy than for the reactive strategy, but

Fig. 8 The relative savings for four types of artificial households (typical schedules for employed singles (ES)
and family (F), each of them in both a “new” and “old” dwelling) depending on the comfort temperature
setting. The vertical dashed line corresponds to a comfort temperature of 20°C, at which we carried out the
main evaluation. The red circles mark the results of repeated simulations for all households in the CER dataset
at comfort temperature settings of 18°C, 20°C, and 25°C using the oracle strategy
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also the increase in savings is less. This is due to a contrary effect for the oracle strat-
egy: the higher the comfort temperature, the earlier the household has to be preheated in
periods of absence.

Additionally, we ran the simulation for the whole dataset again for the extremes of the
examined comfort temperature range, which are marked as red circles in Fig. 8. The aver-
age relative savings for all households at comfort temperatures of 18°C and 25°C were
8.69% and 9.94%, respectively. The values show little deviation from the savings at a com-
fort temperature of 20°C (9.24%, cf. Table 3) which we used for evaluation. Overall, we
find that the relative savings results for the chosen comfort temperature of 20°C are also
valid for other reasonable temperature settings.

Sensitivity to the heating power

In our analysis, we determined the maximum power the heating system of a dwelling is
able to deliver (the so-called design heat load) according to the European standard EN
12831. One can expect, however, that in practice a particular heating system deviates
in one way or the other from that standard. For occupancy-based heating regimes, the
available heating power is indeed an important aspect to consider. We perform similar
simulations as in the previous subsection, using the same artificial households. Instead of
altering the comfort temperature (which is set to its default value of 20°C here), we scale
the design heat load by a scalar, the heating power factor. We vary it in a reasonable range
from 0.75 to 1.5. For these values, the total energy consumed for the always-on strategy
(our baseline and the denominator in the calculation of the relative savings) is almost con-
stant. A heating power factor of one results in our default design heat load value. Figure 9
shows the results for two of the artificial households with both heating strategies. For
the other household types, the conclusions are similar. The higher the design heat load,
the shorter the period a dwelling has to be preheated before the arrival of the inhabi-
tants when employing the oracle strategy. Therefore, the savings are higher with a more
powerful heating system. For the reactive strategy the opposite is the case, however. The
reactive strategy only heats the dwelling upon arrival, however then it will try to heat it up

Fig. 9 The relative savings for two types of artificial households (typical schedules for employed singles (ES)
and family (F), either in a “new” or “old” dwelling) depending on the design heat load (scaled default value).
The vertical dashed line corresponds to the default design heat load, at which we carried out the main
evaluation. The red circle marks the average (9.24% according to Table 3) of all households in the CER dataset
using the oracle strategy
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as quickly as possible with all the heating power available, if necessary, as its primary con-
cern is to minimise the comfort loss of the inhabitants. That means, with a higher heating
power, the comfort will be higher, but also the amount of energy consumed. Overall, the
gap between the oracle and the reactive strategy shrinks with an increasing design heat
load.

Discussion
Behavioural, economic, and societal effects

The savings potential discussed in Subsection “Savings calculations” will not be fully
exploited in practice because of some known adverse effects. For example, the accep-
tance of “smart” technology is never at 100%, and some inhabitants would not be willing
to accept an even moderately reduced comfort resulting from prediction errors, or they
might suspect discomfort for their cherished pets left behind alone at home. Further-
more, the inhabitants’ anticipation of energy savings may lead to an adverse behavioural
response due to the rebound effect, a known problem in energy economics (Greening et
al. 2000; Sorrell 2007). The energy and cost savings resulting from a smart heating system
might be seen as a reason to increase the temperature of the dwelling, or to buy newer
or larger devices. The subsequent increases in energy consumption might reduce or even
overcompensate the initial savings of the smart heating. Furthermore, saving energy in
one’s household may lead people to believe they have reached the moral high ground in
terms of energy savings and relieve their conscience with regard to energy conservation
in other areas of their daily life, e.g. when driving an energy-inefficient car – a behaviour
known as moral licensing (Sachdeva et al. 2009; Merritt et al. 2010). Such behavioural
and economic effects and their impact on the effective energy savings are important but
difficult to estimate, and their analysis is beyond the scope of this paper.

As shown, we estimate high relative saving potential for employed singles. The largest
absolute savings are reached for working singles who inhabit large homes, ideally poorly
insulated. This raises questions of social justice and equity: should possible public fund-
ing or subsidies for smart heating systems be used in aiding poorer families, inhabiting
relatively small homes and who are possibly unemployed, the rather small environmental
effect notwithstanding? Or should the households with the largest environmental impact
be targeted, despite the fact that working singles who live in large mansions are not tra-
ditional targets of social subsidies? This sustainability dilemma can only be addressed by
a broad policy dialogue. It lies outside the scope of this paper, which can only inform the
political and societal debate.

A “future-proof issue”?

Will the saving of energy for space heating still be a relevant issue in the medium- to long-
term future? After all, steady efficiency improvements with building envelope technolo-
gies (better insulation, lower U-Values, etc.), but also global warming should gradually
reduce the problem. In fact, Connolly conjectures that due to technical improvements
to be expected in the coming decades, heat demand in the EU buildings sector could
eventually be halved (Connolly 2017). Additional savings beyond that, however, would be
uneconomical, he believes.

While 50% of today’s energy demand is still a relevant share, two other factors should
also be considered. Firstly, the comfort level of indoor temperature is on the rise,
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driving up demand for space heating energy. In the UK, for example, average indoor
temperatures have risen steadily over the past 40 years, from 13°C in the late 1970ies
to around 17.5°C now (cf. Department for Business, Energy & Industrial Strategy, UK
2017, Table 3.16). Johnston et al. (2005) assume that if the standard of living contin-
ues to rise, the mean internal temperature of UK dwellings will saturate at around 21°C
by 2040 or 2050.

Secondly, while today households in the EU use on average less than 1% of their energy
for cooling (Lapillonne et al. 2015), and a lot of building space in Europe is not cooled
at all, Werner notes that for an ideal indoor climate many buildings should indeed be
cooled (Werner 2016). The general consensus is that cooling needs will increase as com-
fort levels improve in the coming decades. To meet all the cooling needs, Werner expects
a sixfold increase in the cooling demands in the EU compared to today. And while global
warming by 1° to 2°C over the next decades might reduce the demand for heating energy,
it would conversely drive up electricity demand for cooling purposes. It should be clear
that the technologies for occupancy-based space heating presented in this paper can in
principle also be used in occupancy-based cooling schemes (or HVAC control systems
in general) to save energy and cost (Gluck et al. 2017). Aftab et al. (2017) recently pro-
posed an occupancy-based HVAC control system to save energy when cooling mosques.
Peng et al. (2018) examined the use of an occupancy-prediction-based cooling system in
an office building in Singapore, where cooling is necessary due to the tropical climate,
and found out that 7% to 52% cooling energy could be saved depending on the type of the
room. One can expect that this aspect will become more and more relevant also to many
of the developing countries in the world.

Conclusions
The aim in this work was to provide a practical method to easily estimate how much heat-
ing energy could be saved by employing an occupancy-based heating strategy in private
households. We derive occupancy patterns from unlabelled electricity consumption data
by applying an unsupervised classification algorithm to generate an occupancy schedule.
We use this schedule together with basic characteristics of the dwelling (such as its age
and its size), and the local weather data to simulate the heating process in the households
and to determine how much energy could be saved if an occupancy-based heating strat-
egy was applied. If households have a smart metering system and provide the few basic
parameters about their dwelling, our approach could be used to individually estimate the
usefulness of a smart heating system or to teach the inhabitants to what extent it may
be beneficial to change their habits of heating usage. Moreover, our approach could also
be used to assess investments in building improvements, by varying the characteristic
parameters in the simulation. The algorithms we presented require little computational
power and can easily be run locally in the home, so there would be no need to disclose
occupancy or other data and thus privacy concerns could be avoided. We applied our sys-
tem to the CER dataset, consisting of data of several thousand households. Our results
indicate that on average over 9% heating energy can theoretically be saved, which would
result in significant monetary and ecological benefits.
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