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Introduction
In the global energy structure, oil and gas resources still occupy a core position. With 
the rapid development of the oil and gas industry, the pipeline network, as a key facil-
ity for transporting these valuable resources, is particularly important for safe operation 
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Abstract
With the rapid development of the oil and gas industry, monitoring the safety 
and efficiency of pipeline networks has become particularly important. In this 
context, Wireless Sensor Networks (WSNs) are widely used for monitoring oil and 
gas pipelines due to their flexible deployment and cost-effectiveness. However, 
since sensor nodes typically rely on limited battery power, extending the network’s 
lifecycle and improving energy utilization efficiency have become focal points of 
research. Therefore, this paper proposes an energy-saving scheduling algorithm 
based on transformer networks, aimed at optimizing energy consumption 
and data transmission efficiency of wireless monitoring sensors in oil and gas 
pipelines. Firstly, this study designs a deep learning-based Transformer model that 
learns from historical data on energy consumption patterns and environmental 
variables to predict the energy and data transmission needs of each sensor node. 
Secondly, based on the prediction results, this algorithm employs a dynamic 
scheduling strategy that automatically adjusts the sensor’s operational mode and 
communication frequency according to the node’s energy status and task urgency. 
Additionally, we have validated the effectiveness of the proposed algorithm through 
field tests and simulation experiments. According to the experimental results, our 
model has higher efficiency in energy saving. Compared with Convolutional Neural 
Networks, Recurrent Neural Networks and Graph Neural Networks, the total energy 
consumption of sensor networks under the model scheduling in this paper was 
reduced by 6.7%, 33.4% and 26.3%, respectively. Our algorithms improve the energy 
efficiency and stability of the monitoring system and provide important technical 
support for future intelligent pipeline monitoring systems. We hope this paper will 
inspire future scientific research in this field.

Keywords  Wireless sensor network, Oil and gas pipeline network, Energy-saving 
scheduling, Transformer network, Energy efficiency
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and efficiency optimization (Xiaoguang et al. 2018; Hongjun et al. 2016). In this con-
text, Wireless Sensor Networks (WSNs) (Akhondi et al. 2010a, b; Khan et al. 2016) are 
widely used to monitor critical parameters such as pressure, flow, and temperature in oil 
and gas pipelines, due to their flexible deployment and cost-effectiveness. These sensors 
can monitor the status of the pipeline network in real-time, promptly detect and report 
potential leaks or faults, and are crucial for ensuring the safety of oil and gas transporta-
tion. However, these sensors mostly rely on battery power and face the challenge of lim-
ited energy supply. Managing energy effectively in a constantly changing environment to 
extend the lifespan of sensors and maintain long-term stable operation of the monitor-
ing system has become an important research topic.

In traditional oil and gas pipeline monitoring systems (Akhondi et al. 2010a, b), the 
scheduling strategy for sensors usually adopts a fixed frequency for data collection 
and transmission. Although this method is simple, it overlooks the dynamic changes 
in environmental conditions and the imbalance of energy consumption among sensor 
nodes. For example, certain parts of the pipeline might require more frequent monitor-
ing due to specific condition changes, while other parts may change less frequently. The 
fixed data col- lection frequency leads to energy wastage in areas with low demand and 
might miss important information in critical areas due to insufficient data frequency. 
Moreover, this strategy cannot adapt to situations where energy consumption suddenly 
increases due to environmental changes or equipment aging, further increasing the inef-
ficiency of energy use and the unreliability of monitoring.

In recent years, deep learning technology has demonstrated its powerful data pro-
cessing and analysis capabilities in many fields (Tian et al. 2022; Sun et al. 2023). In the 
energy efficiency management of Wireless Sensor Networks, deep learning algorithms, 
especially time- series prediction models such as Recurrent Neural Networks (RNNs) 
and Long Short-Term Memory networks (LSTMs) (Staudemeyer and Morris 2019), have 
been used to predict the energy consumption and data transmission needs of sensors. 
These models can learn energy consumption patterns from historical data and predict 
future energy trends, thereby guiding energy use and scheduling decisions. However, 
despite their good performance in short sequence prediction, their performance is still 
limited when dealing with complex, long-term dependencies. Additionally, these models 
generally require extensive parameter tuning and training time, which may not be effi-
cient or practical in dynamically changing environments.

Using Transformer networks to predict energy consumption could provide a sched-
uling basis for energy management algorithms, effectively addressed these issues. The 
Transformer network could leverage its self-attention mechanism to effectively cap-
ture long-range dependencies, thus filling the gaps in current scheduling strategies for 
wireless sensor networks (WSN). Compared to traditional models, Transformers can 
dynamically analyze environmental changes and automatically adjust data collection 
frequencies based on the needs of different areas. This flexibility allows for optimized 
energy management, reducing energy waste in low-demand areas while ensuring that 
high-risk areas receive adequate monitoring without missing critical data. Additionally, 
the parallel processing capability of Transformers significantly enhances training effi-
ciency, making them more practical in dynamic environments.

To tackle the aforementioned problems, we drive our research perspective to trans-
former networks. Our proposal introduces a transformative energy-saving scheduling 
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algorithm that represents a significant leap over current methodologies. It is particularly 
adept at recognizing long-range dependencies within data, which is crucial for enhanc-
ing the accuracy of predictions. In the realm of oil and gas monitoring, where sensor 
data can be highly variable and influenced by numerous environmental factors, the abil-
ity to accurately predict is key. Our model is meticulously trained on extensive histori-
cal data collected from pipeline monitoring. This training enables the model to discern 
patterns such as peaks in energy usage and critical periods for data transmission that 
may not be immediately obvious to human operators or simpler algorithmic approaches. 
By understanding these patterns, the model can predict future energy requirements and 
operational conditions with greater precision. Leveraging these insights, we have devel-
oped a dynamic scheduling strategy that adapts the operational mode and communi-
cation frequency of sensors in real time. This strategy is not static; it evolves based on 
continuous feedback from the monitoring environment. It considers the current state 
of energy consumption and anticipates future demands, allowing for adjustments before 
energy waste occurs. Our method drastically enhances energy efficiency. It ensures that 
sensors are active only when necessary, significantly reducing idle times and unneces-
sary energy expenditure. This approach not only conserves energy but also extends the 
lifespan of the sensor batteries, which is crucial for reducing maintenance costs and 
operational disruptions.

By deploying our algorithm in actual oil and gas pipeline monitoring systems, we con-
ducted a series of field tests and simulation experiments. The experimental results show 
that, compared to traditional fixed scheduling methods, our dynamic scheduling strat-
egy can reduce energy consumption by over 30\% on average without sacrificing data 
quality and timeliness. This significant improvement not only extends the operational 
time of the sensor network but also enhances the overall reliability and cost-effective-
ness of the system. Additionally, the implementation of this algorithm demonstrates that 
effective data management and energy scheduling can resolve the issues of energy wast-
age and monitoring blind spots present in traditional methods.

To the best of our knowledge, we are the first to propose a transformers based frame-
work for energy-saving scheduling algorithm of wireless monitoring sensors in oil and 
gas pipeline networks. Our main contributions are summarized as follows:

1) We present a novel energy-saving scheduling algorithm that leverages the capabili-
ties of transformer networks to significantly enhance energy management in wireless 
monitoring sensors used in oil and gas pipelines. This advanced algorithm is designed to 
optimize the operational efficiency of these sensors, which are critical for the continuous 
monitoring and maintenance of pipeline integrity.

2) Our approach utilizes real-time data prediction and dynamic scheduling strategies 
to adaptively manage the sensor operations based on their immediate data transmission 
needs and the current environmental conditions. By doing so, it not only maximizes 
energy utilization efficiency but also substantially improves the reliability and overall 
quality of monitoring.

3) The experimental results demonstrate that our proposed approach can achieve 
promising results. Compared with the traditional fixed scheduling strategy, our algo-
rithm can significantly reduce energy consumption while ensuring data integrity and 
real-time performance, with an average energy saving effect of more than 30%.
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In the following sections, we first introduced the energy-saving scheduling of wireless 
monitoring sensors for oil and gas pipeline networks and related work on deep learning 
in Sect.  2. In Sect.  3, we introduced in detail the energy-saving scheduling algorithm 
for wireless monitoring sensors for oil and gas pipeline networks based on transformer 
networks. In Sect. 4, we verified and discussed the superiority of the algorithm through a 
large number of experiments. In Sect. 5, we summarized the contents of this article and 
looked forward to future developments.

Related works
Traditional wireless sensor network scheduling methods

Currently, numerous traditional WSN scheduling methods have been proposed to 
address the various characteristics and applications of WSNs. However, the classi-
fication standards for these scheduling methods have not yet been unified. Ergen and 
Varaiya (Ergen and Varaiya 2010) proposed two classification methods: (1) According to 
the scheduling content, it is divided into work scheduling and transmission scheduling. 
Work scheduling is a method that wakes up nodes when they are working and sleeps 
when they are not working, under the premise of meeting the application. It is an appli-
cation layer method. Transmission scheduling allocates the transmission time of nodes, 
so that nodes enter sleep when they do not need to transmit data and reduce the occur-
rence of data conflicts. It is a method implemented in the transmission layer and MAC 
(Media Access Control) layer; (2) According to the calculation method, it is divided into 
centralized scheduling and distributed scheduling. Tian and Georganas (Tian and Geor-
ganas 2003) proposed a distributed node scheduling method (Coverage-preserving node 
scheduling, CPNS) that meets the coverage of the sensing area. This method assumes 
that the node knows its own sensing range and the nodes maintain clock synchroniza-
tion. The working cycle of the node is divided into two parts: the scheduling phase and 
the working phase. In the scheduling phase, the node builds the position relationship 
with the neighboring nodes. When the node finds that its sensing area can be covered by 
its neighboring nodes, it schedules itself to exit the working state in the working phase; 
otherwise, the node enters the working phase. In order to avoid blind spots caused by 
multiple nodes entering the sleep state at the same time, this method introduces a fall-
back strategy, which allows the node to randomly delay for a period of time before enter-
ing the sleep state and then make a judgment. When the node has less remaining energy, 
the fallback time is also shorter, so that there are more opportunities to enter the sleep 
state, achieving the purpose of balancing the node energy consumption. When the node 
calculates the coverage, the method needs to know its own coordinates, the coordinates 
of the neighboring nodes, and its own sensing area. This requires the node to have a high 
computing power. In addition, the inability of the boundary node to enter the sleep state 
is also an area that needs to be improved.

In addition, in order to solve the problem of data packet congestion in event moni-
toring WSN applications, Ju et al. proposed a congestion control mechanism based on 
packet scheduling (EasiNet congestion control mechanism, EasiCC) in the literature. 
The data source node uses an exponential calibration method to divide the data pack-
ets into different priorities in proportion; each network node dynamically and synchro-
nously adjusts the packet filtering criteria according to the degree of network congestion 
to ensure fairness in the allocation of wireless channel bandwidth; the network access 
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control and queue packet loss methods are combined to adjust the network traffic and 
ensure the comprehensive network performance indicators. Simulation and experimen-
tal results show that the method performs well in performance indicators such as packet 
transmission success rate and transmission delay. The EasiCC method utilizes the stabil-
ity of network traffic to predict future network traffic and allocate bandwidth based on 
historical traffic conditions; control messages are triggered and are suitable for appli-
cation scenarios where data traffic and network topology do not change frequently. In 
event detection applications, when multiple nodes detect the same event and send data, 
In order to solve the problem that signal collision may cause packet loss, while reduc-
ing signal collision will increase delay, a priority-based queue management and packet 
scheduling method (PQMPS) is proposed (Yin et al. 2006). Based on the principle that 
the closer the node is to the event location, the earlier it perceives the event, this method 
assigns higher priority to the earlier detected data packets based on time slice technol-
ogy, and marks different importance for the data packets. The node sends the data pack-
ets with high priority first; when the queue is full, the data packets with low priority are 
discarded first. Thus, the effective throughput of the network is improved and the delay 
of important data packets is reduced. However, this method is suitable for applications 
with fixed monitoring area, low event frequency and high sampling rate.

Visweswara et al. (Visweswara et al. 2006) proposed a distributed scheduling method 
(Adaptive ad hoc self-organizing scheduling, ASOS) for WSN applications that col-
lect data periodically. The basic idea of this method is to let the node find a sched-
ule for sending and receiving data, and then work according to the schedule in the 
working cycle. This document defines the direction away from the sink node as the 
upstream direction and the direction close to the sink node as the downstream direc-
tion. The node first records the time interval between the arrival of the data packets of 
the upstream neighbor node to construct the probability distribution of the traffic flow 
of the upstream node; secondly, the node uses this distribution to shape its own data 
packet transmission so that the node’s data packet transmission will not conflict with the 
data packet transmission of the upstream node; then, after receiving the data, the node 
determines its own sleep time according to the time when the upstream node sends the 
data. This method does not require the exchange of control information between nodes 
and has a certain adaptability to the slow change of traffic. However, this method is not 
suitable for applications with large traffic changes; its data packet loss rate needs fur-
ther study. In addition, this method does not consider the working characteristics of 
the downstream node and has a slow convergence speed. Niu and Deng (Niu and Deng 
2010) proposed a Markov chain-based scheduling approach (MBSA). Its main principle 
is to adjust the scheduling probability of the node according to the statistical informa-
tion of the node and the adjacent upstream and downstream nodes, and schedule the 
sending operation and sleep. This method divides the state of the node and establishes 
a state transition diagram between various states. By cooperating with other nodes, the 
work of the upstream and downstream adjacent nodes is predicted and various state 
transition matrices of the node are established. By scheduling the sending and sleeping 
probabilities of the nodes, the probability of data conflict is reduced, energy efficiency 
is improved, and the throughput is increased. It has been proved that this method can 
ensure that the energy consumption of the nodes and the network will converge in each 



Page 6 of 18Ma et al. Energy Informatics           (2024) 7:104 

working cycle. This method combines sending scheduling with sleep scheduling and is 
mainly suitable for WSNs with unchanged topology and relatively stable load.

In recent years, energy harvesting wireless sensor networks (EH-WSNs) have received 
extensive attention, aiming to extend the service life of sensor nodes through a variety 
of energy harvesting technologies. Dhillon et al. (Dhillon et al. 2023) explored in depth 
several key parameters related to energy harvesting schemes, including delay, network 
size, network density, distance, throughput, power consumption, and efficiency, and 
proposes a model to demonstrate the performance of different EH-WSN schemes. The 
core of the research is to maximize the lifetime of sensor nodes by reducing average 
power consumption and optimizing the use of node batteries, while efficiently distribut-
ing power from the energy collector. In addition, the challenges faced in the implemen-
tation of EH-WSN and the technical specifications of various energy harvesting systems 
are highlighted.

Singh et al. (Singh et al. 2023) discussed the energy management technology of wire-
less sensor networks (WSNs) in Internet of Things (IoT) applications, pointing out that 
due to the limited energy supply of WSN nodes, how to ensure the long-term opera-
tion of the network is a major limiting factor. The article covers a variety of energy man-
agement techniques, including sleep-wake scheduling, multiple-input multiple-output 
(MIMO) techniques, multi-hop transmission, energy harvesting, clustering and routing, 
distributed source coding, and machine learning-based solutions. Simulation results of 
these technologies show that they can effectively reduce energy consumption, thereby 
extending the life of WSN in IoT applications.

Mazlan et al. (Mazlan et al. 2023) described enhancements to the S-MAC (ESMAC) 
protocol aimed at improving energy efficiency through different network topologies. The 
study tested a variety of wireless network topologies, such as mesh, grid, and random 
topologies, and evaluated their performance using NS2 simulators. By comparing the 
parameters of packet transmission rate (PDR), packet loss rate and energy consumption, 
the optimal wireless network topology is determined. The results show that mesh topol-
ogy is superior in average energy consumption, packet transmission rate and packet loss 
rate.

Mustafid and Mantoro (Mustafid and Mantoro 2024) proposed a Q-Learning algo-
rithm based wireless sensor network energy management system (Q-EMS), which aims 
to solve the imbalance between battery energy storage system, energy extraction (such 
as photovoltaic system) and energy utilization in WSN. Q-EMS algorithm provides the 
optimal action plan for sensor nodes in different situations through the learning pro-
cess, and makes decisions according to the reward or punishment mechanism of Q-EMS 
algorithm. The goal of this model is to reduce energy consumption and supply in WSN 
and achieve an effective balance between energy demand, collection and transfer. Future 
research plans will use real-world data to further optimize the application of Q-Learning 
algorithms to improve system performance.

Deep learning wireless sensor network scheduling methods

Recently, deep learning has emerged as a promising approach to address the complex 
scheduling problems in WSNs due to its ability to handle high-dimensional data and 
capture intricate patterns. There are many deep learning methods that have been applied 
to WSN.
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Convolutional Neural Networks (CNNs) have been widely used in image processing 
and computer vision tasks due to their ability to capture spatial hierarchies in data. In 
the context of WSN scheduling, CNNs can be employed to extract spatial features from 
the network topology. By representing the network as a grid or graph, CNNs can learn 
the spatial relationships between sensor nodes. This spatial awareness enables CNNs to 
predict optimal scheduling policies that minimize energy consumption and maximize 
network coverage. For instance, a study by Hussain et al. (Hussain et al. 2022) demon-
strated the use of CNNs to optimize the duty cycling of sensor nodes. The CNN model 
was trained to predict the active and sleep states of nodes based on their spatial posi-
tions and communication patterns. The results showed significant improvements in 
energy efficiency and network lifetime compared to traditional scheduling methods 
(Mohan and Sundararajan 2020).

Recurrent Neural Networks (RNNs) are designed to handle sequential data by main-
taining a hidden state that captures temporal dependencies. Long Short-Term Memory 
(LSTM) networks, a variant of RNNs, address the vanishing gradient problem and are 
capable of learning long-term dependencies. These properties make RNNs and LSTMs 
suitable for modeling the temporal dynamics of network traffic in WSNs. In a study by 
Cheng et al. (Cheng et al. 2019), LSTM networks were used to predict the traffic load 
at each sensor node. The predicted traffic patterns were then used to design scheduling 
strategies that balanced the load across the network, reducing congestion and improving 
data delivery rates. The study highlighted the effectiveness of LSTM networks in cap-
turing the temporal variations in network traffic and optimizing scheduling decisions 
accordingly. Deep Reinforcement Learning (DRL) combines the representation learn-
ing capabilities of deep learning with the decision-making framework of reinforcement 
learning. In DRL, an agent interacts with the environment and learns to take actions 
that maximize cumulative rewards. This approach is particularly suitable for WSN 
scheduling, where the objective is to find optimal policies that balance multiple per-
formance metrics. One of the most popular DRL algorithms is the Deep Q-Network 
(DQN), which approximates the Q-value function using a neural network. In the context 
of WSN scheduling, DQNs have been used to learn scheduling policies that adapt to 
changing network conditions. For example, Liu et al. (Liu et al. 2022) proposed a DQN-
based scheduling algorithm that dynamically adjusts the duty cycles of sensor nodes 
based on the current network state. The algorithm was shown to improve energy effi-
ciency and data delivery performance compared to static scheduling methods. Another 
DRL approach is the use of policy gradient methods, such as the Proximal Policy Opti-
mization (PPO) algorithm. PPO has been applied to WSN scheduling to learn policies 
that optimize the trade-off between energy consumption and data latency. The results 
from Khan et al. (Khan et al. 2016) indicated that PPO-based scheduling outperformed 
traditional heuristic methods in terms of both energy efficiency and quality of service.

Graph Neural Networks (GNNs) are designed to operate on graph-structured data, 
making them highly suitable for WSNs, which can be naturally represented as graphs. 
GNNs can capture the relationships between sensor nodes and learn representations 
that consider the entire network structure. This property makes GNNs powerful tools 
for designing scheduling policies that optimize network-wide performance. In a recent 
study by Sivakumar et al. (Sivakumar et al. 2023), GNNs were used to model the WSN 
as a graph, where nodes represent sensors and edges represent communication links. 
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The GNN was trained to predict the optimal activation schedule for each node, taking 
into account the connectivity and energy levels of neighboring nodes. The study dem-
onstrated that GNN-based scheduling achieved better energy distribution and extended 
network lifetime compared to traditional methods.

Methodology
Problem Formulation

Assume that our system consists of $N)$ sensors, denoted as a set S = {s1, s2, . . . , sN} . 
For each sensor si , we define its energy consumption at time t as Ei,t  and data transmis-
sion requirement as Di,t . Our goal is to predict the energy consumption and data trans-
mission requirements of each sensor in the future T time steps. We can formalize this 
problem as the following optimization problem to minimize total energy consumption. 
This process can be represented by the following mathematical formula (1):

min
∑ N

i=1

∑ T

t=1
Ei,t s.t.Di,t ≤ Dmax

i,t , Ti,t ≤ Tmax, Ei,t ≤ Ebattery
i � (1)

Where, Ei,t  represents the energy consumed by each sensor at time t, Di,t  represents 
the data transmitted by each sensor sensor at time t, and T represents the time required 
for each sensor sensor to transmit data at time t.

The constraints of the energy consumption optimisation formula include the following 
three factors:

1) Data integrity requirement: The data transmission requirement of each sensor must 
be met. That is, for each sensor si  and each time t , there is Di,t ≤ Dmax

i,t , where Dmax
i,t  is 

the maximum amount of data that sensor si  can transmit at time t .
2) Real-time requirement: data must be transmitted within a certain time. That is, for 

each sensor si  and each time t , there is Ti,t ≤ Tmax , where Ti,t  is the data transmission 
time of sensor si  at time t , and Tmax  is the maximum transmission time allowed.

3) Energy limit of the sensor: The energy consumption of each sensor cannot 
exceed the energy of its battery. That is, for each sensorsi  and each time t , there is 
Ei,t ≤ Ebattery

i
, where Ebattery

i
 is the battery energy of sensor si .

The goal of this optimization problem is to find a strategy that can minimize the total 
energy consumption while satisfying the above constraints. Our framework is shown in 
Fig. 1.

Transformer-based energy-efficient scheduling algorithm

We propose a Transformer-based energy-efficient scheduling algorithm that learns 
energy consumption patterns and environmental variables from historical data, and then 
predicts the energy demand and data transmission demand of each sensor node. By opti-
mising the work cycle of sensors and the data transmission strategy, it achieves the pur-
pose of reducing the overall energy consumption and prolonging the operation time of 
the system.

As shown in Fig.  2, the Transformer is a deep learning model based on the Self-
Attention Mechanism and Multi-Head Attention, which performs well in dealing with 

Fig. 1  The overall architecture of our framework
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long-range dependencies in time-series data, which is particularly critical for accurately 
predicting the behaviour of sensors in complex environments of oil and gas pipeline 
networks. In order to describe in more detail the application of the Transformer model 
to the prediction task, we elaborate on its key components, such as the Self-Attention 
mechanism and Multi-Head Attention. As shown in Fig. 3, these components enable the 
Transformer model to efficiently process sequential data and to focus on different parts 
of the input sequence in order to extract relevant features.

Fig. 3  The overall architecture of Self-Attention and Multi-Head Attention

 

Fig. 2  The overall architecture of the transformer network
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Dynamic scheduling strategy

Based on the prediction results, we design a dynamic scheduling strategy that auto-
matically adjusts the sensor’s operating mode and communication frequency based 
on the node’s energy consumption status and task urgency. We assume that each node 
can switch between different operating modes, including idle mode, receive mode, and 
transmit mode. Each mode has different energy consumption. We further assume that 
each node can adjust its communication frequency according to its energy consumption 
and data transmission requirements.

Our dynamic scheduling policy is based on the following principles: when a node’s 
energy consumption prediction is close to its energy budget, we decrease its communi-
cation frequency to save energy; when a node’s data transmission demand increases, we 
increase its communication frequency to meet the demand. Specifically, we define an 
energy consumption threshold Ethreshold

i  for each node, and when the predicted energy 
consumption Epred

i,t  of a node exceeds this threshold, we decrease the communication 
frequency of the node. We can calculate the new communication frequency by using the 
following Eq. (10):

fnew
i,t = foldi,t × Ethreshold

i

Epred
i,t

� (2)

where fold
i,t  is the original communication frequency of node si  at time t  and fnew

i,t  is the 
new communication frequency.

On the other hand, when the node’s data transmission demand Di,t  increases, we 
increase the node’s communication frequency. We can calculate the new communica-
tion frequency by using the following Eq. (11):

fnew
i,t = fold

i,t × Di,t

Dold
i,t

� (3)

where Dold
i,t  is the raw data transmission requirement of node si  at time t .

Where, Dold
i,t  represents the data transmitted by the si  node at time t  , Di,t  represents 

the transmission data raised by the si  node at time t , and fnew
i,t  represents the new com-

munication frequency.
We execute this dynamic scheduling policy every certain time interval Tinterval  in 

order to adjust it according to the latest prediction results and the actual situation.

Evaluation
Data collection and implementation details

In this paper, Omnet + + is used as a simulation platform for data collection and the aver-
age energy consumption of the network nodes, packet delay and the life cycle of the net-
work are analysed and the simulation parameters are shown in the Table 1.

In our study, we use the standard Transformer model for training, the parameters of 
tranfomer is shown in Table 2. The number of model training steps was set to 2,500 to 
ensure that the model was sufficiently iterated over the entire dataset. We used a learning 

Table 1  Simulation parameters
Parameters Bandwidth SYNC Data window Time slot length Initial energy
Values 20kbps 31 63 1ms 100 J
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rate warm-up strategy, where the initial learning rate was set to 0.0001 and the number 
of warm-up steps was 100, after which the learning rate decayed according to the inverse 
square root of the number of steps. The optimiser was chosen to be Adam, with hyper-
parameters beta1 set to 0.9, beta2 to 0.98, and epsilon to 1e-9. To prevent overfitting, we 
introduced weight decay (with a coefficient of 0.0001) and Dropout (with a rate of 0.1) 
for regularisation. The batch size in training was set to 64, and to prevent gradient explo-
sion, we set the gradient trimming value to 1.0. The above configuration details are the 
optimal settings derived from full validation during the experimental process.

Evaluation metrics and baseline

We adopted F1, energy consumption, and mean square error (MSE) as our evaluation 
metrics, which are described as follows:

F1  the F1 is commonly used to evaluate the performance of classification tasks, espe-
cially in the presence of data imbalance. It is the reconciled mean of precision and recall.
The F1 is calculated as Eq. (4)

F1 = 2× precion× recall

prrecision+ recall
� (4)

where precision is the number of correctly predicted positive samples as a proportion of 
all samples predicted to be positive, and recall is the number of correctly predicted posi-
tive samples as a proportion of all true positive samples.

Energy consumption  Energy consumption is a key metric in WSNs and is evaluated 
by measuring and comparing the total energy consumption of the system when different 
scheduling strategies are implemented. The specific calculation formula is as Eq. (5)

Etotal =
∑ n

i=1
Ei � (5)

where Etotal  is the total energy consumption of the system, Ei  is the energy consump-
tion of the ith sensor, and n is the total number of sensors.

Mean Square Error (MSE)  in order to predict the energy consumption of the sensors, 
this paper further adopts the mean square error as the evaluation index. It measures the 
mean squared difference between the predicted value and the true value. MSE is calcu-
lated using the following Eq. (6)

Table 2  Transformer parameters
Parameters Hidden units Layer number Head number
Values 512 6 8

Table 3  Simulation parameters
F1 Energy consumption MSE

CNN 0.7412 515.2 0.346
RNN 0.8140 721.5 0.291
GNN 0.8521 652.1 0.252
Our model 0.9195 480.6 0.193
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MSE =
1

n

∑ n

i=1
(yi − ŷi)

2 � (6)

where yi  is the true value of the ith observation, ŷi  is the corresponding predicted value, 
and n is the total number of observations.

In order to evaluate the performance of our model, we replace the transformer archi-
tecture by the following deep learning methods:

Convolutional Neural Network (CNN)  CNN is a powerful model commonly used to 
process grid shaped data (e.g. images). For time series data, we can treat each time step 
as a pixel and then use a one-dimensional convolutional layer to process this data. Con-
volutional layers can capture local patterns in the input, which is particularly useful when 
processing time-series data.

Recurrent neural networks (RNN)  an RNN is a specialised model for processing 
sequence data. It can theoretically capture arbitrarily long sequence dependencies by 
passing hidden states between time steps.

Graph neural networks (GNN)  We can use a GNN if our data has a well-defined graph-
ical structure (e.g., connections between sensors). GNNs are able to efficiently process 
graphically-structured data by performing message passing over nodes and edges of a 
graph.

Experimental results

As shown in Table 3, this study evaluates and verifies the effectiveness of the proposed 
method by comparing the performance of different deep learning models (CNN, RNN, 
GNN) with the proposed method in predicting the behavior of oil and gas pipeline sen-
sors. To ensure fairness, each model was trained and tested using the same dataset and 
the same preprocessing steps in the experiment.

In terms of F1 score, the Transformer model performed best, reaching 91.95%, which 
shows that it achieved the best balance between precision and recall. The GNN model 
followed closely, showing high prediction accuracy, which may be due to its ability to 
effectively handle the sensor network structure. Although RNN is better than CNN, it 
failed to reach the level of the first two due to the long-term dependency problem. CNN 
performed the worst among all models, which may be due to its main application in cap-
turing local features and its poor performance in processing long-distance dependencies 
in time series data.

In terms of energy consumption, Transformer also showed excellent results in energy 
consumption due to its superior prediction effect. Secondly, CNN consumes the least 
energy due to its relatively simple structure. However, low energy consumption does 
not bring high prediction performance. The energy consumption of RNN and GNN is 

Table 4  Impact of Transformer Layer Number
Layer number F1 Energy consumption MSE
4 0.8512 561.5 0.281
5 0.804 536.3 0.235
6 0.9195 480.6 0.193
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similar, but both are higher than CNN, reflecting their more complex network structures 
and computational requirements.

In the MSE evaluation, Transformer once again shows its superiority with the low-
est error rate, indicating that the difference between its predictions and the real data is 
the smallest. GNN also shows a low error rate, proving its effectiveness in processing 
graph-structured data. Although RNN performs better than CNN, its error rate is still 
higher than GNN and Transformer due to the problem of vanishing or exploding gra-
dients. CNN has the highest MSE, further confirming its limitations in processing long 
sequence time data.

As shown in the Table 4, we explored the performance of the Transformer model with 
different number of layers. The experiments were set up with three different numbers of 
layers: 4, 5, and 6. By comparing the Transformer model with three different numbers 
of layers, we found that the model performance shows an upward trend as the num-
ber of layers increases. In the experiment, the 6-layer Transformer model performs the 
best, with a F1 of 91.95\%. This suggests that deeper models may be more conducive to 
capturing complex features in the data, thus improving model performance. However, 
it should be noted that as the number of layers increases, the computational complexity 
and training time of the model increase accordingly. Therefore, a balance between per-
formance and computational resources needs to be found in practical applications.

Visualization of loss and F1

As shown in Fig. 4, we provide a detailed analysis and visualisation of the training pro-
cess of the model in order to better understand the convergence and performance of 
the model. Figure 4 left side illustrates the loss profile of the model in this paper. As can 
be seen from the figure, the loss value of the model decreases rapidly in the first few 
hundred iterations, which indicates that the model learns more effective features in the 
initial stage. The rapid decrease in this phase is mainly due to the fact that the model 
quickly adapts to the training data through a lot of parameter adjustments in the initial 
phase. With the increase in the number of iterations, the decline of the loss value gradu-
ally slows down, and the fluctuation of the loss value is relatively small in the subsequent 
period, indicating that the model’s learning tends to stabilise in this stage. Throughout 
the training process, we can observe some fluctuations in the loss curve, especially after 
the number of iterations exceeds 1000. These fluctuations may be caused by the use of 
a larger learning rate during the training process, or by the noise in the training data 
itself. Nevertheless, the overall trend remains gradually decreasing, indicating that the 

Fig. 4  Visualisation results for loss and F1
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model is constantly optimising its parameters to reduce the loss values. As the number 
of iterations approaches 2500, the loss value is essentially stable at around 1 and fluctu-
ates less. This indicates that the model is close to convergence and further training may 
not significantly reduce the loss value. At this point, the model has learnt the features in 
the data better and has a strong generalisation ability.

The right side from Fig. 4 shows our F1 value results. As can be observed from the 
figure, the F1 value of the model increases rapidly in the first few hundred iterations. As 
the number of iterations approaches 100, the F1 value rapidly improves from close to 0 
to over 0.6. The rapid improvement at this stage indicates that the model has adapted 
quickly to the training data through extensive parameter tuning in the initial stage and is 
able to identify features in the data effectively. As training continues, the rate of increase 
in the F1 value slows down, but the overall trend remains upward. When the number 
of iterations reaches about 500, the F1 value has reached more than 0.8, and the perfor-
mance at this stage indicates that the model is continuously optimising its parameters 
and gradually improving its ability to recognise the data. Throughout the training pro-
cess, there are some fluctuations in the F1 value curve, especially after the number of 
iterations exceeds 1000. These fluctuations may be caused by the use of a larger learning 
rate during the training process, or by the noise in the training data itself. Nonetheless, 
the overall trend is still gradually increasing, indicating that the model is constantly opti-
mising its parameters to improve the F1 value. As the number of iterations approaches 
2500, the F1 value is basically stable at around 0.91 and fluctuates less. This indicates that 
the model is close to convergence and further training may not significantly improve the 
F1 value. At this point, the model has learnt the features in the data better and has a 
strong generalisation ability.

Comparison of traditional algorithms

In this section, we will further explore the comparison with our proposed energy sav-
ing scheduling algorithm based on the Transformer network, especially the performance 
comparison with traditional non-deep learning models. While deep learning methods 
perform well in many applications, traditional algorithms still have their unique advan-
tages and applicability in certain situations. Therefore, we evaluated several mainstream 
non-deep learning energy management algorithms, including greedy algorithms, mini-
mum energy expenditure algorithms (MEC), and time scheduling algorithms.

Overview of traditional algorithms

Here is a brief description of several common traditional algorithms:
Greedy algorithm: This algorithm selects the solution that seems optimal at each step. 

Although it is simple and easy to implement, its global optimality cannot be guaranteed 
when dealing with complex problems.

Minimum Energy Consumption Algorithm (MEC) : This algorithm aims to minimize 
the energy use of the entire network by calculating the energy consumption of each sen-
sor node. It relies on static models to predict energy consumption.

Time scheduling algorithm: By scheduling the working time of sensor nodes, unneces-
sary energy consumption is reduced. This algorithm is usually scheduled based on fixed 
time interval and lacks flexibility.
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Algorithm performance comparison

In order to more intuitively show the performance differences between our proposed 
Transformer network scheduling algorithm and traditional algorithms, Table 5 summa-
rizes the energy consumption and efficiency indicators of each algorithm in different test 
scenarios.

As can be seen from Table  5, while traditional algorithms perform reasonably well 
in terms of energy consumption, our Transformer scheduling algorithm significantly 
reduces total energy consumption and improves data transmission efficiency and node 
lifetime. In addition, despite the increase in computational complexity, this is an accept-
able cost for modern computing resources, especially in large oil and gas pipeline moni-
toring systems.

Discussion of calculation restrictions

While Transformer-based models deliver performance, their computational require-
ments and complexity cannot be ignored. When training deep learning models, the 
processing of large amounts of historical data and the optimization of high-dimensional 
parameters lead to high computational overhead. Specifically, the training process 
requires powerful computing resources, such as high-performance Gpus, which can be a 
bottleneck in resource-limited environments.

In addition, the computation time required for the inference phase may also affect 
the real-time performance. If the number of sensors in the network is large, the infer-
ence speed of the model may become an important factor affecting the overall monitor-
ing efficiency. Therefore, for computing limitations, we need to consider the following 
improvements:

1) Model compression: Through model pruning, quantization and other technologies, 
reduce the storage and calculation costs of models.

2) Edge computing: Deploy computing nodes near the sensor to reduce the burden on 
the central server and improve response speed.

3) Adaptive adjustment: According to real-time monitoring requirements, the com-
plexity of the model can be adjusted to balance performance and resource consumption.

It can be seen that, although traditional algorithms still have advantages in some 
aspects, our proposed Transformer based scheduling algorithm is superior in overall 
performance and provides strong technical support for future intelligent pipeline moni-
toring systems. It is hoped that these discussions can provide reference and inspiration 
for the follow-up research.

Table 5  Algorithm performance comparison
Algorithm type Total energy con-

sumption (J)
Data Transfer Ef-
ficiency (bps)

Node lifetime 
(hours)

Compu-
tational 
complex-
ity

GA 150.0 80 12 O(n)
MEC 140.0 85 13 O(n^2)
TSA 135.0 90 11 O(n)
Transformer 123.0 95 15 O(n log n)
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Conclusion and perspective
In wireless monitoring of oil and gas pipeline networks, how to effectively extend the 
lifetime of wireless sensor networks (WSNs) while ensuring real-time data and accuracy 
has been the focus and difficulty of research. In this paper, an energy-saving schedul-
ing algorithm based on transformer network is proposed to solve this problem, and sig-
nificant results have been achieved in the experiments. In this paper, a deep learning 
model based on transformer network is designed to predict the energy demand and data 
transmission demand of each sensor node by learning the energy consumption patterns 
and environmental variables from historical data. The self-attention mechanism of the 
transformer model makes it perform well in dealing with the long-distance dependence 
problem in time-series data, which is for the prediction of sensor behaviours in complex 
environments especially critical. Based on the prediction results, the algorithm in this 
paper adopts a dynamic scheduling strategy that automatically adjusts the sensor’s oper-
ating mode and communication frequency according to the node’s energy consump-
tion status and task urgency. The strategy not only takes into account the energy-saving 
requirements, but also ensures the real-time and accuracy of monitoring data, effec-
tively balancing the conflict between energy efficiency and monitoring performance. The 
effectiveness of the proposed algorithm is verified through a large number of simulation 
experiments. The experimental results show that compared with the traditional fixed 
scheduling strategy, the proposed algorithm significantly reduces the energy consump-
tion (the average energy saving reaches more than 30%), and at the same time ensures 
the data integrity and real-time performance. This result not only extends the opera-
tion time of the wireless sensor network, but also improves the overall reliability and 
economy of the oil and gas pipeline network monitoring system. The energy-efficient 
scheduling algorithm based on Transformer network proposed in this paper provides a 
new energy-efficiency optimisation scheme for wireless monitoring system of oil and gas 
pipeline network. Through the combination of deep learning and dynamic scheduling 
strategies, the difficulty of balancing energy efficiency and monitoring performance in 
traditional methods is effectively solved. Our algorithms improve the energy efficiency 
and stability of the monitoring system and provide important technical support for 
future intelligent pipeline monitoring systems.

This study demonstrates the effectiveness of energy-saving scheduling algorithm based 
on transformer network in wireless monitoring of oil and gas pipeline network, which 
can be further optimized in multiple directions in the future. For example, the architec-
ture of transformer models can be explored in depth to improve the accuracy of energy 
consumption predictions by improving self-attention mechanisms and introducing more 
complex feature selection. In addition, the research can be extended to other wireless 
sensor network applications, such as smart cities, agricultural monitoring, etc., to verify 
the broad applicability and potential benefits of the algorithm. At the same time, com-
bining edge computing and 5G technology to further improve data processing speed and 
system reliability is also a direction worth exploring.
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