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Abstract 

Over the past decade, the world has experienced a remarkable shift in the automotive 
landscape, as electric vehicles (EVs) have appeared as a viable and increasingly popu-
lar alternative to the long-standing dominance of internal combustion engine (ICE) 
vehicles and their ability to absorb the surplus of electricity generated from renewable 
sources. This paper presents a detailed examination of the different categories of EVs, 
charging methods and explores energy generation systems tailored for EVs. As vehicle 
complexity and road congestion increase with the growth of EVs, the need for intel-
ligent transport systems to improve road safety and efficiency becomes imperative. 
Machine learning (ML), recognized as a powerful approach for adaptive and predic-
tive system development, has gained importance in the vehicle domain. By employ-
ing a variety of algorithms, ML effectively addresses pressing issues related to electric 
vehicles, including battery management, range optimization, and energy consump-
tion. This paper conducts a brief review of ML methods, including both traditional 
and applied approaches, to address energy consumption issues in EVs, such as range 
estimation and prediction, as well as range optimization.
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Introduction
Air pollution has become a serious danger to our health, leading to both immediate and 
long term problems. These problems include emphysema, respiratory infections (e.g., 
pneumonia, bronchitis), cancer, asthma, and other chronic diseases. Increased human 
activities have worsened air pollution, causing a buildup of greenhouse gases (GHGs). 
This buildup results in unusual temperature increases. Additionally, air pollution can 
make existing health conditions worse and impact our overall well-being.

The transportation sector significantly contributes to worldwide GHG emissions, 
accounting for approximately 23% of the overall emissions (Yu et  al. 2019). These 
emissions consist of carbon dioxide, hydrofluorocarbons (HFCs), nitrous oxide, 
methane, hydrochlorofluorocarbons (HCFCs), and ozone, all of which contribute to 
increasing concentrations of GHGs. The ICE is a major contributor to air pollution, 
releasing about 35% of carbon monoxide (CO), 30% of hydrocarbons (HC), and 25% 
of nitric oxides (NOx), as well as lead particles and particulate matter (PM2.5) directly 
into the atmosphere 2 as Fig.  1 shows (Macharia et  al. 2023). Such a disconcerting 
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statistic led to the adoption of the ‘Paris Declaration on Electromobility and Climate 
Change and Call to Action’, a worldwide effort to combat the greenhouse effect. The 
declaration aims to limit the increase in global temperatures to 2  °C, a crucial mile-
stone in mitigating the harmful impacts of climate change.

EVs have seen a rise in popularity as a greener alternative to conventional vehi-
cles powered by gasoline in the last years. as well as being promoted as an achiev-
able way to reduce carbon dioxide emissions  (CO2) in the face of ongoing global fossil 
fuel shortages and pollution (Xu et  al. 2020; Koubaa et  al. 2021). Countries world-
wide have established ambitious targets to encourage the adoption of EVs or are even 
planning to ban the sale of petrol vehicles in the future (Chen et al. 2020). In coun-
tries where renewable energy is adopted as the primary source, the influence of elec-
tric vehicles (EVs) on the environment is more sustainable (Anwar et al. 2021; Sharif 
et  al. 2020). EVs symbolize a remarkable stride towards fostering a sustainable and 
eco-friendly energy system (Vita and Koumides 2019). Renewable energy sources and 
electric vehicles offer the opportunity to reduce carbon emissions from power gener-
ation and transport sectors (Lazarou et al. 2018; Richardson 2013). China plans to sell 
7 million EVs per year by 2025, equivalent to one-fifth of the country’s total domestic 
demand. Norway has set a target of 100% of new car sales to be electric by 2025. The 
United States and the United Kingdom has promised that they will phase out petrol 
vehicle sales by 2040. The automotive sector aims to make EVs the largest powertrain 
in the automotive market by 2030 (Hertzke et al. 2018).

EVs come in multiple types such as battery electric vehicles (BEVs), plug-in hybrid 
electric vehicles (PHEVs) and fuel cell electric vehicles (FCEVs). Each type has its own 
unique charging methods, issues and challenges. For example, BEVs require longer 
charging times and have a limited range, while PHEVs have a shorter electric-only range 
and require both electric and petrol refueling. FCEVs, on the other hand, face challenges 
with the availability of hydrogen infrastructure. To address these challenges, research-
ers and engineers have been developing various energy generation systems such as 
regenerative braking systems, photovoltaic cell systems and fuel cell systems as well as 
energy management strategies for EVs, these include rule-based and optimization-based 
strategies (Li et al. 2019). Machine learning (ML) techniques have also been applied to 
EVs, particularly in battery management, range optimization, and energy consumption 
prediction.

Fig. 1 Internal combustion engine emissions



Page 3 of 19Boudmen et al. Energy Informatics            (2024) 7:80  

In this review article, we will present a comprehensive overview of electric vehicles 
and their different types, charging methods and challenges. We will also discuss the 
different power generation systems and energy management strategies used in EVs. In 
addition, we will explore the use of ML in range optimization and energy consumption 
prediction.

The subsequent sections of this paper are structured as follows: the employed meth-
odology of this review is outlined in “Methodology” section. “Electric vehicles” Section 
provides a description of EVs types and charging methods. In “Challenges for fuel cell 
EVs and hybrid EVs” section, we discuss some challenges for Fuel Cell EVs and Hybrid 
EVs. In “Energy generation systems for EVs” section, we turn our focus to the energy 
generation systems that are used for EVs like photovoltaic cell systems, fuel cell sys-
tems and regenerative braking systems. We address used energy management methods 
for EVs in “Energy management strategies used in EVs” section, discussing rule-based 
strategies and optimization-based strategies. “Electric vehicles and machine learning” 
Section presents ML applications in EVs fields such as range optimization and energy 
consumption. A discussion about the most used ML algorithms in EVs optimization and 
management was discussed in “Discussion” section. The final part, which is “Conclusion 
and perspectives” section, presents our conclusion about the research as well as our per-
spectives on ML in the EVs field.

Methodology
This paper will take a close look at EVs. It looks at different types of EVs, how they are 
charged and the challenges they face. The paper also talks about making energy systems 
specifically for EVs and how that affects things. It also talks about how EVs use energy.

In this paper, we look carefully at many ways of using ML. These are like tools that help 
computers learn and predict things. We use these tools to solve specific problems with 
EVs, such as managing batteries (including checking their condition, detecting problems 
and controlling charging) and guessing how much energy will be used for driving. The 
paper focuses on comparing these different tools to see which ones work best for dif-
ferent tasks. The review incorporates criteria for inclusion and exclusion to ensure the 
provision and evaluation of pertinent and current information.

The criteria for inclusion in this paper are specified as follows:

• Electric vehicles: This criterion guarantees that only articles that provide comprehen-
sive explanations of EVs types, charging methods and challenges are included in the 
review.

• Energy generation systems: This criterion covers studies and articles that concentrate 
on the energy generation systems using in EV field.

• Energy management strategies: This criterion includes papers that explore EMSs 
used in HEVs, while there is still limited research on EMSs used in PEVs. However, 
some EMSs developed for HEVs can also be adapted for use in PEVs.

• Machine learning algorithms used in electric vehicles between 2012 and 2023: This 
criterion guarantees that only studies and articles discussing ML algorithms used in 
EVs within the last years are included in the review. This guarantees that the infor-
mation presented remains current and pertinent to recent advancements in the field.
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The exclusion criteria are the following:

• General papers of machine learning and old sources (below 2012): General papers on 
ML that don’t specifically discuss its application in the EVs domain are filtered out by 
this criterion

• Non peer reviewed sources: A peer review is an essential phase in guaranteeing the 
quality of scientific research. So that, it’s excluded by this criterion.

• Letters and reports: Letters and reports lacking original research or substantial addi-
tions to the domain are excluded by this criterion.

• Non-English sources: Papers that are not published in English are also excluded. This 
guarantees that the information presented reaches a broader audience.

Electric vehicles
EVs have been gaining popularity in recent years due to their potential to reduce GHG 
emissions and dependence on fossil fuels. Unlike traditional ICE vehicles, EVs are pow-
ered by electricity held in batteries and electric motors. These vehicles have emerged as a 
promising solution for sustainable transportation.

EVs can be classified into different types, such as BEVs, hybrid electric vehicles 
(HEVs), PHEVs, and FCEVs. Each type has its own unique features, charging methods, 
and challenges. Understanding the distinctions between these types is crucial to grasp 
the diverse landscape of EVs.

Electric vehicle types

EVs come in different types, including BEVs, which run purely on a battery with no sec-
ondary energy source and emit no emissions. BEVs typically use large battery packs to 
give the vehicle a satisfactory range. A typical BEV can travel between 160 and 250 km 
on a single charge, and some are even able to travel up to 500 km before they need to be 
recharged. An example of such a vehicle is the Nissan Leaf (Nissan Reveals LEAF e-Plus 
2023), which runs entirely on electricity. It is currently equipped with a 62 kWh battery, 
which allows the user to travel up to 360 km on a single charge.

Hybrid EVs are driven by a fusion of a conventional gasoline engine and an electric 
motor. Contrary to PHEVs, HEVs do not have the capability to be plugged in for battery 
charging. Instead, the battery that powers the electric motor is charged by the gasoline 
engine and by the energy generated during braking. The fourth generation of the Toyota 
Prius hybrid had a 1.3 kWh battery. This gave it a theoretical all-electric range of 25 km 
(Toyota Prius PHV 2013).

PHEVs are an improved version of HEVs that can connect to the power grid for battery 
charging. PHEVs are powered by a traditional gasoline engine and an electric motor that 
is charged by an external electrical source. PHEVs can store sufficient electrical energy 
from the grid to substantially decrease fuel usage during typical driving situations. The 
Ford Escape PHEV (Ford Escape® 2024) is equipped with a 14.4 kWh battery, enabling it 
to travel approximately 60 km using only electric power.

Although PHEVs were developed due to the limited mileage of EVs and a low num-
ber of public charging stations, BEVs are becoming increasingly popular. This is because 
battery technologies are being improved to enhance their energy density. Currently, 



Page 5 of 19Boudmen et al. Energy Informatics            (2024) 7:80  

two-thirds of existing EVs are BEVs, and they have a higher priority for charging at park-
ing lots or charging stations since they have a single energy source (Sadeghian et  al. 
2022). The growing popularity of BEVs underscores the need for further infrastructure 
development to meet the demand.

Another type of EV is the FCEV or hydrogen EV, which uses hydrogen as its fuel 
source. These vehicles feature an electric motor that operates on a combination of com-
pressed hydrogen  (H2) and oxygen  (O2) from the air to generate electricity. The only by-
product of this process is water. FCEVs are zero-emission vehicles, but it is important to 
note that most hydrogen is currently produced from natural gas, which is a fossil fuel. 
The Toyota Mirai FCEV (Toyota Mirai 2023) exemplifies this type of vehicle, capable 
of traveling 647  km without refueling. The different types of EVs discussed above are 
shown in Fig. 2 below.

Charging methods

Besides autonomy, another important aspect of electric vehicles (EVs) is the charging 
process. For EVs to be truly successful, users need to be able to charge their vehicles 
quickly and easily. There are three primary charging methods: battery exchange, wire-
less charging, and conductive charging. Conductive charging can be further divided into 
pantograph charging and overnight charging as illustrated in Fig. 3.

Battery swap station (BSS)

The technique known as ‘Battery Exchange’ involves paying a monthly rent for the 
battery to the proprietor of the Battery Swapping Station (BSS). The gradual charging 
process of the BSS helps to prolong the life of the battery (Ahmad et al. 2018). The inte-
gration of locally generated renewable energy sources (RES) such as wind and solar into 
the BSS system is much easier. A key advantage of this approach is that the driver can 
rapidly replace a discharged battery without having to leave the vehicle (Gschwendtner 
et al. 2021).

However, BSSs can be more expensive than refueling ICE vehicles because of the ele-
vated monthly rental fees charged by the BSS owner. This is due to the fact that the BSS 
owner owns the EV batteries. BSSs also necessitate several costly batteries and a large 

Fig. 2 Different types of electric vehicles (Sadeghian et al. 2022)
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amount of space to store them, which can be expensive in high-traffic areas. In addition, 
a BSS may have a specific battery model, but EV batteries may have different standards 
(Li et al. 2018; Erdinç et al. 2017).

Wireless power transfer (WPT)

Wireless power transfer (WPT) is a technology that uses two coils to transfer energy 
without the need for a physical connection. WPT has attracted attention for use in elec-
tric vehicles because one coil is placed on the road surface, and another coil is positioned 
inside the vehicle. This technology is valued for its safety, convenience, and lack of 
requirement for a standard plug (though it does rely on standard coupling technology). 
In addition, WPT can charge a vehicle while it is moving (Sanguesa et al. 2021).

However, WPT does have some challenges. Inductive power transfer is typically inef-
ficient, requiring an air gap of between 20 and 100  cm between the transmitter and 
receiver coils for optimal power transfer (Chowdhury et  al. 2023). Also, eddy current 
losses can occur if the transmitter coil remains active. Finally, there is a risk of communi-
cation latency between the transmitter and the vehicle (Patil et al. 2017).

Conductive charging (CC)

Conductive charging (CC) necessitates an electrical link between the vehicle and charg-
ing port, providing different charging alternatives like level 1, level 2, and level 3 charg-
ing. This method boasts high charging efficiency owing to its direct connection. Public 
charging stations commonly utilize power charging levels 2 and 3. The initial two levels 
(Levels 1 and 2) exert a lesser impact on the distribution system.

CC allows for vehicle-to-grid (V2G) support, which can help to reduce grid loss, main-
tain voltage levels, prevent grid overloading, provide active power support, and com-
pensate for reactive power using the battery of the vehicle (Chowdhury et al. 2023; Patil 
et al. 2017).

However, high-power conductive charging (level 3 charging) can have a number of 
negative impacts on the distribution system, including voltage deviation, reduced system 
reliability, and increased power losses (Dharmakeerthi et al. 2014). It can also increase 
peak demand and reduce transformer lifespan (Dharmakeerthi et al. 2014; Habib et al. 
2018). Additionally, Level 3 charging requires a standardized connector, access to 

Fig. 3 EVs charging methods
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electricity from the grid, and complex infrastructure (Yang et  al. 2015). V2G technol-
ogy also necessitates robust communication between the grid and the vehicle, and it can 
reduce battery lifespan because of frequent charging and discharging (Arif et al. 2021a). 
Table 1 summarizes the charging methods, which include BSS, WPT, and CC stations.

For electric buses and trucks with higher battery capacity and quick charging require-
ments, two main charging techniques are used:

Overnight depot charging: This system can be configured for slow or rapid charg-
ing and is typically installed at the terminus of bus routes for nighttime charging. Slow 
charging is the is preferred as it minimally impacts the distribution grid (Arif et al. 2020, 
2021b).

Pantograph charging: This is a type of opportunity charging that is used for vehicles 
with higher battery capacity and power requirements. Lowering the bus investment cost, 
pantograph charging reduces the investment in the bus battery, although it results in 
higher costs for the charging infrastructure (Meishner et al. 2017). Pantograph charging 
is further divided into two categories:

• Top-down pantograph: Referred to as an off-board top-down pantograph, this setup 
is mounted on the roof of the bus stop. It provides high-power direct current and 
has been implemented in Singapore, Germany, and the United States (Carrilero et al. 
2018).

• Bottom-up pantograph: Known as an on-board bottom-up pantograph, this charging 
method is suitable for applications where the charging equipment is already installed 
in the bus (Carrilero et al. 2018).

Challenges for fuel cell EVs and hybrid EVs
Fuel cell EVs

Reducing manufacturing costs is essential for the commercialization of fuel cells. The 
US Department of Energy (DOE) aims to minimize the price of fuel cells to $40/kW by 

Table 1 Advantages and disadvantages of charging methods

Method References Disadvantage Advantage Year

BSS Arif et al. (2021a) The monthly rent to BSS makes it 
more expensive than an Internal 
Combustion
Engines (ICE) vehicle

Rapid battery replacement (fully 
charged)

2021

Arif et al. (2021a) The significant costs needed for 
both equipment and batterie

BSS extends battery life by charg-
ing slowly

2021

Li et al. (2018) Many areas needed to accommo-
date the batteries

Easy to integrate with the locally
generated Renewable Energy 
Sources (RESs)

2018

CC Habib et al. (2018) Need a standard connector/
charging level

Reduce grid losses while main-
taining voltage levels

2018

Yoldaş et al. (2017) Electricity grid restrictions Provide maximum efficiency 2017

Negarestani et al. (2016) Complex infrastructure Provide multiple charging levels 2016

WPT Arif et al. (2021a) In general, power transmission is 
inefficient

Standard connectors not 
required

2018

Patil et al. (2017) The transmitter and EV should be 
able to communicate in real time

Recharge while driving 2017
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2025, targeting a goal of $30/kW with the primary aim of completely replacing the tra-
ditional power system and ensuring sustained competitiveness in the long term (Borup 
et al. 2018, 2020). Durability and performance are the other two critical evaluation cri-
teria for fuel cells, but reducing the load of expensive electrocatalysts to cut costs may 
compromise their durability and performance. Therefore, simultaneously achieving both 
the durability and cost targets set by the DOE is a considerable challenge. Balancing cost 
reduction with performance and durability remains a critical challenge in the commer-
cialization of fuel cell technology. Fuel cells are crucial for commercial uses in trans-
portation and stationary power generation. Introduced in 2017, Toyota’s Mirai, the first 
commercially available FC vehicle, was priced around $60,000 and logged over 3000 h 
of real-world driving. However, it failed the DOE’s accelerated stress test protocol after 
5000 cycles (Wang et al. 2020).

DOE aims to surpass 5000 working hours for commercial fuel cell vehicles by 2025, 
with the ultimate objective being 8000 h (METI Ministry of Economy, Trade and Indus-
try 2023). Manufacturers of stationary fuel cells aspire to achieve mass production, aim-
ing to reduce costs and enhance durability. To realize cost-effective and durable fuel 
cell systems, ongoing progress in manufacturing processes and materials is imperative. 
As evidenced by Panasonic’s fifth-generation stationary fuel cell, which weighs a mere 
65 kg, occupies an area of 1.7   m2, and boasts a durability of 90,000 h (METI Ministry 
of Economy, Trade and Industry 2023; Arias 2019), advancements are already under-
way. Japan’s hydrogen strategy aligns with ongoing enhancement, targeting an efficiency 
exceeding 55% by 2025 (ultimate goal: over 65%) and a durability of 130,000 h for com-
mercial stationary fuel cells (Arias 2019). These ambitious objectives underscore the 
ongoing efforts to elevate the performance and reliability of fuel cell technology.

Hybrid EVs

HEVs emerge as a promising prospect for the future of transportation, driven by the 
substantial increase in crude oil prices over recent decades, prompting consumers to 
explore alternative energy sources (Williamson et  al. 2006). In comparison to hybrid 
vehicles featuring ICEs, BEVs and PHEVs exhibit higher energy efficiency and nearly 
zero hazardous emissions. A significant body of researchers has contributed to enhanc-
ing the efficiency and performance of PHEVs, showcasing their capability to perform 
well within the HEV framework (Atabani et al. 2011). Existing research shows that these 
technologies can enable high-performance HEVs. However, the reliability and intelligent 
systems of HEVs still need improvement. Therefore, there are many factors that must be 
considered before HEVs can be fully embraced by the market, including the following 
challenges (Ong et al. 2012):

• Renewable energy sources for vehicle applications have low energy and power densi-
ties. Exploring advanced energy storage technologies and improving energy density 
are essential to overcome these limitations.

• HEVs are still expensive. Reducing manufacturing costs and increasing economies of 
scale are necessary to make HEVs more affordable for consumers.

• The refueling station infrastructure for HEVs needs to be expanded. Light HEVs 
require small storage tanks, while other HEVs may use an exchange storage tank 
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system. Developing a robust refueling infrastructure that supports different types of 
alternative fuels and storage systems is crucial for the widespread adoption of HEVs.

• Recharging plug-in BEVs is time-consuming, so rapid recharging systems need to be 
developed. The development of lithium-ion batteries, which are lightweight and have 
a short recharge time, has enabled car manufacturers to produce BEVs and hybrid 
vehicles. Continued advancements in battery technology and the development of 
fast-charging infrastructure are key to addressing the issue of lengthy recharging 
times and improving the convenience of plug-in BEVs.

Energy generation systems for EVs
Photovoltaic cell systems

Photovoltaic (PV) cells also known as solar cells, transform sunlight directly into electri-
cal energy. They are widely used to harness renewable energy in various applications. 
While individual PV cells have a low power output, typically 1–2 watts, they can be con-
nected in series and/or parallel chains to form modules or panels. These panels can then 
be grouped together to form PV arrays to meet greater power requirements (Kalantar 
and Mousavi 2010). This modular configuration allows PV systems to be scaled and 
customized to meet specific energy requirements. PV systems also necessitate a solar 
inverter to convert the direct current (DC) produced by the PV cells into alternating 
current (AC), along with mounting hardware, cabling, and other electrical components.

One of the main advantages of photovoltaic (PV) systems is their clean operation, 
emitting no pollution or greenhouse gases. They are also low-maintenance and have a 
long lifespan (Lo Piano and Mayumi 2017; Advantages Disadvantages of Solar Power 
2023). However, high initial costs and unpredictable availability are significant draw-
backs (Sukamongkol et al. 2002; Deshmukh and Deshmukh 2008). Anticipated improve-
ments in technology and the realization of economies of scale are poised to overcome 
these cost barriers and enhance the reliability of PV systems in the future. PV cells can 
be fabricated from crystalline silicon, the prevailing material in the market, or from thin 
films incorporating substances like cadmium telluride (CdTe) as well as copper indium 
diselenide (CIS). Although crystalline silicon exhibits higher efficiency, PV cells based 
on thin-film technology are lighter and more cost-effective to produce (NREL 2012; 
Photovoltaics Report 2023).

Researchers are developing new PV technologies to improve efficiency and reduce 
costs. Third-generation PV cells are being developed using new materials such as solar 
inks, solar dyes, and conductive plastics. These advancements have the potential to make 
PV systems even more performant and affordable. PV systems find practical applications 
in various domains, including powering buildings, spacecraft, road lights, and even facil-
itating daytime charging for commuter vehicles (Birnie 2009). Although the direct inte-
gration of PV systems into commercial EVs remains challenging due to space constraints 
and limited power generation, they can still contribute to improving vehicle efficiency 
(10–20%) or maintaining comfortable temperatures inside the vehicle through the oper-
ation of the air conditioner (Richardson 2013).

The output current of a PV module can be presented as follows (Villalva et al. 2009; 
Salmi et al. 2012):
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where  Ipv,n is the current generated by the PV module at the nominal condition of solar 
radiation at 1000 W/m2 and temperature at 25  °C. KI is the indicates the short circuit 
current temperature coefficient (A/°C). T and  Tn is the actual and nominal temperatures 
(K). G and  Gn is the actual and nominal solar radiation (W/m2).

The saturation current  I0 depends on the temperature and described as follows:

where  Isc,n is the short circuit current (A).  Voc,n is the open circuit voltage (V) at the 
nominal conditions.  KI is the current coefficient.  KV is the voltage coefficient.

Regenerative braking systems

Regenerative braking systems allow vehicles to recover the kinetic energy generated 
during braking and store it for later use. This energy can be converted into electrical, 
hydraulic, or mechanical energy. Without a regenerative braking system, this kinetic 
energy would be wasted as heat generated by the brakes. Currently, four methods are 
employed for implementing regenerative braking systems: the electric M/G and batteries 
or SC method, hydraulic P/M and HACCs, flywheel energy storage, and spring potential 
energy storage (Clegg 1996; Valente and Ferreira 2008).

In terms of energy efficiency, charging and discharging ability, power density, and cost-
effectiveness, each method has its own advantages and disadvantages. Of these methods, 
hydraulic and flywheel regenerative systems have the highest energy efficiency. Hydrau-
lic systems also demonstrate rapid charging and discharging capabilities, enhanced 
power density, and a greater ability to recover maximum braking energy. However, bat-
tery-based systems are not ideal for frequent charging and discharge due to the risk of 
overheating, reduced lifespan, or destruction. SC regenerative systems can be expensive. 
Spring regenerative systems have the lowest energy efficiency (Li et al. 2019; Jiang et al. 
2013; Hui et al. 2011; Zeiaee 2016). Additional research and development are required 
to optimize regenerative braking systems and address their limitations for widespread 
implementation in electric vehicles.

Fuel cell systems

Fuel cell (FC) systems convert chemical energy into electrical energy through chemical 
reactions between hydrogen (or hydrocarbons like methanol or natural gas) and oxygen 
from the air, aided by catalysts. The conversion process involves splitting hydrogen into 
protons and electrons. The electrons then flow through a circuit, producing an electric 
current, while the protons pass through the electrolyte. FCs are known for their quiet, 
reliable, and environmentally friendly operation, as well as their high efficiency (Mekh-
ilef et al. 2012).

There are six types of FCs, classified based on their choice of fuels and electrolytes: 
direct methanol fuel cells (DMFCs), alkaline electrolyte fuel cells (AFCs), molten car-
bonate fuel cells (MCFCs), phosphoric acid fuel cells (PAFCs), solid oxide fuel cells 

(1)I = IPV − I0

[

exp
q(V + RSI)

NSKTa
− 1

]

−
V + RsI

Rp

(2)I0 =
Isc,n + KI (T − Tn)

exp
q[Voc,n+Kv(T−Tn)]

aNSKT
− 1
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(SOFCs), and proton exchange membrane fuel cells (PEMFCs) (Mekhilef et  al. 2012). 
Each type of fuel cell has its own unique characteristics, advantages, and suitability for 
specific applications. DMFCs, despite having high energy density, emit  CO2 and exhibit 
lower efficiency. MCFCs and SOFCs, operating at high temperatures (600–1000 °C), are 
typically employed in electric utilities and distributed power generation. For transpor-
tation, DMFCs, PEMFCs, AFCs, and PAFCs are common choices due to their normal 
or moderate operating temperatures. PEMFCs, in particular, stand out with the highest 
power density among FCs, offering benefits like a long lifespan, less-temperature opera-
tion, and rapid response, making them particularly appealing for transportation applica-
tions (Tie and Tan 2013; Hannan et al. 2017). Although FCs have a high initial cost, it 
decreases as the market expands and economies of scale improve.

PEMFCs are the most promising FC source for use in plug-in electric vehicles (PEVs), 
and empirical PEMFC models can be derived from the Nernst equation. Ongoing 
research and technological advancements are focused on improving the efficiency, dura-
bility, and cost-effectiveness of fuel cell systems for wider adoption in electric vehicles. 
The theoretical voltage produced by a typical fuel cell’s individual cell can be expressed 
as (Hannan et al. 2014):

where  E0 is the open circuit voltage of the cell at standard pressure. R is the universal gas 
constant. F is the Faraday’s constant. T is the absolute operating temperature. PH2

 is the 
partial pressure of hydrogen inside the cell.  PO2

 is the partial pressure of oxygen inside 
the cell. PH2O is the partial pressure of water vapor inside the cell.

However, due to factors like activation losses, internal current losses, resistive losses, 
and concentration losses, the actual voltage produced by a single cell is less than the 
ideal potential. Therefore, the output voltage of the FC stack can be described as (Han-
nan et al. 2014; Andrea Calvo et al. 2006):

where N is the number of cells in the stack. Pstd is the standard pressure. VL is the voltage 
losses.

Energy management strategies used in EVs
Energy management strategies (EMSs) are crucial for systems with multiple energy 
sources as they control power distribution within powertrains, impacting vehicle perfor-
mance, efficiency, and component longevity (Sabri et al. 2016). While research on EMSs 
for PHEVs is limited compared to HEVs, some EMSs developed for HEVs can also be 
utilized in PHEVs. Therefore, this section initially introduces EMSs commonly employed 
in HEVs before discussing their potential adaptation for PHEVs. EMSs for HEVs are 
broadly classified into two main categories, as shown in Fig.  4: ruled-based strategies 
and optimization-based strategies.
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Rule‑based strategies

Supervisory control of HEVs commonly employs Rule-based (RB) strategies, leverag-
ing heuristics, expert knowledge, and mathematical models (Salmasi 2007). RB strat-
egies can be divided into two categories: fuzzy and deterministic methods. Fuzzy RB 
techniques, such as traditional, adaptive, and predictive control strategies, employ fuzzy 
logic theory to handle approximate reasoning and are better suited for sophisticated or 
intricate powertrain systems. Deterministic RB approaches like state machine-based, 
power and modified power follower, and on/off thermostat strategies employ specific 
rules to assess power distribution accurately (Enang and Bannister 2017). RB strategies 
are immediate solutions known for their simplicity, strong reliability, and innate suitabil-
ity for online applications, requiring minimal computational overhead. However, craft-
ing RB strategies can prove time-intensive due to the challenge of establishing precise 
rules, frequent parameter adjustments, and calibration needed to enhance vehicle per-
formance. Rules must be adjusted for diverse vehicle setups and evolving driving condi-
tions. Additionally, RB strategies do not prioritize minimization or optimization, thus 
limiting their ability to optimize fuel economy to its fullest extent (Enang and Bannister 
2017; Zhang et al. 2015).

Optimization‑based strategies

One approach to improving energy efficiency in hybrid vehicles (HVs) and EVs is the 
deployment of optimization-based strategies. These strategies seek to decrease fuel con-
sumption or emissions by calculating optimum reference torques and gear ratios based 
on a minimizing cost function (Ramachandran and Stimming 2015). There are two main 
types of optimization solutions: global and real-time. Global optimization solutions aim 
to reduce energy losses over the whole driving cycle but can’t be used in real-time energy 
management. These solutions are useful as control benchmarks compared to other strat-
egies. However, real-time optimization solutions can be implemented online and involve 
the reduction of global optimization challenges into a sequence of local optimization 
challenges which excludes the need for future driving information. (Çağatay Bayindir 
et al. 2011).

Global optimization strategies are classified into different methods such as linear pro-
gramming (LP), dynamic programming (DP), stochastic DP, genetic algorithm (GA), and 
particle swarm optimization (PSO) (Çağatay Bayindir et al. 2011).

Fig. 4 Classification of EMSs employed in HEV
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On the other hand, real-time optimization strategies address global optimization 
issues by solving a sequence of local optimization challenges, which removes the need to 
obtain future driving information (Enang and Bannister 2017).

As a result, real-time optimization strategies can be employed for online applications. 
These strategies can be classified into several types, including model predictive control 
(MPC), intelligent control, robust control, decoupling control strategies (DCS), and 
equivalent fuel consumption (EFC) minimization, (Advantages Disadvantages of Solar 
Power 2023; Sukamongkol et al. 2002). Each type of optimization-based strategy has its 
own advantages and challenges and requires appropriate implementation and tuning to 
achieve optimal energy management in EVs.

Electric vehicles and machine Learning
Machine learning in range optimization

Range estimation (RE) is a critical step in achieving EV range optimization and is one 
of the key topics of research and investigation in EV technology these days. Precise RE 
can greatly alleviate range concerns experienced by EV drivers due to restricted driv-
ing distance It empowers EV drivers to make informed decisions about driving, park-
ing, and charging, as well as participate more actively in vehicle-to-grid (V2G) charging. 
Yet, conventional RE techniques are occasionally not effective because of their failure 
to account for dynamically changing outside and environmental circumstances (Huang 
et al. 2017; Zhang et al. 2012; Pan et al. 2017).

For instance, the range predictors in Tesla’s Model S predict the upcoming available 
range by analyzing the energy consumption from the preceding miles, without account-
ing for variations in driving conditions, driving habits and environmental factors (Dazi-
ano 2013). Compared to traditional RE methods, artificial intelligence (AI) has the 
potential to provide more precise RE by modeling the complicated relationship between 
RE and the factors that affect it. AI algorithms, such as ML, can reliably predict upcom-
ing environmental and driving conditions using past and present data, resulting in a 
more precise range estimate.

AI algorithms have been employed for RE by explicitly leveraging environmental as 
well as historical driving attitude data(Sun et al. 2019; Yavasoglu et al. 2019), predicting 
EV battery energy and power consumption (Pan et al. 2017; Zheng et al. 2016) and rec-
ognizing driving conditions and behaviors (Pan et al. 2017; Lee and Wu 2015). Real-time 
historical EV discharge data is selected for applicable batteries, vehicle, and external 
parameters (Table 2) as well as removing missing and erroneous data for ML training. 
Additionally, EV historical data has the potential to be combined with historical weather 
data and road conditions data to incorporate external parameters, thereby enhancing the 
RE estimation accuracy using ML training (Sun et al. 2019; Zheng et al. 2016).

ML models are capable of learning to directly predict EV range and future EV energy 
or power consumption. By taking into account the evolving EV internal and external 
conditions in a computationally efficient manner, and without the use of complex explicit 
models, ML enables more accurate RE (Pan et al. 2017; Zheng et al. 2016). Parameters 
more influence on RE, such as battery state of charge (SOC) and external temperature, 
can be approximated using correlations, which reduces the complexity and training time 
of the ML model (Sun et al. 2019).
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Machine learning in energy consumption

To predict the remaining driving range of an EV, it is important to accurately predict 
its energy consumption. This prediction relies on calculating the energy required to 
drive the vehicle, energy lost through the drivetrain, and energy used to power auxiliary 
devices (Smuts et al. 2017). However, accurately estimating the range of an EV remains 
a challenge due to factors such as limited driving range, long charging time, high battery 
replacement cost, and inadequate charging infrastructure. These issues can be addressed 
by ameliorating battery performance and raising the number of charging stations, but 
both solutions are highly expensive and may not fully address drivers’ concerns about 
the remaining driving range estimates. Therefore, adequate and precise range estima-
tion is needed to enhance driver confidence and encourage widespread adoption of EVs. 
Recent studies suggest using advanced methods to accurately predict the energy con-
sumption of EVs, resulting in increased driving range and reduced range anxiety. This 
promotes driver’s confidence and encourages EV usage over longer distances. In recent 
times, ML techniques have been employed for predicting the energy consumption of 
EVs as summarized in Table 3.

Discussion
Various ML algorithms are used to optimize and resolve EV’s issues. According to 
Table  4, Multiple Linear Regression (MLR) stands out as a popular and adaptable 
approach for EV optimization. The importance of MLR results from its capacity to detect 

Table 2 Research of ML in electric vehicle RE

MAE mean absolute error, MSE mean-squared error

Algorithm Parameters RE accuracy

Historical data Significant parameter 
identification using cor-
relation analysis and 
multiple linear regression 
(MLR)

Vehicle speed
Acceleration
Past power consumption
Past distance
Past trip run time
Temperature
Weight of loads
Tire pressure
Frontal area
External road elevation
Recent energy consump-
tion
External road elevation

1.63 km (MAE) (Nowaková 
and Pokorný 2020)

Classification and regres-
sion tree (CART)

1.27 km (MAE) (Sun et al. 
2019)

Artificial neural networks 
(ANN)

2.2% (MSE) accuracy for 
a 50.4 km real-life EV trip 
(Rhode et al. 2020)

Gradient boosting deci-
sion tree (GBDT)

0.82 km (MAE) (Sun et al. 
2019)

Prediction of future 
energy and power con-
sumption

Data clustering using self-
organizing maps (SOM) 
pursued by regression tree
Principal component 
regression (PCR)
Multiple linear regression 
(MLR)
Support vector regression 
(SVR)
Linear regression (LR)

Battery SOC
SOH
Auxiliary load
Weight
External road type
Traffic
Temperature
Driving behavior
Voltage (min, max)
Current (min, max)
Temperature (min, max)
Vehicle speed (avg)
External temperature
Visibility
Precipitation

0.70 km (MAE) (Yokoi et al. 
2004)
2.07 km (MAE) (Yokoi et al. 
2004)
1.95 km (MAE) (Yokoi et al. 
2004)
1.95 km (MAE) (Lee and Wu 
2015)
2.18 km (MAE) (Lee and Wu 
2015)



Page 15 of 19Boudmen et al. Energy Informatics            (2024) 7:80  

correlations between various input factors and the intended result. MLR helps in the 
analysis of many elements impacting an electric vehicle’s range, allowing for informed 
choices on improving driving conditions and overall performance.

In addition to MLR, neural networks (NN) have become more significant in the opti-
mization of electric vehicles. Deep neural networks, in particular, have outstanding 

Table 3 Summary of energy consumption predicted by different ML algorithms

Researcher Description ML Algorithm Remarks Refs.

Alvarez et al Anticipate the energy 
consumption and 
driving patterns of 
electric vehicles using 
three input parameters, 
namely car speed, 
acceleration, and jerk

ANN The dataset was only 
limited to 10 drivers, 
which may not be 
sufficient to represent 
sample characteristics

Alvarez et al. (2014)

Bi et al Calculates the residual 
range of EVs by 
utilizing five internal 
vehicle-specific fac-tors

Neural network The proposed model 
achieved good estima-
tion accuracy, but the 
internal influencing 
factors were disre-
garded

Bi et al. (2018)

Li et al Predict the energy con-
sumption of electric 
buses in Shenzhen, 
China

KNN and RF models These models are rela-
tively traditional and 
less advanced than 
recently developed 
ML algorithms such 
as LightGBM (Ke et al. 
2017) and XGBOOST 
(Chen and Guestrin 
2016), which have 
shown better predic-
tion performance in 
different research fields 
(Gu et al. 2020; Qu et al. 
2019)

Li et al. (2021)

Abdelaty et al Predict electric bus 
energy consumption

MLR
SVR
Radial basis function 
interpolation model 
(RBF)
Decision tree model 
(DT)
GBDT

Abdelaty et al. (2021)

Chen et al Predict electric vehicle 
energy consumption

XGBOOST LightGBM outperforms 
XGBOOST in terms of 
robustness

Chen et al. (2015)

Wang et al detect
Transportation modes 
from the GPS trajectory 
data automatically

LightGBM Wang et al. (2018)

Table 4 ML algorithms used in EVs

Used ML algorithms

Range optimization MLR
CART 
ANN-based models
GBDT
PCR
MLR
SVR
LR

Energy consumption ANN-based models
MLR
SVR
DT
XGBOOST
LightGBM
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capacity for learning complicated patterns from input. NNs can anticipate battery per-
formance and behavior based on many inputs when used in battery management. NNs 
assist optimize battery management tactics by revealing deep correlations, thereby 
enhancing battery life and overall efficiency.

Neural networks additionally contribute to optimizing energy consumption. By ana-
lyzing historical energy consumption data, NNs can predict and optimize energy con-
sumption patterns in EVs. By capturing complex relationships between different factors, 
NNs enable accurate prediction, facilitating energy efficiency and cost reduction in EVs.

In summary, both multiple linear regression (MLR) and neural networks (NN) are 
essential machine learning algorithms for electric vehicle optimization. MLR’s versatility 
allows it to identify relationships and optimize range, while NNs excel at learning com-
plex patterns and optimizing battery management and energy consumption. By leverag-
ing the strengths of MLR and NNs, researchers and engineers can harness the power 
of data-driven decision-making to improve the performance, efficiency and overall user 
experience of electric vehicles, contributing to the advancement and widespread adop-
tion of electric transportation systems.

Conclusion and perspectives
In conclusion, electric vehicles have become an increasingly popular alternative to tra-
ditional gas-powered cars. In this comprehensive review, we examined various types of 
EVs, charging methods, and the associated issues and challenges for some types. We also 
explored various energy generation systems and energy management strategies that are 
used to power and optimize electric vehicles. Additionally, we discussed the application 
of machine learning techniques in electric vehicle battery management, range optimiza-
tion, and energy consumption prediction. Overall, the use of machine learning in elec-
tric vehicles has shown promising results in improving their efficiency, performance, 
and sustainability. However, there are still several challenges that need to be addressed, 
such as battery degradation, data privacy, and ethical considerations in the development 
and deployment of machine learning algorithms for electric vehicles. Further study and 
invention is needed to overcome these challenges and accelerate the adoption of EVs as 
a clean and sustainable transportation solution for the future. We finish by outlining our 
perspective on the field that requires further research and development to ensure that 
these ML algorithms can provide accurate and reliable results to EVs, and to make an 
influence on the optimization and management of EVs.
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