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Introduction
As the world shifts towards renewable and sustainable energy sources, wind turbines 
play a crucial role in this global change. Wind energy offers a promising new frontier in 
meeting the growing need for sustainable energy by utilizing the vast potential of wind 
resources in diverse environments. On the other hand, the installation and operation of 
wind farms pose challenges that demand innovative solutions to improve overall perfor-
mance, reliability, and efficiency. In this context, predictive digital twins have attracted 
attention as an innovative technology with the potential to fundamentally alter the wind 
energy market. Digital twins, which are virtual replicas of physical assets or systems, 
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allow real time monitoring, simulation, and predictive analysis. The application of pre-
dictive digital twins, especially in wind farms, offers valuable insights into the behavior 
and performance of systems, enhancing proactive decision-making, energy forecasting, 
and competence in the energy market.

Motivation and objective

The motivation behind of this literature review lies in the fact that, while there are sev-
eral reviews on digital twins, this study specifically focuses on predictive digital twins 
within the context of wind energy systems-a perspective that has not been previously 
explored. Conducting a review of predictive digital twins for wind farms is essential due 
to the critical necessity of addressing the inherent challenges in this dynamic and volatile 
environment. Some main challenges with wind farms are diverse and severe conditions, 
including variable wind patterns, complex environment interaction, and difficulties in 
data collection. These factors can impact the structural integrity, energy yield, and over-
all operational efficiency of wind turbines. Predictive digital twins have the potential to 
transform the way wind farms are monitored and managed. By integrating advanced 
data analytics, machine learning algorithms, statistical and probabilistic methods, and 
real time sensor data, these digital assets can predict potential issues before they esca-
late. This approach helps optimize performance and contributes to the reliability and 
cost-effectiveness of wind energy projects.

This review aims to comprehensively explore the current state of predictive digital 
twins for wind farms. The key objectives include:

• Surveying existing literature Providing a thorough overview of existing studies, 
research, and implementations related to predictive digital twins in the context of 
wind energy.

• Assessing current methods Evaluating the advancements in predictive modeling, data 
analytics, and machine learning techniques applied to wind farm operations. Inves-
tigating how predictive digital twins contribute to enhancing the performance, reli-
ability, and energy yield of wind farms.

• Identifying challenges and limitations Identifying and critically analyzing the chal-
lenges, limitations, and gaps in current research and applications of predictive digital 
twins in the wind industry.

• Proposing future directions Proposing potential directions for future research, 
emphasizing areas that necessitate exploration to enhance the capabilities of predic-
tive digital twins in the realm of wind energy.

This review aims to consolidate and synthesize the existing knowledge, providing valua-
ble insights for researchers and stakeholders who are involved in advancing wind energy 
through the application of predictive digital twin technologies.

Problem definition and contribution

Predictive digital twins within the realm of wind energy systems have attracted sig-
nificant attention in recent decades. The creation of predictive digital twin platforms 
has been made possible by real time data, simulation models, and advanced analytical 
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methods. This technology not only allows stakeholders to forecast potential issues but 
also enhances informed decision-making and performance optimization. Despite the 
growing investment in this field, there remains a need for a comprehensive understand-
ing of the current state of research and development in predictive digital twin appli-
cations specific to wind energy systems. The main challenge lies in the lack of solid 
knowledge regarding key challenges and advancements, along with a gap in the literature 
related to predictive digital twins in wind energy systems. As the field is rapidly evolving, 
there is a risk of inconsistency and limited transferability of findings across different sys-
tems and industries. Additionally, the effectiveness of predictive digital twins in enhanc-
ing the overall performance and reliability of wind energy systems remains unclear, given 
the data provided by several independent sources. The integration and analysis of vari-
ous data still pose prominent issues. To address these challenges, a literature review is 
necessary to comprehend existing knowledge, identify trends, and provide a foundation 
for future research.

This paper contributes to the understanding and development of digital twin tech-
nology within wind energy systems through a comprehensive literature review. A sys-
tematic approach is used in the review, beginning with the formulation of the research 
question and establishment of the review protocol. Relevant studies are then searched in 
the selected databases using the defined query strings. By conducting a literature survey 
from the past five years, this study presents key trends and advancements in predictive 
digital twin platforms. The analysis identifies current challenges and limitations, while 
also discussing commonly employed methodologies, with a focus on enhancing digital 
twin systems. Furthermore, future research opportunities are outlined to lay a founda-
tion for ongoing advancements in this field. This review seeks to offer valuable insights 
and practical guidance for academics, industry professionals, or technology developers 
working on digital twin technology in the wind energy sector.

Background information

A digital twin is a representation of a physical system created through digital informa-
tion. This digital counterpart serves as a duplicate of the information embedded in the 
physical system and remains interconnected with it throughout the lifecycle. The origins 
of the Digital Twin concept can be traced back to a 2002 University of Michigan presen-
tation aimed at establishing a Product Lifecycle Management. Figure 1 provides a visual 
depiction of the digital twin, highlighting its primary components: real space, virtual 
space, the link for data and information flow from real space to virtual space (Grieves 
2016).

The digital twin concept operates on three main fronts: first, it stores essential 
component data. In this capacity, the digital twin systematically collects, organizes, 
and stores critical information pertaining to the physical system’s components. This 
encompasses a detailed inventory of the structure, dynamics, and configuration of the 
various elements of the system. This repository is not only used for the current state 
but also lays the groundwork for several processes. The stored data becomes the foun-
dational building block upon which the digital twin can further analyze, simulate, and 
visualize the behavior of the physical system. In the realm of wind energy, the digital 
twin may capture detailed information about the turbine’s components, such as the 
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specifications of the rotor blades, turbine output, the configuration of the generator 
or gearbox, also parameters related to environment like wind speed and wind direc-
tion. More specifically, the digital twin might store data on the aerodynamic profiles 
of the rotor blades, including their material composition and dimensions (Jureczko 
et al. 2005). It would document the specifications of the gearbox, detailing gear ratios 
and load-bearing capacities (Moghadam et  al. 2021). Wind sensor data, historical 
wind patterns, and turbine performance metrics, such as power output and efficiency, 
would also be systematically recorded. This detailed component data can be used as 
the foundation for subsequent analyses and simulations. This information can then 
be used to simulate the wind turbine’s behavior under various conditions, to optimize 
the turbine’s performance. Second, it analyzes and simulates the asset based on that 
data, where computational models and algorithms are utilized to examine the stored 
data within the digital twin. The digital twin employs advanced analytical tools and 
machine learning algorithms to simulate the behavior of the physical system under 
various conditions. These models are intended to replicate the dynamic interactions 
between components and the environment. The simulations and models enable us to 
gain insights into how the asset responds to different inputs, environmental factors, 
or operational scenarios. These virtual tests can identify potential issues or efficiency 
losses, enabling us to comprehensively assess the system. A digital twin for a wind 
turbine leverages stored data to conduct detailed performance analyses and simula-
tions. For instance, the digital twin may employ computational models that consider 
parameters such as wind speed, blade geometry, and turbine specifications. Analyz-
ing the data could involve simulations to predict power generation output at varying 
wind speeds. The digital twin can be used to assess the wind direction impact on the 
turbine’s yaw mechanism, optimizing its alignment for maximum energy capture (Wu 
and Wang 2012). Structural simulations may also be employed to evaluate the integ-
rity of turbine components, helping identify potential stress points or areas requiring 

Fig. 1 Conceptual framework of digital twin for a wind turbine. The physical asset consists of sensors and IoT 
devices. The digital twin platform consists of three main fronts: big data and analytics, simulation & property 
modeling, and visualization. Data is provided from the physical assets to the digital twin platform, where 
information and processes are sent to the physical asset from the digital twin platform
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maintenance (Bazilevs et al. 2015). Forecasting algorithms can also be implemented 
to estimate the power output in different time horizons (Hanifi et  al. 2020). Imple-
menting all these models enhances efficiency by providing a deep understanding of 
performance, minimizing downtime under diverse conditions. Third, it visualizes rel-
evant data and results according to predefined objectives. These presentations pro-
vide insights through the digital twin’s simulation processes. In this phase, the digital 
twin transforms complex data and simulation results into comprehensible visual rep-
resentations. These visualizations align with predefined objectives, to ensure that the 
information presented is relevant and serves specific needs. Visualization of a digital 
twin involves creating graphical representations, a dashboard, 3D visualizations, and 
other illustrative formats that convey key findings (Kandemir et al. 2023). These visual 
outputs may include performance metrics, trends, and critical insights derived from 
the analytical simulations. The primary goal is to present the information in a clear 
and accessible way, facilitating effective communication and decision-making among 
various stakeholders. In this way, stakeholders can intuitively grasp the complexities 
of the physical system. In the context of wind turbines, a predefined objective is to 
optimize energy production; the digital twin could generate visualizations that display 
real time power output, efficiency trends, and the impact of different wind conditions 
on energy generation. These tools could include graphical representations of power 
curves, efficiency maps, and performance trends of subsystems (Rafiee et  al. 2018). 
These visualizations can be used to quickly assess the impact of wind speed, direction, 
or turbine settings on energy production. Additionally, the digital twin might gener-
ate visual alerts or dashboards highlighting areas of the turbine that require attention 
or maintenance.

Digital twin applications rely on four key technologies: “Internet of Things”, “Data 
and Analytic”, “Cloud Computing” and “Accessibility and Interaction” (Wang and Liu 
2022). The Internet of Things (IoT) functions as a system where physical devices are 
embedded with software, utilizing Internet connectivity. Various techniques, such 
as Bluetooth, Wi-Fi, RFID, and GPRS, can establish connections in IoT, facilitating 
communication between physical and virtual entities for data transfer. Many compa-
nies are actively investing in IoT to foster machine-to-machine communications. The 
framework is structured into three primary layers: perception, network, and appli-
cation. In the perception layer, interaction with the environment occurs through 
sensors and actuators. The network layer manages connections between diverse enti-
ties, including “things,” network devices, and servers, processing data in the process. 
The final layer provides services to users (Shah et  al. 2018; Mouha 2021). Data and 
Analytics encompass the utilization of various corporate tools like Standard Query 
Language (SQL) for tasks such as data storage, manipulation, and retrieval. In this 
process, it’s crucial to evaluate data through advanced methods that align with spe-
cific objectives. These analytics involve a range of methods, including physics based 
models, statistical and predictive analysis, machine learning, and artificial intelligence 
(Fowdur et  al. 2018). Cloud Computing enables people to reach, share, and store 
information via the Internet. This innovative computing technology utilizes a network 
of data centers with interconnected computers, allowing the execution of software 
functions. Users have access to powerful platforms, and services over the Internet, 
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making it a versatile collection of network-enabled services. Cloud Computing pro-
vides on-demand, flexible, and tailored computing infrastructures to a wide range of 
stakeholders (Kalapatapu and Sarkar 2012). Accessibility and Interaction with Digital 
Twin involve examining physical systems from a distance. The digital twin stands out 
by being reachable remotely, facilitating global data transfer with fewer limitations. 
In scenarios where local access is limited, the need for remote monitoring and con-
trol of assets becomes apparent. Moreover, within complex systems, understanding 
subsystems poses a challenge, but the digital twin simplifies understanding both sub-
systems and the interaction between systems (Singh et al. 2021). Human interaction 
emphasizes communication and interaction between humans and machines. Emerg-
ing technologies in this area include virtual and augmented reality, 3D visualizations, 
and recognition algorithms (Ma et al. 2019).

Outline

In "Methodology" Section, the methodology is outlined, detailing the establishment of 
a review protocol that plays a pivotal role in the investigation of predictive digital twin 
technology. Specifically, inclusion criteria are outlined, the search strategy is executed, 
and a systematic approach is employed to explore relevant literature. In "Results" Sec-
tion, the results of the literature review are provided, aligning with the research ques-
tions and presenting key findings on predictive digital twin technology, including current 
applications, methods, and emerging trends. Section "Discussion" engages in a discus-
sion, analyzing the implications, trends, and methods identified in the literature. This 
section aims to gain a deeper understanding of the context of predictive digital twins. In 
"Conclusions and future work" Section, conclusions are drawn, summarizing the state of 
predictive digital twins based on insights obtained from the literature review.

Methodology
The methodology is inspired by the guidelines proposed by Kitchenham and Charters 
(2007) for a systematic literature review. Well-formulated research questions are essen-
tial as they guide the search, selection, and analysis of relevant studies which provides a 
comprehensive overview of existing research on a specific topic. The predefined search 
strategy and inclusion/exclusion criteria enhance reliability. Reviews significantly con-
tribute to scientific knowledge by summarizing findings, identifying gaps, and establish-
ing a reliable foundation for future research. The format also promotes transparency and 
credibility, owing to the well-established protocol. This paper is conducted in three main 
steps, as shown in Fig. 2, which include planning, execution, and reporting.

The planning phase is dedicated to the formulation of an effective search strat-
egy and establishing criteria to evaluate the quality of the gathered studies. Dur-
ing the execution stage, the focus lies on the identification of pertinent studies and 
the extraction of the employed methodologies for the corresponding studies. The 
reporting phase synthesizes all the acquired findings and methodologies, facilitating 
a comprehensive and critical discussion of the outcomes. In essence, this three-step 
methodology provides a structured framework for conducting literature review.
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Research questions

The research question in a literature review is crucial as it shapes the entire study. Its sig-
nificant role lies in establishing an unbiased framework essential for maintaining objec-
tivity, reliability, and credibility. A well-formulated research question ensures a thorough 
analysis of existing literature, contributing to the academic integrity of the review. In 
this context, four research questions have been formulated: (1) targeting methodologies, 
(2) addressing the integration of data from various sources, (3) focusing on real time 
decision-making, and (4) delving into challenges.

• RQ1: What methodologies are commonly employed in developing predictive digital 
twin models for wind energy systems?

• RQ2: How do predictive digital twin applications integrate and analyze data from 
diverse sources to enhance their predictive capabilities?

• RQ3: What are the key features and technologies that facilitate real time wind energy 
systems through predictive digital twin?

• RQ4: What are the challenges commonly encountered in wind energy systems when 
implementing predictive digital twin solutions?

Search strategy

For the literature review on predictive digital twin in wind energy systems, a com-
prehensive search strategy was developed. This strategy involved the utilization of 
academic databases and search engines such as IEEE Xplore, Scopus, ACM Digital 

Fig. 2 Framework for a literature review. Plan: Develop the research question, establish the review protocol, 
and create query strings for database searches. Execution: Identify relevant research, filter results based on 
established quality criteria, and identify proposed methods. Report: Analyze multiple methods found in the 
literature and document the findings
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Library, SpringerLink, Wiley Online Library, and Taylor & Francis Online. The search 
string was structured using a combination of keywords and Boolean operators (AND, 
OR) to refine the search results effectively. The keywords and logical operators are 
explicitly detailed in Table 1 with the corresponding research questions. The search 
was conducted across the selected databases between the years 2019 and 2024, aim-
ing to identify relevant studies published within the last 5 years.

Quality criteria and study selection

To ensure transparency and minimize potential bias in the literature review on pre-
dictive digital twins for wind energy systems, quality and inclusion criteria were 
established. These criteria were applied to the selection of studies in accordance with 
PRISMA guidelines (Page et al. 2021). The selection process involved evaluating stud-
ies based on predefined criteria, as outlined in Table 2. The criteria emphasize studies 
employing research methodologies such as experimental studies, case studies, simu-
lations, and theoretical frameworks relevant to predictive digital twin applications in 
wind energy. Only peer-reviewed articles published in academic journals, conference 
proceedings, and scholarly books from recognized publishers are included, with Eng-
lish as the publication language. The review captures the most current advancements 
and developments in the field over the last 5 years. The qualified study went through 
the process of multiple stages, including title, abstract, and keyword screening fol-
lowed by full-text assessment. Figure 3 explicitly outlines each step of the study selec-
tion procedure.

Table 1 Search strings used in the digital libraries and databases

Boolean logical operators (“AND”, “OR”) used in the search. “AND” searches find all the search strings, while “OR” searches find 
one term or the other. The first part of the “AND” search is common for all four research questions, targeting studies focused 
on digital twin or wind energy related studies. The second part of the “AND” term is specified for each research question

No Keywords

RQ‑1 (“DT” OR “Predictive Digital Twin” OR “Wind Energy” OR “Wind Turbine” OR “Wind Farm”) AND (“Physics Based 
Modelling” OR “Data Driven Models” OR “Hybrid Models”)

RQ‑2 (“DT” OR “Predictive Digital Twin” OR “Wind Energy” OR “Wind Turbine” OR “Wind Farm”) AND (“Data” OR 
“Feature Selection” OR “Dimensionality Reduction” OR “Real Time”)

RQ‑3 (“DT” OR “Predictive Digital Twin” OR “Wind Energy” OR “Wind Turbine” OR “Wind Farm”) AND (“Key Features” 
OR “Enabling Technologies” OR “IoT” OR “Communication” OR “Computing” OR “Human Machine Interface”)

RQ‑4 (“DT” OR “Predictive Digital Twin” OR “Wind Energy” OR “Wind Turbine” OR “Wind Farm”) AND (“Challenges” 
OR “Quality” OR “Complex Models” OR “Model Order Reduction” OR “Validation” OR “Calibration”)

Table 2 Systematic literature review inclusion and quality criteria

No Criteria

1 The study is written in English

2 The study is available as a full‑text

3 The study is published in a scientific peer‑reviewed journal, conference, book or book chapter

4 The study is related to Digital Twin “OR” Wind Energy Systems “OR” Digital Twin Enabling Technologies

5 The study is published within last five years

6 The study is implements Experimental Study “OR” Simulation “OR” State of Art Framework
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Methodology extraction and synthesis

This section outlines the methodology extraction and synthesis process utilized in the 
literature review on predictive digital twin technology in wind energy systems. The 
objective was to gather and integrate information on the methods, models, and tech-
nologies employed in the selected studies. Each study was examined for the methods 
and frameworks implemented or conceptualized in predictive digital twin models for 
wind energy systems, including validation models. Another important aspects were the 
sources of data, modeling techniques, simulation tools, validation methods, and reason-
ing approaches applied. By identifying the methodologies, and technologies employed in 
these studies, the review provides a comprehensive overview of the diverse approaches 
in predictive digital twin technology for wind energy. The synthesis of methodologies 
given in the discussion ("Discussion" Section ), directly aligned with the research ques-
tions posed at the outset of the review, allowing insights into specific aspects of pre-
dictive digital twin technology. The initial number of studies from the database search 
and the selected studies with complete citations are provided at the end of each research 
question in the results section as Tables 3, 5, 6 and 7.

Results
RQ1: What methodologies are commonly employed in developing predictive digital twin 

models for wind energy systems?

Developing predictive digital twin models for wind energy systems involves leverag-
ing advanced methodologies to accurately simulate and forecast the performance and 
behavior of wind turbines. In this context, three main categories of methodologies are 
identified: physics-based modeling, data-driven approaches, and hybrid models. These 
categories were selected based on current research and applications within the field of 
wind energy systems (Vargas et al. 2019; Liu and Chen 2019).

Physics based modeling

Physics based modeling constitutes one of the core elements for wind energy systems, 
crucial for optimizing performance and ensuring reliability. This section elaborates on 
the key submodels involved: structure, aerodynamics, electric model, and control. These 
four submodels in wind energy system modeling are essential for design, analysis, and 
optimization.

The structural model covers the mechanical behavior of wind turbine compo-
nents. Structural dynamics enable the investigation of wind turbines under various 

Fig. 3 Study selection diagram. Step 1: Study search in selected databases, Step 2: Removal of duplicate 
studies, Step 3: Filtering the studies according to quality criteria, Step 4: Screening the studies based on 
abstract and keywords, Step 5: Screening the studies based on full text, Step 6: Inclusion of relevant studies
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loads. Techniques such as finite element analysis enable the prediction of wind tur-
bine responses. These dynamics involve modeling bending and torsion moments, 
along with tension, compression, and shear forces  (Hernandez-Estrada et  al. 2021; 
Jahani et  al. 2022; Rajamohan et  al. 2022). Studies also consider periodic loads that 
may cause fatigue effects  (Fu et  al. 2020; Njiri et  al. 2019). Additionally, due to the 
high aspect ratio of wind turbines, aeroelastic effects such as flutter are accounted 
for  (Chen et  al. 2021; Li et  al. 2020; Ma et  al. 2019). By assessing all these factors, 
structural integrity and longer lifespan can be achieved. Material properties play a 
pivotal role in the structural model. Incorporating characteristics such as elastic-
ity, damping, or strength is crucial for accurately representing the behavior of tur-
bine components  (Pradeep et  al. 2019; Igwemezie et  al. 2019; O’Leary et  al. 2019). 

Table 3 Primary studies related to research question 1

Model type Number of studies 
from initial database 
search

Selected studies

Physics based modelling 182 Hernandez‑Estrada et al. (2021), Jahani et al. (2022), 
Rajamohan et al. (2022), Fu et al. (2020), Njiri et al. (2019), 
Chen et al. (2021), Li et al. (2020), Ma et al. (2019), Pradeep 
et al. (2019), Igwemezie et al. (2019), O’Leary et al. (2019), 
Ren et al. (2021), Zhao et al. (2019), Mu et al. (2023), Zilong 
and Xiao Wei (2022), Porchetta et al. (2021) Qian et al. 
(2020), Vogel and Willden (2020), Hornshøj‑Møller et al. 
(2021), Ledoux et al. (2021), Zhang and Qu (2021), Tahir 
et al. (2019), Branlard et al. (2022), Papi et al. (2024), Ferreira 
et al. (2022), Kaviani and Nejat (2021), Sedaghatizadeh et al. 
(2019), Tian et al. (2019) Xiaoyu and Chao (2019), Huang 
et al. (2019), Ravanji et al. (2020), Basit et al. (2020), Li et al. 
(2020), Navarrete et al. (2019), Sierra‑García and Santos 
(2021), Gambier (2021), Yang et al. (2021), Saenz‑Aguirre 
et al. (2019), Liu et al. (2021), Bashetty et al. (2020), Akbari 
et al. (2019), Merizalde et al. (2019), Udo and Muhammad 
(2021), Hsu et al. (2020)

Data‑driven approaches 134 Fahrmeir et al. (2021), Liu and Chen (2019), Gualtieri (2019), 
Barhmi et al. (2020), Dupré et al. (2020), López and Arboleya 
(2022), Wang et al. (2021), Niu et al. (2022), Liu et al. (2021), 
Naik et al. (2019), Zheng et al. (2023), Carneiro et al. (2022), 
Elyasichamazkoti and Khajehpoor (2021), Li et al. (2020), 
Tuerxun et al. (2021), Lu et al. (2020), Barhmi and Fatni 
(2019), Nielson et al. (2020), Sun et al. (2020), Huang et al. 
(2021), Kisvari et al. (2021), Banik et al. (2020), Shahid et al. 
(2021), Shivani et al. (2019), Elsaraiti and Merabet (2021), 
Sheoran and Pasari (2022), Liu et al. (2021), Tyass et al. 
(2022), Keyantuo et al. (2021), Messner and Pinson (2019), Li 
and Wu (2020), Qian et al. (2019), Simon et al. (2024), Mbuli 
et al. (2020), Yan et al. (2022)

Hybrid modelling 141 Kosovic et al. (2020), Zhang et al. (2020), Du et al. (2019), 
Zhang et al. (2019), Wang et al. (2022), Korprasertsak and 
Leephakpreeda (2019), Aly (2020), Hur (2021), Alhussein 
et al. (2020), Aly (2020), Lv et al. (2022), Mamun et al. (2020), 
Kaya (2019), Morita et al. (2022), Dong et al. (2021), Dong 
et al. (2022), Liang et al. (2020), Liu and Liang (2021), Choi 
et al. (2022), Cai et al. (2021), Zhilyaev et al. (2022), Li et al. 
(2024), Cheng and Yao (2022), Kareem (2020), Miyanawala 
and Jaiman (2019a), Reddy et al. (2019b), Wu and Ma 
(2022), Selvaraj and Selvaraj (2022), Buabeng et al. (2021), 
Heydari et al. (2021), Beretta et al. (2021), Pandit et al. 
(2023), Maldonado‑Correa et al. (2024), Zhang et al. (2022), 
Liu et al. (2021), Guo and Wang (2021)
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Given the diverse operating conditions and environmental effects, assessing the life-
long performance also relies on correctly represented material properties. In terms 
of structural modeling, tower and foundation design are additional aspects that need 
to be considered. The analysis of interactions with the ground, such as soil properties 
or seismic loads, is essential for onshore wind farm infrastructures (Ren et al. 2021; 
Zhao et  al. 2019). Moreover, in offshore wind farms, the hydrodynamic effects on 
the wind turbines have a significant impact, requiring materials that can withstand 
harsher conditions such as high salinity causing oxidation (Mu et al. 2023). The influ-
ence of high-amplitude waves on freestream affects the dynamic pressure. Especially 
for floating offshore wind turbines, precise models are required to investigate com-
plex dynamics involving surface waves and subsurface ocean currents  (Zilong and 
Xiao Wei 2022; Porchetta et al. 2021).

The aerodynamics model predicts the interaction between the wind, turbine blades, 
and the influence of the wind turbines on one another. Computational fluid dynamics 
uses numerical methods to analyze and solve fluid flow problems. Several techniques, 
such as finite volume or finite differences, are employed in the solution method. The dif-
ferential equations, such as the Navier–Stokes equations, enable the description of the 
relation between pressure, temperature, velocity, and density of a moving fluid  (Qian 
et al. 2020; Vogel and Willden 2020; Hornshøj-Møller et al. 2021). Additionally, the Blade 
Element Momentum Theory combines two phenomena, the blade element theory and 
momentum theory, to calculate aerodynamic forces and moments, considering airfoil 
characteristics and aerodynamic losses (Ledoux et al. 2021; Zhang and Qu 2021; Tahir 
et  al. 2019). Dynamic inflow affects the wind energy system as wind turbines reach a 
steady state after a change in the existing state, such as sudden pitch angle variation or 
tower shadow. Accounting for this effect would enhance the capability to capture the 
time-varying behavior of aerodynamic performance  (Branlard et  al. 2022; Papi et  al. 
2024; Ferreira et  al. 2022). Although aeroelastic effects are mentioned in the previous 
paragraph, it should be noted that elastic deformations lead to changes in the aerody-
namic characteristics of the wind turbine, causing unpredictable behavior (Kaviani and 
Nejat 2021). Boundary layer models, both in laminar and turbulent flow on the blade 
surface, should be another consideration due to their effect on aerodynamic perfor-
mance and noise generation (Sedaghatizadeh et al. 2019; Tian et al. 2019).

The electric model simulates the electrical aspects of wind energy systems, focusing 
on power conversion and integration with the grid. It involves simulating the electrical 
properties a generator, such as synchronous/asynchronous operation (Xiaoyu and Chao 
2019), excitation control, and voltage regulation (Huang et al. 2019; Ravanji et al. 2020), 
to enhance power generation and grid stability. Additionally, the electric model includes 
models of power electronics such as rectifiers, inverters, and converters to link variable-
speed turbines with the grid, ensuring efficient energy conversion. Moreover, the electric 
model examines grid connection dynamics, ensuring compliance with grid codes, and 
managing reactive power, thereby facilitating the smooth integration of wind turbines 
into the electrical grid. Basit et al. (2020); Li et al. (2020)

The control model governs the operation of the wind turbine for optimum per-
formance, safety, and reliability. Pitch control algorithms are one of the most popular 
methods for adjusting the blade pitch angle to optimize energy capture and respond to 
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different wind conditions. By implementing pitch control algorithms, stable operations 
can be conducted across a wide range of environmental conditions  (Navarrete et  al. 
2019; Sierra-García and Santos 2021; Gambier 2021). Similarly, yaw control is a method 
used to increase efficiency. With this control strategy, the turbine aligns with the incom-
ing wind direction, capturing maximum energy with minimum structural load  (Yang 
et  al. 2021; Saenz-Aguirre et  al. 2019; Liu et  al. 2021). Another algorithm in the con-
trol model is the rotor speed regulation algorithm, which determines the optimum rota-
tional speed through pitch control or generator torque control. This helps minimize 
mechanical stress while maximizing efficiency (Bashetty et al. 2020; Akbari et al. 2019). 
Additionally, fault detection and diagnostics algorithms enhance wind energy system 
operations. Monitoring system health and detecting anomalies can prevent catastrophic 
consequences. Fault detection and predictive maintenance enable cost-effective opera-
tion (Merizalde et al. 2019; Udo and Muhammad 2021; Hsu et al. 2020).

Data‑driven approaches

In data-driven approaches for wind energy systems, several techniques can be applied 
depending on the characteristics of a dataset and the required prediction task. These 
methods are investigated in three main categories: regression models, machine learning 
algorithms, and statistical methods.

A regression model is a statistical method used to analyze the relationship between 
a dependent variable and one or multiple independent variables. The aim is to pre-
dict the value of the dependent variable based on the values of the independent vari-
ables  (Fahrmeir et  al. 2021). Regression models are commonly used for prediction, 
forecasting, and understanding the influence of different variables on an outcome (Liu 
and Chen 2019; Gualtieri 2019). Although there are several types of regression models 
in wind energy systems, three model types are commonly used: linear regression, poly-
nomial regression, and ridge regression. Linear regression is mainly used to predict the 
linear relation of turbine power output based on variables such as wind speed, wind 
direction, or environmental effects  (Barhmi et  al. 2020; Dupré et  al. 2020; López and 
Arboleya 2022). On the other hand, polynomial regression captures the nonlinear corre-
lation of input variables with turbine performance parameters. This method enables the 
comprehension of complex nonlinear interactions among independent variables (Wang 
et al. 2021; Niu et al. 2022; Liu et al. 2021). Ridge regression ensures more stable pre-
dictions between input variables and output performance by including a regularization 
term to prevent overfitting. It is particularly useful when the correlation between inde-
pendent variables is high, and it finds application in design, optimization, and forecast-
ing (Naik et al. 2019; Zheng et al. 2023; Carneiro et al. 2022).

Machine learning algorithms are popular methods used in wind energy systems. By 
analyzing various datasets, including weather patterns, turbine operations, and mainte-
nance records, machine learning algorithms can identify patterns to improve the over-
all efficiency of wind energy production (Elyasichamazkoti and Khajehpoor 2021). The 
most common algorithms used for this purpose include support vector machines (SVN), 
artificial neural networks (ANN), recurrent neural networks (RNN), and long short-term 
memory (LSTM) networks. A support vector machine is a supervised machine learn-
ing algorithm used for data classification and regression analysis. It can classify different 
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wind conditions, enabling optimal wind settings (Li et al. 2020; Tuerxun et al. 2021; Lu 
et  al. 2020). Artificial neural networks learn complex patterns such as wind speed or 
direction to predict turbine power output accurately with optimum parameters (Barhmi 
and Fatni 2019; Nielson et al. 2020; Sun et al. 2020). Recurrent neural networks are pow-
erful tools, especially for learning sequential data and predicting sequential outputs. 
They can capture temporal dependencies and nonlinear dynamics in time-series data, 
allowing for accurate forecasts (Huang et al. 2021; Kisvari et al. 2021). Long short-term 
memory networks are specialized versions of recurrent neural networks that enable 
forecasts over extended time horizons (Banik et al. 2020; Shahid et al. 2021).

Statistical models are another popular method due to their interpretability and abil-
ity to capture temporal patterns. Some of the commonly used methods, specifically for 
wind energy systems, are autoregressive integrated moving average (ARIMA), vector 
autoregression, and seasonal decomposition. Autoregressive integrated moving aver-
age models consist of three main components: autoregression, differencing, and moving 
average (Shivani et al. 2019; Elsaraiti and Merabet 2021; Sheoran and Pasari 2022). This 
model can also be extended for non-stationary time series by accounting for seasonality. 
The method facilitates short term planning for turbine operation (Liu et al. 2021; Tyass 
et al. 2022). Unlike the previous method, vector autoregression is useful for dealing with 
multiple time series variables as they interact with each other. For instance, the influ-
ence of wind speed, temperature, and pressure on wind power generation, along with 
their dependencies with each other, can be investigated with this model (Keyantuo et al. 
2021; Messner and Pinson 2019; Li and Wu 2020). Although seasonal decomposition is 
not a forecasting technique, it is an important technique for understanding the underly-
ing components of time series. The main classical decomposition components are trend, 
seasonal, and residual components. This technique is widely used in wind energy sys-
tems (Qian et al. 2019; Simon et al. 2024; Mbuli et al. 2020; Yan et al. 2022).

Hybrid modelling

In the evolving field of wind energy, hybrid modeling techniques have attracted signifi-
cant attention as robust solutions by integrating physics knowledge with data-driven 
approaches. This section focuses on the main five advanced hybrid methodologies in 
forecasting, grid integration, fluid dynamics, structure, and predictive maintenance. As 
they rely on both physical laws and machine learning, accurate and reliable models for 
predictive digital twin platforms for wind energy systems can be achieved.

Hybrid forecasting models integrate machine learning algorithms with numeri-
cal weather prediction models for accurate wind speed predictions, which later yield 
power output forecasts for the wind turbines. Time series analysis employs methods like 
ARIMA, LSTM, or fuzzy logic with the numerical weather prediction models to forecast 
wind conditions (Kosovic et al. 2020; Zhang et al. 2020; Du et al. 2019). Ensemble meth-
ods are particularly useful for merging different models to quantify uncertainties (Zhang 
et al. 2019; Wang et al. 2022; Korprasertsak and Leephakpreeda 2019). Also, data assimi-
lation methods like the Kalman filter or its variations are important for combining real-
time sensor data with forecast models implemented in digital twin platforms (Aly 2020; 
Hur 2021). As wind energy production forecasting models enhance the supply side of 
grid integration, hybrid models for electricity load estimation can be utilized to estimate 



Page 14 of 36Kandemir et al. Energy Informatics            (2024) 7:68 

the demand side. Some commonly deployed hybrid algorithms include artificial neural 
networks, wavelet neural networks, Kalman filtering, convolutional neural networks 
(CNN), and LSTM models with physics-based models (Alhussein et al. 2020; Aly 2020; 
Lv et al. 2022; Mamun et al. 2020).

Hybrid aerodynamic models combine high-fidelity computational fluid dynamics 
(CFD) simulations with machine learning models for optimum aerodynamic perfor-
mance. Computational fluid dynamics simulations are used to generate data for machine 
learning models, such as Gaussian process regression or support vector regression, to 
reduce computational costs  (Kaya 2019; Morita et  al. 2022). Similarly, reinforcement 
learning algorithms based on real-time data and computational fluid dynamics data 
are applied for control strategies  (Dong et  al. 2021, 2022). Additionally, data derived 
from computational fluid dynamics simulations are corrected with real-time data using 
Kalman filtering to improve accuracy  (Liang et al. 2020; Liu and Liang 2021). A phys-
ics-informed neural network incorporates partial differential equations governing fluid 
dynamics, such as the Navier–Stokes equations, into the neural network architecture, 
allowing for interpretability (Choi et al. 2022; Cai et al. 2021).

Similar to hybrid aerodynamic models, hybrid structural models integrate finite ele-
ment analysis with machine learning algorithms such as SVM, ANN, and CNN (Zhily-
aev et al. 2022; Li et al. 2024; Cheng and Yao 2022). These analyses are used to optimize 
design parameters. Moreover, the multiphysics interaction of fluid flow with structures 
(fluid–structure interaction), integrating mechanical and fluid dynamics and enhanced 
with machine learning algorithms, enables the prediction of complex interactions in the 
environment (Kareem 2020; Miyanawala and Jaiman 2019a; Reddy et al. 2019b).

Hybrid predictive maintenance models combine various anomaly detection techniques 
with data-driven approaches to identify potential failures or estimate the remaining life 
of wind turbines. These hybrid models can be used to diagnose several components of 
the wind turbine using different sensor data and in-built predictive models (Wu and Ma 
2022; Selvaraj and Selvaraj 2022; Buabeng et  al. 2021). In wind turbines, the gearbox, 
bearings, and other rotating components are the main points of interest. In study (Hey-
dari et al. 2021), hybrid modelling for gearboxes, which are often prone to failure, is the 
focus. The proposed framework consists of several different methods: clustering filters, 
ant bee colony optimization algorithm, variational mode decomposition, multi-verse 
optimization algorithm, and wavelet transform. Combining these methods enables the 
detection of anomalies before a failure occurs. Primarily, supervisory control and data 
acquisition system data are utilized for this purpose (Heydari et al. 2021; Beretta et al. 
2021; Pandit et al. 2023; Maldonado-Correa et al. 2024). Another important predictive 
analysis is the estimation of the remaining useful life of the components for proactive 
maintenance scheduling (Zhang et al. 2022; Liu et al. 2021; Guo and Wang 2021).

RQ2: How do predictive digital twin applications integrate and analyze data from diverse 

sources to enhance their predictive capabilities?

From the reviewed studies, the integration and analysis of data from diverse sources for 
predictive digital twin platforms primarily focuses on three main challenges: integration, 
execution, and monitoring. As depicted in Table 5, research on data integration emerged 
most prominently during the initial database search, highlighting the critical need for 
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effective methods due to the heavy reliance of digital twin platforms on data from multi-
ple sources to build accurate and comprehensive models. The integration of heterogene-
ous data is essential for enabling a functional platform (Correia et al. 2023). Regarding 
execution, advancements in computational power have facilitated efficient model analy-
sis. However, the majority of reviewed studies concentrate on methods such as feature 
selection and dimensionality reduction to manage large datasets (Qi et al. 2021). Real-
time monitoring of digital twin platforms enables proactive decision-making and accu-
rate forecasting, which are crucial for real-world applications. As indicated in Table 5, 

Table 4 Summary of different methodologies for Integrating and analyzing data from diverse 
sources

Management of data from multiple sources Commonly employed techniques

Data integration Data Collection: IoT devices, Databases, API Data Cleaning: 
Missing Values and Duplicate Removal, Outlier Detection Data 
Transformation: Normalization, Discretization Data Alignment: 
Time Series Alignment, Event Synchronization, Georeferencing, 
Data Fusion: Kalman Filter, Ensemble Methods

Feature selection and dimensionality reduction Feature Selection: Filters, Wrappers Dimensionality Reduction: 
PCA, T‑distributed Stochastic Neighbor Embedding

Real time monitoring SCADA, Anomaly Detection, Predictive Maintenance, Environ‑
ment Variable Monitoring, Reactive Control, Continuous 
Learning

Table 5 Primary studies related to research question 2

Management of data from multiple 
sources

Number of studies 
from initial database 
search

Selected studies

Data integration 82 Zhang and Qu (2021), Minerva et al. 
(2020), Jacoby and Usländer (2020), Kaur 
et al. (2020), Platenius‑Mohr et al. (2020), 
Bonney et al. (2022), Xu et al. (2019), Ben‑
zon et al. (2022), Alasadi and Bhaya (2017), 
García et al. (2016), Lv et al. (2020), Liu 
et al. (2023), Nguyen et al. (2013), Mei et al. 
(2020), Mohamed et al. (2023), Booshehri 
et al. (2021), Sharma and Balachandra 
(2019), Yue et al. (2024), Majidi Nezhad 
et al. (2019), Ma et al. (2024), Lio et al. 
(2021), da Silva et al. (2021)

Feature selection and dimensionality 
reduction

41 Marti‑Puig et al. (2019), Qadir et al. (2021), 
Liu and Chen (2019), de Sá et al. (2020), Mir 
et al. (2020), Deng et al. (2021), Wang et al. 
(2020), Gu et al. (2019), Kong et al. (2015), 
Shen et al. (2019), Khan et al. (2019), 
Kouadri et al. (2020)

Real time monitoring 57 He et al. (2022), Chakraborty et al. (2023), 
Maldonado‑Correa et al. (2020), Gonzalez 
et al. (2019), Xiang et al. (2022), Morrison 
et al. (2022), Hsu et al. (2020), Wang et al. 
(2020), Shin et al. (2021), van Dinter et al. 
(2022), Falekas and Karlis (2021), Zhong 
et al. (2023), Lio et al. (2021), Chen et al. 
(2019), Moness and Moustafa (2020), Tu 
et al. (2022), Fernandez‑Gauna et al. (2022), 
Yang et al. (2019), Zhao et al. (2020), He 
et al. (2021)
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monitoring represents the second most studied aspect in the literature  (Correia et  al. 
2023). The commonly employed techniques and methods are summarized in Table 4.

Data integration

Data is one of the key elements for predictive digital twin platforms. Integrating data 
from diverse sources into the digital twin platform requires several processes  (Zhang 
and Qu 2021). The first step is identifying relevant data sources, which can include IoT 
devices, sensors, databases, external application programming interfaces, or historical 
trends (Minerva et al. 2020; Jacoby and Usländer 2020; Kaur et al. 2020; Platenius-Mohr 
et al. 2020). Each data source may have its own structure, including structured data from 
SQL databases, unstructured text files and images, or semi-structured data from various 
application programming interfaces  (Bonney et  al. 2022; Xu et  al. 2019; Benzon et  al. 
2022).

These collected data need to go through cleaning and transformation methods to 
be useful and meaningful for further analysis. Data cleaning techniques address miss-
ing values, duplicates, outlier detection, and inconsistencies within the dataset (Alasadi 
and Bhaya 2017). Transformation methods may include normalization, discretization, 
and dimensionality reduction  (García et  al. 2016).1 After preprocessing the data with 
cleaning and transformation methods, the data from different schemas and structures 
need to be aligned to have a unified format (Lv et al. 2020; Liu et al. 2023; Nguyen et al. 
2013). Schema matching algorithms and ontology alignment enable the reconciliation 
of data schemas and types from diverse sources (Mei et al. 2020; Mohamed et al. 2023; 
Booshehri et al. 2021).

The different sources may provide temporal and spatial data. The alignment of these 
data is essential for reliable operation. Temporal alignment methods, such as time 
series alignment or event synchronization, ensure consistency across time-stamped 
data streams (Sharma and Balachandra 2019; Yue et al. 2024). On the other hand, spa-
tial alignment techniques may include georeferencing or coordinate transformation for 
integrating geospatial data (Majidi Nezhad et al. 2019; Ma et al. 2024). As the data are 
aligned and synchronized, data fusion algorithms, such as Kalman filters or ensemble 
methods, can fuse information from diverse sources while considering uncertainties (Lio 
et al. 2021; da Silva et al. 2021).

Feature selection and dimensionality reduction

Enhancing the predictive capabilities of digital twin platforms, dimensionality reduc-
tion and feature selection are two important aspects to focus on the most relevant and 
informative features with the minimum data complexity. In digital twin applications, 
large amounts of data are necessary for reliable operation. These data include several 
input features, causing overfitting, an increase in model complexity, more computational 
resources, and decreased interpretability (Marti-Puig et al. 2019). Feature selection tar-
gets finding the most relevant subset of features to predict the target variables  (Qadir 
et al. 2021). Filter and wrapper approaches are some commonly used frameworks. Filter 

1 The study published before 2019.
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methods assess the relevance of the features independently of the predictive model, 
whereas wrapper methods evaluate different combinations of features, yielding slower 
but more precise results (Liu and Chen 2019; de Sá et al. 2020). In wind forecasting algo-
rithms, feature selection methods are deployed for comprehensive results with mini-
mum computational resource demand (Mir et al. 2020).

Similarly, dimensionality reduction aims to reduce the number of input dimensions 
while retaining essential information. Principal component analysis (PCA) is a technique 
that projects high-dimensional data onto a lower-dimensional subspace defined by prin-
cipal components. These components are then used in data-driven algorithms in wind 
energy systems  (Deng et  al. 2021; Wang et  al. 2020; Gu et  al. 2019; Kong et  al. 2015). 
T-distributed stochastic neighbor embedding is a nonlinear dimensionality reduction 
technique that preserves the local structure of the data in a lower-dimensional space. 
In wind energy systems, T-distributed stochastic neighbor embedding is used to reduce 
the dimensionality of data clusters to identify patterns (Shen et al. 2019; Khan et al. 2019; 
Kouadri et al. 2020).

Real time monitoring

Efficient utilization of wind power depends on the real-time monitoring and optimiza-
tion of turbine performance. Critical parameters like rotor speed, power output, and 
component temperature must be continuously monitored (He et al. 2022; Chakraborty 
et al. 2023). Supervisory control and data acquisition (SCADA) systems are commonly 
used technologies that interface with the turbines. The knowledge gained from such 
tools in real-time monitoring can be further implemented into the digital twin platform 
to increase predictive capabilities (Maldonado-Correa et al. 2020; Gonzalez et al. 2019). 
Another important aspect of real-time data analysis techniques is to detect anomalies 
in turbine performance, which can address potential component failures  (Xiang et  al. 
2022; Morrison et al. 2022). Advancements in these techniques can evolve into predic-
tive maintenance to predict the needs of individual components. By integrating subsys-
tem models and real-time environment and turbine parameters, potential issues can be 
addressed, allowing proactive maintenance planning (Hsu et al. 2020; Wang et al. 2020; 
Shin et al. 2021). Several ongoing studies specifically focus on these areas, where meth-
ods and enabling technologies can be transferred to wind energy systems  (van Dinter 
et al. 2022; Falekas and Karlis 2021; Zhong et al. 2023).

Real-time monitoring also plays a vital role in assessing wind resources. Continuous 
monitoring of wind speed, direction, and other meteorological data enables the assessment 
of available wind resources in real-time (Lio et al. 2021). With the methods mentioned in 
"Data integration" Section, integrating various types of data with the meteorological models 
built into the digital twin enables more precise wind forecasts. These forecast data can then 
be used to adjust turbine settings, such as yaw angles or pitch angles, to maximize energy 
production (Chen et al. 2019; Moness and Moustafa 2020; Tu et al. 2022). In study (Chen 
et al. 2019), a real-time feedback blade pitch control system is proposed for vertical axis 
wind turbines. To optimize the pitch angle of the blade, the suggested equation relies on 
real-time flow velocity, azimuth angle of the blade, and tip speed ratio. This real-time feed-
back pitch angle control system increases overall performance. Predictive digital twin appli-
cations can create a feedback loop, comparing predictions with actual outcomes to refine 
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models iteratively. This continuous learning process enhances the predictive capabilities 
of the digital twin over time, enabling more accurate and reliable predictions (Fernandez-
Gauna et al. 2022; Yang et al. 2019). The technologies explained in "RQ3: What are the key 
features and technologies that facilitate real time wind energysystems through predictive 
digital twin?" Section enable the remote diagnosis of issues and implementation of control 
strategies in real-time from a centralized digital twin platform (Zhao et al. 2020; He et al. 
2021).

Fig. 4 Real‑time operation facilitating features and technologies

Table 6 Primary studies related to research question 3

Key features and technologies Number of studies 
from initial database 
search

Selected studies

IoT Sensors and Data Acquisition 49 Li et al. (2023), Wang et al. (2023), Liew et al. 
(2020), Karad and Thakur (2021), Guo et al. 
(2022), Dimitrov et al. (2019), Yang et al. 
(2020), Silva et al. (2023)

Communication Networks 64 Zheng et al. (2019), Haghshenas et al. 
(2023), Sasikala et al. (2021), Fahim et al. 
(2022), Isto et al. (2020), Nguyen et al. 
(2021), Farkas et al. (2018), Wu et al. (2021), 
Mashaly (2021), Mccarty et al. (2023), Liu 
et al. (2020)

Edge Computing and Cloud Computing 32 Saad et al. (2020), Hungud and Arunacha‑
lam (2020), Li et al. (2021), Fahim et al. 
(2022), Olatunji et al. (2021), Zhang et al. 
(2022)

Human Machine Interface 55 Kumar and Lee (2022), Qin et al. (2020), 
Evergreen (2020), Kandemir et al. (2023), 
Haghshenas et al. (2023), Stadtmann et al. 
(2023), Lalik and Watorek (2021), Kilimann 
et al. (2019), Erdei et al. (2022), Kaarlela et al. 
(2020), Bucchiarone (2022)
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RQ3: What are the key features and technologies that facilitate real time wind energy 

systems through predictive digital twin?

Real-time wind energy systems are important for optimizing wind farm performance. 
By integrating advanced technologies, real-time operating platforms facilitate decision-
making processes. To identify the key features and technologies that enhance real-time 
wind energy systems through predictive digital twins, a comprehensive literature review 
was conducted, primarily focusing on academic journals and conference papers on digi-
tal twins and wind energy systems. The technologies were evaluated based on their rel-
evance, impact on real-time monitoring and prediction, as well as overall contribution 
to system efficiency (Stadtmann et al. 2023; Qi et al. 2021). Figure 4 summarizes the key 
features and technologies enabling real-time operations.

IoT sensors for data acquisition

In the complex landscape of the wind energy systems, Internet of Things sensors are one 
of the important components, facilitating the collection of essential data for optimum 
performance and informed operation. These sensors are positioned across wind turbines 
and the operating environment to monitor several vital parameters, providing operators 
insights into operational conditions (Li et al. 2023; Wang et al. 2023; Liew et al. 2020).

Advanced multi-sensor platforms are employed in wind energy systems to capture a 
diverse range of data. These sensors encompass various technologies, such as anemom-
eters for wind speed and direction, thermocouples for temperature monitoring, humid-
ity sensors for atmospheric moisture levels, accelerometers for vibration analysis, and 
power meters for electrical output measurement (Karad and Thakur 2021). Additionally, 

Table 7 Primary studies related to research question 4

Common challenges Number of studies 
from initial database 
search

Selected studies

Data Quality Assurance 31 Avanzini and Eriksson (2021), Eriksson and Markussen 
(2023), Ward et al. (2021), Koo and Yoon (2024), Mogh‑
adam and Nejad (2022), Chen et al. (2021), Adedipe et al. 
(2020), Hirvoas et al. (2021), Hung et al. (2022)

Model Complexity and 
Model Order Reduction

73 Taira et al. (2020), Siddiqui et al. (2019), Andersen and 
Murcia Leon (2022), Liang et al. (2023), Zhao et al. (2023), 
Gözcü and Dou (2020), Sayed et al. (2019), Grinderslev 
et al. (2021), Liu et al. (2019), Michalakes (2020), Veers et al. 
(2023), Kumar and Ezhilarasi (2023), Siddiqui et al. (2020), 
Premaratne et al. (2022), Zhao et al. (2021), Lin et al. (2020), 
Bui (2023), Morovati et al. (2021), Al‑Iedani and Gajic 
(2020), Wu et al. (2021), Zhang et al. (2022), Ali and Cal 
(2020), Siddiqui et al. (2020), Tabib et al. (2022)

Validation and Calibration 45 Pimenta et al. (2020), Jonscher et al. (2022), Lee and Fields 
(2021), Bergua et al. (2023), Vahidi and Porté‑Agel (2022), 
Wang et al. (2022), Valikhani et al. (2024), Hirvoas et al. 
(2022), Sousa and Gorlé (2019), Poterjoy (2022), Han et al. 
(2020), Schwegmann et al. (2023), Habibi et al. (2019), Liu 
et al. (2021), Rajpoot et al. (2021), Hur (2019), Cho et al. 
(2021), Petrović et al. (2021), Collet et al. (2021), Mahmoud 
and Oyedeji (2019), Ghareveran and Yazdizadeh (2019), 
Wang et al. (2022), Barhate et al. (2024), Saenz‑Aguirre 
et al. (2020), Xie et al. (2023), Saenz‑Aguirre et al. (2019)
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emerging technologies like Light Detection and Ranging and Sonic Detection and Rang-
ing support precise wind profiling and turbulence detection. Light Detection and Rang-
ing allows for the detection of turbulent wind before it negatively influences turbine 
performance, thus optimizing energy production (Guo et al. 2022; Dimitrov et al. 2019). 
On the other hand, Sodar provides advantages in measuring the wind profile at different 
altitudes and supporting the anemometers mounted on wind turbines (Yang et al. 2020; 
Silva et al. 2023).

Communication networks

Communication networks in wind energy systems should be designed to ensure reliable 
transfer so that the collected sensor data can be used for comprehensive analysis (Zheng 
et  al. 2019). Advanced standardized communication protocols such as MQTT and 
OPC UA allow sensor data to be transmitted efficiently and securely. Depending on 
the requirements, centralized control systems or cloud-based platforms are possible 
solutions(Haghshenas et  al. 2023; Sasikala et  al. 2021). These protocols enable reliable 
data transmission over various network infrastructures, facilitating access to critical 
operational insights.

Low-latency communication networks are essential for data transmission between 
operating subsystems and the central control system. Technologies like 5 G (fifth-gener-
ation cellular network technology) or the standards like time-sensitive networking prior-
itize the reduction of latency problems (Fahim et al. 2022; Isto et al. 2020; Nguyen et al. 
2021; Farkas et al. 2018). In study (Isto et al. 2020), the focus is on 5 G networks for digi-
tal twin applications in remote machinery control systems. Two application scenarios 
are demonstrated: video feedback and haptic feedback. Compared to LTE (Long-Term 
Evolution), lower delay and jitter are observed in both cases. Wind turbines generate 
large volumes of data, including sensor readings, environmental parameters, and perfor-
mance metrics. High-bandwidth communication networks, such as fiber-optic cables or 
high-speed wireless links, are essential for efficiently transmitting this data to predictive 
digital twin systems for analysis (Wu et al. 2021; Mashaly 2021). Security is another criti-
cal aspect of communication networks. Encryption protocols are employed to safeguard 
data integrity and protect against cyber threats, ensuring the confidentiality and security 
of sensitive information (Mccarty et al. 2023; Liu et al. 2020).

Edge computing and cloud computing

Edge computing enables data acquisition through sensors and IoT devices, as discussed 
in "IoT sensors for data acquisition" Section. Although edge devices often have limited 
computational power, they can still be useful for local processing. These computational 
sources can be programmed to support the predictive models implemented in the digital 
twin platform. Through edge computing platforms like NVIDIA Jetson or Intel Movid-
ius, rapid adjustments can be made based on insights from analytics, thereby achiev-
ing optimum performance parameters more quickly  (Saad et  al. 2020; Hungud and 
Arunachalam 2020; Li et al. 2021).

On the other hand, cloud computing provides scalability through platforms capable of 
processing large amounts of data and performance parameters. These powerful frame-
works support big data analytics for in depth trend analysis, enhancing the performance 
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of predictive models dynamically. The dynamic update of predictive models supports 
long-term optimization. Integrating edge devices allows centralized management and 
condition monitoring of wind energy platforms, providing comprehensive insights for 
stakeholders (Fahim et al. 2022; Olatunji et al. 2021; Zhang et al. 2022).

Human machine interface

The human–machine interface (HMI) is one of the essential features enabling seamless 
real time operation. This technology focuses on the interaction between human opera-
tors and complex systems  (Kumar and Lee 2022). The interface should provide intui-
tive visualization of real time data along with trends and future predictions. These data 
enable predictive analytics and provide a comprehensive view of system status. Visual 
elements may vary from simple charts to 3D models (Qin et al. 2020; Evergreen 2020). 
Some commonly used libraries and applications include WebGL, Plotly, and Unity (Kan-
demir et al. 2023; Haghshenas et al. 2023). These programs may incorporate interactive 
control panels where operators can adjust turbine settings or monitor performance. The 
selection of the required interaction should be planned according to operational condi-
tions. Touchscreens, augmented reality, or other virtual controls allow for intuitive inter-
action with quick adaptability to a changing environment (Stadtmann et al. 2023; Lalik 
and Watorek 2021; Kilimann et al. 2019).

The human–machine interface, combined with decision support systems based on 
predictive insights, provides operators with contextual information and recommenda-
tions for decision-making. Another important role of the human–machine interface is 
to enable operational training as a support tool for new operators. Interactive tutorials, 
help menus, and troubleshooting guides assist operators in adapting to optimum operat-
ing conditions (Erdei et al. 2022; Kaarlela et al. 2020; Bucchiarone 2022).

RQ4: What are the challenges commonly encountered in wind energy systems 

when implementing predictive digital twin solutions?

The integration of predictive digital twin solutions in wind energy systems enhances 
efficiency and reliability through advanced analytics. However, implementing these 
solutions comes with significant challenges that need to be addressed to realize their 
potential. Several review papers identify the most common key challenges in this 
domain, including data quality assurance, model complexity, model order reduction, val-
idation, and calibration. These challenges are categorized based on their impact on the 
development, deployment, and execution of predictive digital twin solutions (Rodríguez 
et al. 2023; Hartmann et al. 2018; Liu et al. 2021).

Data quality assurance

Data quality assurance is a critical aspect of predictive digital twin platforms. High-
quality data enables improved predictive accuracy, effective condition monitoring, and 
higher economic viability (Avanzini and Eriksson 2021; Eriksson and Markussen 2023). 
However, maintaining high-quality data presents several challenges, including manag-
ing complex data from diverse sources, addressing sensor reliability issues, quantifying 
uncertainty, and resolving data completeness problems.
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The acquisition of reliable data from heterogeneous sensors and IoT devices requires 
continuous sensor calibration. In digital twin platforms, implementing periodic calibra-
tion algorithms is necessary to prevent inaccurate data (Ward et al. 2021; Koo and Yoon 
2024). The uncertainties in a digital twin platform may originate from various sources, 
including measurement errors, variations in wind properties, and operational param-
eters such as rotor speed within the models. Techniques like Monte Carlo simulation 
and Bayesian inference are commonly used to quantify the magnitude and distribution 
of these uncertainties (Moghadam and Nejad 2022; Chen et al. 2021; Adedipe et al. 2020; 
Hirvoas et  al. 2021). In the event of network failures or sensor malfunctions, imple-
mented failover mechanisms ensure continuous data availability (Hung et al. 2022).

Model complexity and model order reduction

In predictive digital twin platforms for wind energy systems, sophisticated models 
introduce significant computational challenges. High-fidelity models can capture com-
plex interactions and nonlinear behavior within and between wind turbines, but they 
demand substantial computational resources for large scale simulations. To address this 
issue, model order reduction techniques can achieve reliable predictive capabilities while 
reducing the need for extensive computational resources. However, these techniques 
also require validation with high-fidelity models (Taira et al. 2020).

Modelling types are discussed in "IoT sensors for data acquisition" Section. In physics-
based modelling, computational fluid models are used to simulate the airflow around 
turbine blades, aiming to capture several effects such as fluid flow or wake forma-
tion (Siddiqui et al. 2019; Andersen and Murcia Leon 2022). For detailed analysis, these 
high-resolution models are required with intensive processing power. Similarly, in the 
structural dynamics of the components, finite element analysis is used to comprehend 
deformation or failure points under different loading conditions (Liang et al. 2023; Zhao 
et  al. 2023; Gözcü and Dou 2020). Moreover, these two models may require coupled 
simulation to understand the interaction between aerodynamic forces and structural 
responses (fluid structure interaction), which becomes more computationally inten-
sive (Sayed et al. 2019; Grinderslev et al. 2021; Liu et al. 2019). On the other hand, sto-
chastic elements are necessary to achieve a realistic environmental simulation. Methods 
mentioned in "Data quality assurance" Section  may address this issue with an additional 
computational cost. To address these temporal and spatial resolution challenges, some 
possible solutions are utilizing high-performance computing resources, using efficient 
data handling systems, or adapting model order reduction techniques (Michalakes 2020; 
Veers et al. 2023).

There are several model order reduction techniques that can be adapted depending 
on the application (Kumar and Ezhilarasi 2023). Proper orthogonal decomposition is a 
technique, which identifies significant modes by decomposing the system into orthogo-
nal modes. This method can be utilized for analyzing wake dynamics, velocity fields or 
structure dynamics (Siddiqui et al. 2020; Premaratne et al. 2022; Zhao et al. 2021). Simi-
larly, the balanced truncation approach, used in linear time-invariant systems, seeks to 
achieve a balance between controllability and observability while reducing the states (Lin 
et al. 2020). This method is useful in the modeling and control design of systems (Bui 
2023; Morovati et al. 2021; Al-Iedani and Gajic 2020). Data-driven reduced order models 
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include techniques inherited from deep learning algorithms, which can model nonlinear 
turbine aerodynamics, wind turbine interactions, and unsteady fluid–structure interac-
tions with reliable predictive capability and less demanding computational resources. 
Some commonly used algorithms in these models are CNN, LSTM, and ANN. These 
data-driven reduced order models can be combined with different methods, enabling 
hybrid models for enhanced performance and accuracy  (Wu et  al. 2021; Zhang et  al. 
2022; Ali and Cal 2020; Siddiqui et al. 2020; Tabib et al. 2022).

Validation and calibration

Continuous calibration and validation of models and sensors on a predictive digital twin 
platform are crucial to ensure accurate and reliable platforms under real environmental 
conditions (Pimenta et al. 2020; Jonscher et al. 2022; Lee and Fields 2021; Bergua et al. 
2023). However, several challenges need to be considered in this context. Addressing 
limited historical data, ensuring sensor reliability, and dynamically adapting to varying 
conditions pose significant challenges.

In newly deployed digital twin platforms, historical data might be scarce, limiting the 
ability to validate model performance. Collecting data from the system and operating 
environment takes time. However, to overcome such challenges, physics-based models 
explained in "Physics based modeling" Section  can be useful for simulating the dynam-
ics in question (Vahidi and Porté-Agel 2022; Wang et al. 2022). The generated synthetic 
data can then be used for calibration in the initial phase. Bayesian inference techniques 
can be coupled with data assimilation methods to integrate synthetic data generated 
from physics-based models. This approach enhances the predictive capabilities of the 
model with new, unforeseen data (Valikhani et al. 2024; Hirvoas et al. 2022; Sousa and 
Gorlé 2019; Poterjoy 2022).

The data collected from sensors plays a key role in the predictive capabilities of digi-
tal twin platforms. However, these sensors may experience calibration drift over time 
due to environmental factors and mechanical wear. Therefore, it is necessary to employ 
advanced calibration techniques, such as periodic sensor recalibration, to ensure data 
accuracy  (Han et  al. 2020; Schwegmann et  al. 2023). Additionally, model-based fault 
detection and isolation algorithms, such as observer-based approaches, can be utilized 
to detect sensor anomalies and correct measurements (Habibi et al. 2019; Liu et al. 2021; 
Rajpoot et al. 2021). Kalman filters with different variations or deep learning algorithms 
can further enhance data reliability based on the system dynamics (Hur 2019; Cho et al. 
2021).

Dynamic system adaptation methods can be integrated into digital twin platforms 
to address validation and calibration issues. Implementing advanced control-oriented 
techniques such as model predictive control or adaptive robust control can calibrate the 
platform to replicate the dynamic behavior of adaptive control systems (Petrović et al. 
2021; Collet et al. 2021; Mahmoud and Oyedeji 2019). Additionally, parameter estima-
tion techniques such as least squares, extended Kalman filter, or sparse identification of 
nonlinear dynamics (SINDy) can be used to update the model parameters based on real-
time sensor feedback under dynamic operating conditions (Ghareveran and Yazdizadeh 
2019; Wang et al. 2022; Barhate et al. 2024). In this regard, data-driven approaches like 
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reinforcement learning or neural networks can adaptively calibrate the system based on 
observed behaviors (Saenz-Aguirre et al. 2020; Xie et al. 2023; Saenz-Aguirre et al. 2019).

Discussion
This section provides a deeper analysis of the most recent trends, methods, and chal-
lenges in predictive digital twin platforms for wind energy systems. The current state of 
this field is examined through four main discussion points, which target common meth-
odologies, integration and analysis of various data sources, key features and technolo-
gies, and encountered challenges.

Commonly employed methodologies are handled in three main groups: physics-based 
modeling, data-driven approaches, and hybrid models. In physics-based modeling, the 
primary research areas include the mechanical behavior of turbine components, aer-
oelastic effects, and material properties. This research can extend to offshore wind tur-
bine structures, investigating materials under such conditions and the effects of surface 
waves and ocean currents on structural dynamics. In aerodynamic models, numerical 
analysis in fluid flow problems has a solid foundation. Similarly, the aeroelastic effect on 
aerodynamic characteristics and dynamic inflow can be investigated further for better 
energy efficiency in wind farms. In terms of electrical models, grid integration is attract-
ing attention due to the implementation of new renewable resources. Control models 
mainly focus on three aspects: pitch control, yaw control, and predictive maintenance. 
Predictive maintenance with fault detection algorithms is popular in different fields, and 
there is potential to adapt these technologies for wind energy systems.

In data-driven approaches, regression models, machine learning algorithms, and 
statistical methods are implemented in studies. Regression models are used to relate 
dependent variables with independent variables. Among data-driven approaches, 
machine learning algorithms represent the most popular research area, offering a vari-
ety of algorithm types. These models can capture nonlinear temporal and spatial fea-
tures quite well; however, many of them lack interpretability. To enhance the capabilities 
of machine learning algorithms, statistical models are incorporated to obtain reliable 
patterns.

Hybrid models are among the most popular algorithms in predictive digital twin plat-
forms for wind energy systems. For hybrid forecasting models, most research focuses 
on varying time intervals for wind speed forecasting, essential for operational planning, 
grid stability, and maintenance scheduling. In terms of fluid dynamics, hybrid models 
find popular applications in optimizing blade shapes using high-fidelity models, inves-
tigating, and mitigating real-time wake effects, as well as adapting control for pitch 
and yaw angles. Regarding structural models, common research areas include predic-
tive maintenance based on structural health monitoring data, in cooperation with early 
warning systems for structural failures. Additionally, fatigue and load-bearing capac-
ity during the design phase are two popular areas for structural optimization. One of 
the most significant developments in both structural and aerodynamics hybrid mod-
els is physics-informed neural networks, enabling the embedding of partial differential 
equations governing the physics laws into neural networks. This enables the investiga-
tion of complex flow patterns or structural responses with different material properties 
and conservation laws. Hybrid predictive maintenance models are another common 
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implementation in predictive digital twin platforms. Estimating the remaining useful 
life with hybrid models is popular in various fields, with ongoing research, especially in 
wind turbines, through vibration and thermal analysis. With the increasing popularity 
of renewable energy systems, grid integration becomes an important field of research 
to enhance grid stability by aligning wind power generation with real-time demand 
forecasts.

Integrating data from diverse sources for analysis and improving predictive capabili-
ties requires significant attention. Current studies show that integrating data from differ-
ent sources and structuring these data in a comprehensible way is a trending area. Data 
preprocessing techniques are well established; however, there is still a need for research 
in unsupervised algorithms for processing data. Due to the intensity of multiple sensors, 
reliable frameworks and protocols with alignment methods are necessary. Continuous 
real-time monitoring is crucial for reliable predictive models, as it enables continuous 
learning to iteratively increase model accuracy. However, real-time monitoring requires 
models that maintain essential information. Therefore, feature selection methods are 
used to capture the necessary input, while dimensionality reduction can reduce the 
number of input dimensions.

Communication protocols such as MQTT and OPC UA are commonly employed for 
efficient and secure data transmission. Many studies focus on reducing latency in com-
munication networks due to the need for time-sensitive networking in predictive digital 
twin platforms. These technologies enable cloud computing with large amounts of data. 
Transferring confidential data through these technologies requires secure encryption 
protocols to ensure secure operation. Relying on these data, human–machine interface 
modules can be developed. As part of a digital twin platform, interaction with systems 
through different means is essential for awareness and adapting to optimal conditions.

Data quality assurance is one of the challenges in digital twin platforms due to sev-
eral heterogeneous data from different sensors and databases, which are associated with 
uncertainties. There is attention on continuous sensor calibration to eliminate errors. 
Also, with probabilistic simulations and ensemble methods, the inherited uncertainties 
within the models can be quantified. Another challenge is model complexity due to high-
fidelity modeling, which is in disfavor in real-time operation. In recent studies, the focus 
is on model order reduction techniques to overcome the model complexity problems. 
Utilizing hybrid models in reduced-order models is a trending approach. Another chal-
lenge is model validation and calibration. To overcome this issue, a combination of his-
torical data and the collected sensor data is mainly used with different type algorithms.

Despite the analysis provided in this study, several limitations need to be addressed 
to ensure an objective approach to predictive digital twin platforms for wind energy 
systems.

Physics-based, data-driven, and hybrid models introduce inherent biases associated 
with each methodology. For instance, physics-based models may provide robust and 
repeatable results in simulating mechanical behaviors and aerodynamic characteris-
tics; however, they often rely on idealized assumptions, lacking real-world complexities. 
Data-driven approaches, particularly deep learning algorithms, can identify complex 
patterns, but as mentioned earlier in the text, they suffer from a lack of interpretabil-
ity. Moreover, data-driven approaches are highly sensitive to the quality of training data. 



Page 26 of 36Kandemir et al. Energy Informatics            (2024) 7:68 

Hybrid models attempt to combine the strengths of these two methods, but they often 
inherit the limitations of both methodologies, leading to potential overfitting and com-
putational inefficiencies.

The integration of heterogeneous data sources is a critical challenge that impacts 
the reliability of predictive models. Despite advances in data processing and alignment 
methods, the quality of data from diverse sources remains a significant concern. Sen-
sor calibration errors, data transmission latency, and inconsistencies in data formats can 
introduce significant issues such as noise or biases. Furthermore, this study emphasizes 
the need for real-time monitoring and continuous learning, which necessitates robust 
data quality assurance mechanisms. However, the implementation of such mechanisms 
brings several challenges, such as handling missing or corrupted data points. High-fidel-
ity models often result in high computational demands, making real-time application 
challenging. Model order reduction techniques may lead to the loss of critical details 
necessary for precise predictions. In the context of offshore wind turbines, these limita-
tions introduce additional layers of complexity.

Quantifying uncertainties within predictive models remains a critical challenge. 
Probabilistic simulations and ensemble methods offer potential solutions, but they also 
introduce computational complexity and demand high-quality data. The scalability of 
the different models in wind energy systems and varying geographic locations is another 
limitation. Most studies focus on specific case studies under controlled environments, 
which may not be generalizable to other settings. For example, the performance of pre-
dictive maintenance algorithms developed for onshore turbines may differ when applied 
to offshore turbines due to different operational conditions. This study falls short of pro-
viding comprehensive strategies for managing uncertainties and dealing with the scal-
ability of the methods.

In this study’s meta-analysis, it is observed that the current trend in predictive digi-
tal twin platforms for wind energy systems involves the attempt to overcome inherited 
challenges with hybrid models. Additionally, the trend in model development primar-
ily consists of combining various models, incorporating both physics-based models and 
machine learning algorithms for better accuracy and interpretability.

Conclusions and future work
In conclusion, the literature review on predictive digital twins for wind energy systems 
highlights the significant potential in the renewable energy sector. Key findings from 
the literature indicate that predictive digital twins can be leveraged by various modeling 
types, including inherited methods from physics and machine learning algorithms. This 
capability allows for identification of potential failures, enhanced predictive capabilities, 
and informed decision-making processes. However, the successful implementation of 
predictive digital twins in wind energy systems requires overcoming several challenges. 
These include the need for:

• High-fidelity data acquisition to ensure that data are collected precisely and accu-
rately for comprehensive analysis. These data enable the training of models to sup-
port reliable decision making.
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• Standardized, reliable communication networks to align with industry standards, facili-
tating secure data exchange and interoperability.

• Integration of diverse data sources, such as sensors, IoTs, historical databases, and exter-
nal APIs, into a unified system to create a comprehensive view. This process requires 
methods such as data normalization and synchronization.

• Addressing cybersecurity concerns to protect the integrity and confidentiality of the 
data involved.

• Improving human–machine interface issues to ensure that the insights generated by 
predictive digital twins are effectively perceived by operators and decision-makers.

Future research should focus on enhancing the precision and reliability of predictive mod-
els by exploring hybrid approaches that combine physical and data-driven techniques. For 
instance, integrating finite element analysis with deep learning neural networks could sig-
nificantly strengthen model capabilities. Developing methodologies to quantify and reduce 
uncertainties is essential for reliable operations. Leveraging techniques such as Bayesian 
inference and Monte Carlo simulations can facilitate robust predictive analysis. Incorpo-
rating diverse data sources, including historical trends and real-time environmental inputs, 
alongside pure sensor data, will improve model capabilities. Additionally, scalability and 
adaptability of predictive digital twin models across various systems and industries are 
crucial. This involves reviewing data compatibility, modularity, and interoperability. Com-
mon Data Models (CDM) and data lakes can help address compatibility and integration 
challenges. Moreover, focusing on APIs and middleware software will enable better data 
exchange.

Overall, predictive digital twins stand as a promising technology in the wind energy sec-
tor, which facilitates a shift towards greater sustainability. Continued innovation in this area 
will support the goal of achieving global renewable energy targets aligned with the United 
Nations Sustainable Development Goals.
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