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Abstract 

Cloud computing is the paradigm for delivering streaming content, office applications, 
software functions, computing power, storage, and more as services over the Internet. 
It offers elasticity and scalability to the service consumer and profit to the provider. 
The success of such a paradigm has resulted in a constant increase in the providers’ 
infrastructure, most notably data centers. Data centers are energy-intensive installa-
tions that require power for the operation of the hardware and networking devices 
and their cooling. To serve cloud computing needs, the data center organizes work 
as virtual machines placed on physical servers. The policy chosen for the placement 
of virtual machines over servers is critical for managing the data center resources, 
and the variability of workloads needs to be considered. Inefficient placement leads 
to resource waste, excessive power consumption, and increased communication costs. 
In the present work, we address the virtual machine placement problem and pro-
pose an Imitation-Based Optimization (IBO) method inspired by human imitation 
for dynamic placement. To understand the implications of the proposed approach, 
we present a comparative analysis with state-of-the-art methods. The results show 
that, with the proposed IBO, the energy consumption decreases at an average of 7%, 
10%, 11%, 28%, 17%, and 35% compared to Hybrid meta-heuristic, Extended particle 
swarm optimization, particle swarm optimization, Genetic Algorithm, Integer Linear 
Programming, and Hybrid Best-Fit, respectively. With growing workloads, the proposed 
approach can achieve monthly cost savings of €201.4 euro and CO2 Savings of 460.92 
lbs CO2/month.

Keywords: Data center, Energy efficiency, Optimization, Resource scheduling, 
Imitation

Introduction
Cloud computing data centers (CDCs) are rapidly expanding in number and size to keep 
pace with the escalating demand for highly efficient computing and data storage solu-
tions. The main operational cost of CDCs can be ascribed to power. In fact, according 
to estimates, high-end cloud servers will use around 3–13% of global electricity by 2030 
compared to 1% of 2010 (Andrae and Edler 2015). According to Andrae et al., the fore-
casted electricity usage of data centers in 2030 is estimated at around 8000 TWh (Andrae 
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and Edler 2015). The demand for data center (DC) power has risen from 1–2% in 2022 
to 3%-4% in 2023. By 2030, the power demand in DCs will surge by 160% compared to 
2023, as illustrated in Fig. 1 (Brian et al. 2024). The graph indicates that since 2023, the 
power consumption of AI-equipped DCs has significantly increased and is expected 
to continue growing until 2030, alongside DCs without AI (ex-AI). This rise in power 
demand is also anticipated to result in a more than 100% increase in CO2 emissions from 
DCs, reaching approximately 215–220 million tons by 2030 compared to 2022. Despite 
AI’s numerous benefits across various sectors and its crucial role in today’s world, it is 
imperative to regulate its use to mitigate carbon emissions and environmental impacts. 
Reducing the energy consumption of a data center is crucial for cutting operational 
expenses and promoting sustainability.

Generally, the approaches for managing energy consumption in CDCs fall under four 
categories: host load prediction techniques, resource overcommitment, Virtual Machine 
(VM) placement, and workload consolidation. In the first approach, efficient prediction 
algorithms are employed to know the expected workload beforehand in order to sched-
ule the jobs efficiently. The focus is to keep an appropriate number of physical machines 
(PMs) active while making the remaining servers sleep or switch to other low-power 
modes to save energy. The host load prediction is the prediction of CPU load, and these 
predictions are based on the CPU usage history. Host load prediction may go off target 
when the load fluctuates drastically at small timescales. The resource overcommitment 
scheme allocates VM resources to PMs over their actual capacities, trusting that most of 
the time, VMs do not fully utilize their allocated resources. However, such an approach 
may lead to PM overloading, where the requests from all the VMs assigned to a PM 
exceed the PM’s capacity. Consequently, the performance of some or all VMs running 
on an overloaded PM degrades. Moreover, efficiency is highly dependent on the projec-
tions made by the operators. The goal of workload consolidation is efficient utilization 
of the resources, which can be achieved through live migration. Live migration transfers 
a VM among physical servers to reduce power consumption by improving utilization. 

Fig. 1 Surge in data center power use in TWh(LHS) with an AI kicker on the way and power efficiency gains 
(RHS) (Brian et al. 2024)
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VM placement is the process of mapping the most appropriate PMs in the data center to 
deploy a pool of newly created VMs.

A good VM placement technique has a direct impact on the performance and power 
consumption of cloud data centers. Our research focuses on exploiting virtualization 
capabilities and proposing a novel VM placement and workload consolidation technique 
aimed at decreasing the energy usage of the entire data center while fully conforming 
to a strict service level agreement (SLA) for the service users. An SLA is a commitment 
between a service provider and a client as agreed upon in the contract. The essence is 
to switch the idle PMs to low-power modes (i.e., hibernate) to eliminate the idle power 
consumption. Besides, the VMs can also be dynamically consolidated to the minimal 
number of PMs based on their current resource requirements using efficient live migra-
tion algorithms. VM consolidation is the solution to making utilization as high as pos-
sible and improving scalability, availability, and user demand.

The problem of VM placement has been the topic of several research efforts with 
heuristics, meta-heuristics, and hybrid approaches. Heuristics approaches like First-ft, 
Best-fit, First-fit decreasing and others have lower complexity but will not guarantee the 
optimal solution (Jangiti et al. 2020; Hobaei-Arani et al. 2017; Azizi et al. 2020; Belogla-
zov and Rajkumar 2012; Keller et al. 2012). Most of the meta-heuristics approaches have 
slow convergence rates, weakness in local search, and the possibility of getting stuck into 
local optima in the case of high-dimensional search spaces (Kumar and Raza 2015; Xu 
et al. 2020; Reddy et al. 2020a; Zhao et al. 2023; Javadi-Moghaddam and Zahra 2023). 
Further, these approaches involve many parameters and results will depend on how one 
tunes these parameters to yield optimal solutions. Although hybrid meta-heuristics have 
shown improvement in the performance, but they are very complex and time consum-
ing  (Reddy et al. 2020b; Vijaya and Srinivasan 2024; Parida et  al. 2024; Abualigah and 
Alkhrabsheh 2022; Chen et al. 2019). Further, these algorithms fail to balance between 
exploration and exploitation. To solve these issues, by considering the migration over-
head and possible SLA violations, we explore design methodologies aimed at minimiz-
ing energy consumption across the entire data center. We propose minimizing total 
energy consumption by using an imitation-based optimization (IBO) algorithm. IBO is 
developed based on the human imitation mechanism. The imitation behaviour of the 
individual solution in the IBO algorithm makes them move to better locations in the 
search space. IBO has a high ability to trade-off between the imitated movement (explo-
ration) and sub-random sequence (exploitation) by choosing the best among the two. 
IBO minimizes the need for extensive parameter tuning, making it more accessible and 
practical for real-world applications without compromising on the quality of the VM 
placement. Further, the method is designed to maintain high performance even as the 
scale of the data center increases, ensuring efficient management of large and complex 
cloud environments.

The key contributions of the present work are:
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• A systematic model for complex resource allocation problems in a heterogeneous 
cloud environment.

• The development of a novel optimization algorithm (IBO) based on imitation to han-
dle the resource allocation problem and reduce energy consumption.

The remainder of the paper is organized as follows. In “Related works”, a short review 
of VM placement solution from the literature is presented. In “Problem formalization”, 
we illustrate the resource scheduling model for heterogeneous cloud computing. Then, 
a novel population-based optimization algorithm called IBO for solving the VM place-
ment problem is presented in “VM allocation using imitation based optimization”. In 
“Experimental results”, we discuss the effects of our proposed scheme on reducing the 
energy consumption of the data center, followed by conclusions and future research 
directions in “Discussion and conclusion”.

Related works
Cloud management encompasses a range of cloud operations. Recent research has 
focused on the scheduling of workflows and resource sharing. Two key factors in cloud 
computing are: (i) scheduling of VMs and tasks with maximum resource utilization and 
(ii) meeting user requirements. Researchers have introduced several task-scheduling 
algorithms in the past few years. Although various scheduling algorithms have been pro-
posed to achieve different objectives, there is still potential to improve the exploration 
and exploitation capabilities of these algorithms and to accelerate convergence toward 
the optimal solution.

Homsi et al. used the concept of a virtual machine pool, where the cloud tasks are dif-
ferentiated by their type (Homsi et al. 2016). Authors used Green Workload Packing and 
Consolidation algorithm (GWPC) to allocate VMs and map service requests onto them. 
Boosting server utilization rates decreases the power consumption of the data center. 
GWPC adopts the reneging model to judiciously expunge service requests. However, the 
use of a traditional first-fit bin-packing algorithm may not guarantee the optimal solu-
tion. Mann et  al. proposed an approximate virtualization algorithm using constraint 
programming technique for multicore-aware VM placement  (Mann 2016). Constraint 
programming (CP) techniques often struggle with increasing problem size due to the 
exponential growth of the search space with the number of VMs and hosts. CP mod-
els do not adapt well to dynamic changes, such as varying workloads, dynamic resource 
availability, and changing placement criteria.

An optimized topology network diagram is established during virtual machine map-
ping by da Silva and da Fonseca (2016). The VM and server were modelled using the net-
work diagram. The algorithm aims to minimize the communication costs between VMs 
by placing them closer to each other in terms of the data center’s network structure. 
The focus of the work is the VMs communication demands and not the server’s energy 
efficiency. Vilaplana et al. proposed GreenC, considering heterogeneity, workload, and 
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communication distances for VM placement  (Vilaplana et  al. 2015). GreenC policy 
consolidates as many VMs as possible in a single host without overpassing its available 
resources. Energy consumption increases when adding more VMs to a host and leads 
to a sub-optimal solution. The authors considered only the availability of the resources 
when placing a VM without looking for an efficient host. Corradi et al. developed a vir-
tual machine management framework to optimize network resources and reduce energy 
consumption  (Corradi et  al. 2014). The problem of re-optimizing the paths between 
virtual machines and data sources and re-balancing resource utilization in the cloud 
infrastructure has been tackled in Palmieri et al. (2016), where the greedy randomized 
adaptive search procedure (GRASP) has been used as a meta-heuristic. GRASP can get 
trapped in local optima due to its greedy nature. It also exhibits slow convergence. For 
very large-scale problems, GRASP is less effective compared to other meta-heuristics 
designed for scalability.

Chen et al. present a job-scheduling method for cloud computing that aims to reduce 
energy consumption while taking into account task dependency (Chen et al. 2022). The 
key objective of the proposed method is to split each job into smaller tasks and allo-
cate them to virtual machines. The task scheduling is achieved using an efficient multi-
objective artificial swarm algorithm. However, incorrect dependency management can 
lead to sub-optimal scheduling decisions, potentially negating the benefits of energy sav-
ings. The approach presented in Kumar et al. (2020) optimizes the allocation of virtual 
machines to physical hosts in cloud data centers, aiming to improve energy efficiency 
and enhance the quality of services for users. The method utilizes a modified lion opti-
mization algorithm, which employs a levy flight distribution to randomly generate the 
population across the solution space. While Levy flights aid in exploring diverse solution 
spaces, they can sometimes hinder convergence to the global optimum. Poorly tuned 
parameters such as the step size and flight exponent may lead to sub-optimal perfor-
mance or even instability in convergence.

Assudani et al. proposed inventive particle swarm optimization (IPSO) and the merge 
sort with divide and conquer (MSDC) approach, which can potentially improve the over-
all performance and resource allocation efficiency of cloud computing systems  (Assu-
dani and Balakrishnan 2022). The MSDC approach offers a dynamic resource allocation 
solution that can adapt to changing workload patterns and further improve the efficiency 
of cloud computing systems. The divide and conquer approach used by MSDC optimizes 
local decisions within subsets, but the merging phase may not always result in globally 
optimal resource allocations. Balancing efficiency with the need for global optimiza-
tion and real-time responsiveness can be challenging in cloud environments. Ajmera 
et al. propose a Green-Particle Swarm Optimization (GPSO) algorithm to optimize the 
trade-off between energy consumption and Service Level Agreement (SLA) violations 
in Virtual Machine consolidation (Ajmera and Tewari 2023). VM consolidation distrib-
utes VMs across a pool of heterogeneous servers to enhance resource utilization and 
diminish power consumption. However, operating servers near full capacity increases 
the likelihood of SLA violations. GPSO can sometimes converge prematurely to a local 
optimum rather than the global optimum, especially in large search spaces. GPSO can 
cause network overhead due to the communications among the green particles.
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The proposal presented in Abdullahi et al. (2022) adaptively tunes parameters for faster 
convergence speed using the symbiotic organisms search with the adaptive computation 
of benefit factors. But the authors did not consider energy consumption. Furthermore, 
the need for tuning and maintaining multiple parameters is time-consuming. Transfer-
ring tasks between domains with different feature spaces poses a challenge, especially in 
network traffic, where delays can lead to critical tasks not being delivered on time. To 
address this issue, the authors of  Abualigah and Alkhrabsheh (2022) propose an opti-
mization method for task scheduling called MVO-GA. MVO-GA combines a genetic 
algorithm (GA) and a multi-verse optimizer (MVO). However, both MVO and GA are 
prone to premature convergence to local optima (Pandey et  al. 2012), and the perfor-
mance is sensitive to many parameters. In Mangalampalli et al. (2022), a task schedul-
ing approach is introduced that utilizes the Cat Swarm Optimization (CSO) algorithm 
to optimize various parameters. They calculated priorities for each task and virtual 
machine to facilitate the appropriate mapping of tasks onto VMs. The seeking mode in 
CSO involves evaluating multiple candidate solutions in each iteration. This can increase 
the time required for convergence. Further, achieving an optimal balance between explo-
ration and exploitation can be challenging in CSO.

The hybrid firefly-bat algorithm (HFBA) integrates the dimension-based firefly algo-
rithm and the modified bat algorithm to improve the population-diversity and global-
exploration ability of original algorithm (Chen et al. 2019).

However, this algorithm is resource-intensive and time-consuming, which is a draw-
back in practical applications where computational efficiency is crucial. The perfor-
mance of the algorithm heavily relies on the appropriateness of parameter tuning. For 
instance, the penalty function approach used for state variables processing is sensitive 
to the penalty coefficients. Bivasa et al. present a novel hybrid metaheuristic technique 
for virtual machine placement (VMP) aimed at optimizing energy consumption, carbon 
emissions, and quality of service parameters (Parida et al. 2024). The SSEPC algorithm, 
involving salp swarm optimization and emperor penguins colony algorithm, has a com-
plex multi-stage process. The time complexity of finding a suitable server involves multi-
ple stages. This complexity might result in higher computational overhead, especially in 
large-scale cloud environments. While the hybrid approach improves performance met-
rics, its scalability in real-world cloud environments with extensive and dynamic work-
loads is not thoroughly evaluated. The potential trade-offs between energy efficiency and 
user satisfaction under high-priority request scenarios have also not been analyzed.

Vijaya et al. propose “Ant Colony Optimization with Sine Cosine Algorithm” which is 
a hybrid approach combining the strengths of Ant Colony Optimization (ACO) and the 
Sine Cosine Algorithm (SCA)  (Vijaya and Srinivasan 2024). Despite its potential ben-
efits, there are several limitations to this research. Both ACO and SCA require careful 
tuning of multiple parameters (e.g., pheromone evaporation rate, control parameters, 
sine and cosine coefficients). This complexity can make the implementation and optimi-
zation process cumbersome and time-consuming. Although SCA helps in local search, 
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Table 1 Summary of the related work on VM placement techniques

Paper Methods Disadvantages

Homsi et al. (2016) Green Workload Packing and 
Consolidation

GWPC adopts the reneging model to 
judiciously expunge service requests. 
The use of a traditional first-fit bin-
packing algorithm may not guaran-
tee the optimal solution.

Mann (2016) Constraint Programming CP techniques often struggle with 
scalability. CP can be less adaptable 
to environmental changes, and the 
solutions may be sub-optimal.

da Silva and da Fonseca (2016) topology-aware VM Placement 
algorithm

Focused on the VMs communication 
demands than the server’s energy 
efficiency, which may lead to sub-
optimal solutions.

Vilaplana et al. (2015) Green Cloud Authors considered only the avail-
ability of the resources while placing 
a VM without looking for an efficient 
host.

Palmieri et al. (2016) Greedy randomized adaptive 
search procedure

GRASP can get trapped in local 
optima due to its greedy nature and 
exhibit slow convergence. For very 
large-scale problems, GRASP is less 
effective compared to other meta-
heuristics designed for scalability.

Chen et al. (2022) multi-objective artificial swarm 
algorithm

Incorrect dependency management 
can lead to sub-optimal scheduling 
decisions, potentially negating the 
benefits of energy savings. Chances 
of getting stuck into local optima.

Kołodziej et al. (2015); Reddy et al. 
(2020a)

Genetic algorithm Computationally expensive. Slow 
convergence rates. Can get stuck in 
local optima.

Ibrahim et al. (2020); Dashti et al. 
(2016)

Particle swarm optimization Slow convergence rate. Weakness 
in local search. Possibility of getting 
stuck in local optima in high-dimen-
sional search spaces.

Kumar et al. (2020) Modified Lion Optimization 
algorithm

The use of Levy flights sometimes 
hinders convergence to the global 
optimum. Poorly tuned parameters 
such as the step size and flight 
exponent may lead to sub-optimal 
performance or even instability in 
convergence.

Assudani and Balakrishnan (2022) IPSO and the merge sort with 
divide and conquer approach

The divide and conquer approach 
used by MSDC optimizes local deci-
sions within subsets, but the merging 
phase may not always result in a 
globally optimal resource allocations.

Ajmera and Tewari (2023) Green-Particle Swarm Optimization GPSO can sometimes converge 
prematurely to a local optimum, 
especially in large search spaces. 
GPSO can cause network overhead 
due to the communications among 
the green particles.

Abdullahi et al. (2022) symbiotic organisms search with 
adaptive computation of benefit 
factors

The authors didn’t consider energy 
consumption. The need to tune and 
maintain multiple parameters is time-
consuming.

Mangalampalli et al. (2022) Cat Swarm Optimization The seeking mode in CSO involves 
evaluating multiple candidate 
solutions in each iteration. This 
can increase the time required for 
convergence.
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there is still a risk of the algorithm getting trapped in local optima, particularly in highly 
multimodal landscapes. The balance between exploration and exploitation is critical and 
difficult to achieve consistently. While the hybrid algorithm aims to improve efficiency, 
the time complexity could become a serious issue when dealing with very large data-
sets or problem spaces. The performance of this hybrid algorithm heavily depends on 
the quality of the heuristic information and the initial solution set. Poor heuristics can 
lead to sub-optimal solutions and increased convergence time. Ndayikengurukiye et al. 
propose Grey Wolf Optimization (GWO) algorithm for VM placement, which is a pow-
erful and widely used optimization approach  (Ndayikengurukiye et  al. 2024). GWO is 
prone to premature convergence, it is sensitive to its parameters and to the number of 
iterations; furthermore, the population of solutions can lose diversity, leading to a lack of 
exploration in the search space.

The summary of the related work is presented in Table  1, showing how researchers 
have predominantly examined optimization algorithms tailored for homogeneous data 
centers. In this paper, we develop a novel optimization algorithm for virtual machine 
placement in a heterogeneous environment. In our previous works, we have used par-
ticle swarm optimization (PSO), GA, and Hybrid approaches for solving the VM place-
ment problem (Reddy et al. 2019, 2020b). While the approaches were effective, we also 
observed some disadvantages. The genetic algorithm approach requires a small amount 
of information, and using the operators is difficult. GA is computationally expensive 
and bound to have over-fitting with the sample data. Due to the randomness involved in 
the operators, GA has very slow convergence rates, and it can get stuck in local optima. 
Implementing PSO is easier and is based on the concept of social interaction. PSO can 
be tuned quickly. The disadvantages of PSO are its slow convergence rate, weakness in 
local search, and the possibility of getting stuck into local optima in the case of high-
dimensional search spaces. This is partially alleviated with PSO variants, which support 
controlling the velocity and the stable convergence.

Apart from PSO, and GA researchers used several other meta-heuristic approaches 
like ACO  (Vijaya and Srinivasan 2024; Zhao et  al. 2023), bees algorithm  (Javadi-
Moghaddam and Zahra 2023), bacterial foraging optimization (BFO)  (Xu et  al. 2020), 
etc. to solve VM placement problem. But most of these algorithms involve many param-
eters and results will depend on how we tune these parameters to yield optimal solu-
tions. To solve these problems, we invented an optimization algorithm with a limited 
number of parameters and more exploration capabilities based on imitating behavior 
of the humans. The proposed algorithm mainly focuses on improving the convergence 

Table 1 (continued)

Paper Methods Disadvantages

Abualigah and Alkhrabsheh (2022) Combined genetic algorithm and 
multi-verse optimizer

MVO and GA are prone to premature 
convergence, and the performance 
of this approach is sensitive to many 
parameters.



Page 9 of 26Dinesh Reddy et al. Energy Informatics           (2024) 7:106  

speed of the scheduling algorithm that appropriately places a VM onto a server, consid-
ering various parameters like CPU utilization, bandwidth utilization, etc. The proposed 
approach can improve the performance and energy efficiency of the heterogeneous data 
centers, as we will show later in the paper.

Problem formalization
In the operational management of a cloud-based data center, the task involves stra-
tegically distributing applications with varying computing resources among virtual 
machines (VMs), which are responsible for handling a multitude of workloads simulta-
neously. The method used to select and allocate these VMs significantly impacts the data 
center’s server utilization and power consumption. To ensure efficient, large-scale heter-
ogeneous scheduling, reducing the data center’s energy consumption while maintaining 
high-performance levels is essential. Essentially, a virtual machine allocation refers to 
mapping virtual machines onto their respective physical hosts so that a VM is allocated 
to only one server and the sum of the resource requirements of VMs on a server does 
not exceed the available resources.

User Applications

Job 1 Job 2 Job n

Virtual Machines

VM1 VM2 VMv

Host Profiling
(Underload and Overload

Detection)

IBO
Optimizer

Physical Applications

Host 1 Host 2 Host n

VM
Placement
Manager

VM Selction

Fig. 2 Representation of the VM placement problem in a data center
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Each data center consists of several physical machines/servers. The hypervisor creates 
and manages VMs on these servers. For each user request (e.g., deploying an application, 
running a service), the cloud management system allocates a VM to handle it. These VMs 
will be placed onto the hosts by VM Placement Manager (VPM) as shown in Fig. 2. Further, 
data centers use monitoring tools for host profiling. These collect and analyze data about 
the hosts to understand their performance and resource utilization. When a host is over/
underutilized, the VM Selection module picks the VMs from these hosts for migration. The 
VPM will map these VMs to other efficient hosts along with the new incoming requests. All 
the servers in the data center are heterogeneous in nature, and they have a fixed number 
of processing units, memory, and bandwidth. Each of these servers also has its own power 
consumption characteristics. Let V = VM1,VM2, .....,VMnv be the set of virtual machines 
that need to be allocated across the servers S = S1, S2, S3, ......., Snp . All the User tasks are 
managed by the VMs in the data center. Each particle or solution to this placement problem 
is modelled as an array consisting of the identifier of the corresponding server on which the 
VM ( Vi ) is to be placed, e.g,

The above solution places the V1 on to H10 , V2 on to H5 , and so on. The fitness of this 
solution is the power consumed by all the servers after placing these VMs onto servers. 
As commonly done, we assume that the power of each server has a linear relationship 
with its CPU utilization (Reddy et  al. 2019; Beloglazov and Buyya 2012; Fu and Zhou 
2015). The SPEC 2008 benchmark benchmark provides a standardized way to compare 
the energy efficiency of different server configurations and helps in understanding the 
power consumption characteristics of servers under varying load conditions. We have 
used these power consumption characteristics of each server at increasing utilization 
levels (0%, 10%, 20%…100%). Using this data, we estimated the power consumption of 
a host resorting to the following equation derived from (Reddy et al. 2019; Beloglazov 
et al. 2012):

where Smax
i  is the power consumption of a server at 100% utilization, u is the CPU Usage 

of the server that represents how much processing power is being used, and k represents 
the percentage of power drawn when the server is idle. The utilization of the CPU varies 
with time due to the workload variability. Therefore, the total energy consumption by a 
host can be defined as an integral of the power consumption function over a period of 
time as shown in Eq. (2) (Beloglazov et al. 2012).

Solutioni = (H10,H5, ....Hm, ...,H2).

(1)Si(u) = k ∗ Smax
i + (1− k) ∗ Smax

i ∗ u,

(2)E =

∫ t1

t0

Si(u(t))dt
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VM allocation using imitation based optimization
We invented an imitation-based optimization algorithm rooted in swarm intelligence to 
optimize convergence time and enhance the consistency of attaining optimal solutions. This 
approach leverages human learning and imitating behavior. Essentially, particles within the 
swarm mimic the behavior of a leader. As particles observe the leader’s actions, they memo-
rize some or all of the leader’s behavior and attempt to replicate it with a certain level of 
confidence.

Imitation plays a crucial role in social learning, where particles imitate the observed 
behavior to achieve desired outcomes. However, achieving the exact result may vary, lead-
ing to differences in particle states. The observed individual, or leader, is a key factor in this 
optimization strategy. Similar to social dynamics, individuals are influenced more by those 
with status and power. In our context, particles are more likely to mimic a leader if they 
exhibit a superior fitness value compared to other particles in the swarm. Furthermore, the 
leader’s influence is particularly potent if they have attained a favorable position through 
effective actions. This imitation-based approach aims to expedite convergence and enhance 
the reliability of obtaining optimal solutions in optimization problems.

Algorithm 1 Mahalanobis distance calculation
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IBO is a population/swarm-based algorithm that uses a group of individuals repre-
senting candidate solutions upon initialization. Each individual starts with a random 
position, indicating a potential mapping of VMs to servers. Each individual’s fitness is 
assessed, indicating the energy consumption of the given mapping. Individual solution 
that has minimum energy consumption is designated as the leader. The information 
about the leader is communicated to all individuals. The proposed IBO method has two 
phases: the Grouping phase and the Imitation phase.

Grouping phase

The first phase of “grouping” is when the individuals similar to the best participant are 
grouped together. The grouping process considers factors such as proximity of solutions, 
similarity in characteristics, or other criteria. In the proposed algorithm, proximity is 
computed using the Mahalanobis Distance (MD), as described in Algorithm 1. MD cal-
culates the distance between two features/columns based on correlations. MD is used 
to identify different patterns and is analyzed with respect to a reference axis  (McLa-
chlan 1999). Unlike other multivariate measurements, Mahalanobis Distance takes into 
account the covariance structure of the data, which makes it robust to outliers. This 
makes it particularly useful when dealing with high-dimensional data where variables 
may be correlated. Mahalanobis Distance is normalized and not affected by the scale of 
the variables (De Maesschalck et al. 2000). Similarity/proximity between the two candi-
date solutions is computed using MD as described in Algorithm 1. First, we calculate the 
covariance matrices using the equations in Line 4. Using these covariance matrices, we 
calculate the pooled covariance matrix, as shown in Line 5. In Line 6, we calculate the 
mean difference row vector. Finally, MD is calculated using the given equation in Line 7.

Initially, fitness of all the individuals in the swarm is calculated and the one with with 
the lowest fitness value is designated as the Leader. In the grouping phase, we proceed to 
calculate the MD between the leader and all other individuals. This value indicates how 
far an individual is from the Leader. The smaller the value of MD, the more similar are 
the individuals. Then, all the individuals whose MD value is less than the grouping factor 
(gf) are added to a group called “explorers”, and the remaining individuals are added to a 
group called “succeeders.” In our proposed approach, we update only the individuals in 
the succeeders group as they are moving away from the Leader. Updating the individu-
als is done in the Imitation phase. If the gf value is high, more individuals will be added 
to the explorers group. This will decrease the exploration capability as these individuals 
are not updated. The tuning of this parameter is thus crucial for the successful execution 
of the optimization. After extensive experiments we found that a gf value of 0.5 balances 
the exploration and exploitation properties well.
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Imitation phase

Algorithm 2 Individual Update

In the imitation phase, each individual in the succeeders’ group is updated by imitat-
ing a random candidate from the explorers’ group, as shown in Algorithm 2. Chosing 
a random candidate from the explorers’ group will increase the exploration capability 
more than following a single best particle; as done in PSO and other algorithms. First, 
we calculate the mean difference between the current individual and a random can-
didtae from the explorers (line 3). This mean difference is then added to the each ele-
ment of the current individual (line 8). This process decreases the MD between these 
two individuals. After updating each individual, we generate a random individual and 
compare the fitness of updated and random individuals (line 13–16). The individuals 
with good fitness values will be returned from the imitation phase. This random parti-
cle generation increases the exploitation capabilities of the proposed algorithm.

Then, Algorithm 3 forms the core of the imitation-based optimization. The algorithm 
starts with a random population where each individual represents a VM-Host map-
ping. The fitness of each individual is calculated based on a certain criterion, in this case, 
energy consumption. The individual with the lowest energy consumption value is desig-
nated as the leader. All individuals in the population are informed of this. The popula-
tion is then divided into two groups: explorers and succeeders. This is done using the 
proximity of each individual to the leader, calculated using MD (Algorithm 1). If the MD 
between an individual and the leader is less than the grouping factor, it is added to the 
explorer’s group. Otherwise, it is added to the succeeders group. Individuals in the suc-
ceeders group attempt to update their current position using the Algorithm 2.

The imitation process is repeated until one of the following stopping conditions is met. 
The best participant is re-evaluated after each iteration, and the process continues up 
to maximum iterations (k) or until there are continuous improvements for a specified 
number of times (r) or until stabilization for a certain number of times (s). The solution 
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with the highest fitness (lowest energy consumption) after the final iteration is the best 
participant and is returned as the final solution.

Algorithm 3 Optimization using IBO

Migration is necessary for system maintenance. Maintainance does not disrupt opera-
tions, optimization of resource pools and fault prevention. We perform migration of the 
VMs to increase the efficiency and to ensure the SLAs. We choose two extreme states 
of the hosts for migration: over-utilization and under-utilization. If a server is under-
utilized, then we select all the VMs in that host and migrate them to another efficient 
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host. If a server is over-utilized, then we have to carefully select the virtual machines for 
migration until the host utilization drops below the upper threshold. We have used a 
selection algorithm called MBS-VM proposed by Reddy et al. (2020b) that considers the 
utilization of memory, bandwidth, and size of the VM. These selected VMs along with 
the new request from users will be optimally placed on to the new hosts using the IBO 
algorithm.

Experimental results
To evaluate the proposed IBO algorithm and approach, we resort to CloudSim (Calhei-
ros et al. 2011) and simulate a small data center with 100 servers. The CloudSim toolkit 
is the de facto standard for research in data center optimization. It provides a simula-
tion platform that enables the modeling of virtualized environments and facilitates on-
demand resource provisioning and management. We analyzed the proposed approach 
in detail, focusing on data center energy consumption, active servers, convergence, and 
consistency of the algorithm.

Experimental setup

In a cloud computing environment, a VM request is characterized by several key param-
eters, typically including:

• Bandwidth: Bandwidth refers to the data transfer rate between the VM and the net-
work. It is a measure of the volume of data that can be transmitted over the network 
in a given amount of time, usually measured in megabits per second (MBPS) or giga-
bits per second (GBPS).

• RAM (Random access memory): The RAM parameter specifies the amount of mem-
ory required for the VM. It is a critical factor in determining the VM’s ability to run 
applications and process data efficiently. RAM is usually measured in gigabytes (GB).

• MIPS (Million instructions per second): MIPS is a measure of the amount of com-
putational power in the unit of time. In our case, it indicates the number of million 
instructions the VM can execute per second, reflecting the processing capability of 
the underlying CPU.

• Storage: Storage refers to the amount of secondary memory required by VM to store 
the application data, logs, backups, etc. Storage is usually measured in gigabytes 
(GB).

These parameters are crucial in the allocation and scheduling of VMs in a cloud envi-
ronment. Providers need to ensure that each VM is allocated sufficient resources to 
meet its specified requirements, optimizing the overall performance and efficiency of 
the cloud infrastructure. Resource requests from users are heterogeneous in nature. In 
our experiments, we used three types of VMs. Each VM type is characterized by vari-
ous RAM, MIPS, and bandwidth requirements. The characteristics of these VM types 
are presented in Table 2. We simulate a data center that has multiple servers that differ 
in terms of hardware specifications and possibly network configurations. We have used 
three types of servers with various capabilities, as listed in Table 3.
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The initial parameters used in our experiments are presented in Table 4. We iterate the 
particle updating until three continuous best solutions are found, or there is no improve-
ment in the solution for 10 iterations, or the maximum number of iterations (150) is 
reached. We have chosen the maximum iterations as 150 after rigorous experiments. 
Initially, we started with 50 iterations and gradually increased the maximum iterations. 
We observed that increasing the maximum iterations from 50 to 100 led to an improve-
ment in the optimal solution. However, after 150 iterations, only a little change was 
observed in the optimal solution. Therefore, we fixed the maximum iterations to 150. 
Similar experiments were performed for the grouping factor. If the grouping factor is 
above 0.5, we observed that the exploration capability of the model decreases. Therefore, 
we set the gf to 0.4.

Effect on energy consumption

We compare the results of our proposed IBO with the solutions of the best-known 
approaches, namely, Hybrid best-fit heuristic (HBF) (Jangiti et al. 2020), GA (Kołodziej 
et  al. 2015), PSO  (Kumar and Raza 2015), Hybrid approach  (Reddy et  al. 2020b), 
Extended PSO (EPSO) (Potu et al. 2021), and Integer Linear Programming (ILP) (Gon-
zalez and Tang 2020). We consider several measures to evaluate the efficiency of the 
proposed approach. First, we compare the number of active hosts. The lower the num-
ber of active hosts, the lower the energy consumption of the data center. Active hosts 
are observed for various approaches, with 20 hosts and 50 VMs in the data center. 
The results are shown in Fig. 3. The proposed approach reduces the number of active 
machines by placing more workload on an efficient physical machine. Figure  3 shows 
that the Hybrid, EPSO, and IBO approaches result in 9, 7, and 7 active hosts, respec-
tively. In contrast, the number of active physical machines with HBF, GA, PSO, and ILP 
are 15, 14, 12, and 12, respectively. Thus, IBO uses fewer hosts while ensuring strict 
SLAs.

For analyzing the energy consumption, we performed extensive experiments on a data 
center with 100 Hosts and varying the number of VMs from 50 to 300. The energy con-
sumption (in kWh) details of various approaches are presented in Table  5 and Fig.  4. 
With 300 virtual machines, IBO, EPSO, and Hybrid approaches lead to an energy con-
sumption of 2.08 kWh, 2.12 kWh, and 2.25 kWh, respectively; whereas HBF, GA, PSO, 
and ILP approaches consume 3.15 kWh, 2.93 kWh, 2.47 kWh, and 2.50 kWh, respec-
tively as shown in Table 5. The proposed approach is capable of exploring the full search 
space and thus providing the optimal solution. Thus, with the proposed IBO, the energy 
consumption decreased at an average of 7%, 10%, 11%, 28%, 17%, and 35% compared to 
Hybrid, EPSO, PSO, GA, ILP, and HBF, respectively.

Migrations and SLA performance analysis

The number of VM migrations is a critical metric in cloud and virtualization manage-
ment, reflecting the health, efficiency, and performance of the infrastructure. By under-
standing and managing VM migrations, organizations can ensure optimal resource 
utilization, maintain high availability, and minimize downtime. We use the proposed 
VM allocation method to improve the utilization of the servers in a data center alongside 
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VM migration procedures that support virtualized cloud computing. VM migration 
must happen without violating the prerequisite of execution and workload confinement.

We present the analysis of the total count of migrations for each placement algorithm 
in a data center with 100 hosts. Figure  5 shows the comparative analysis of the total 
number of migrations by increasing the number of VMs from 50 to 300. One notices 
that the IBO approach entails the minimum migrations in all cases compared to EPSO 
and other approaches. The overall SLA violations for 50 and 100 virtual machines are 
largely consistent across all approaches. The results in Table 6 clearly show that the pro-
posed approach has lower SLA violations compared to the other approaches.

Performance analysis in terms of consistency and convergence

The convergence rate is the time each approach takes to reach the global optimum solu-
tion. This work considers the average number of iterations for achieving global opti-
mum. We plot the convergence of the IBO, Hybrid, and EPSO algorithms for 100 hosts 
and varying VM requests, ranging from 50 to 300.

The convergence rates of IBO, EPSO, and Hybrid approaches for varying VM requests 
are given in Fig.  6. For example, with 100 VMs, the average number of iterations for 
reaching the global optimum is 25, 28, and 32 for IBO, EPSO, and Hybrid, respectively. 
From the experiments, we observe that the IBO approach performs better for a higher 
number of virtual machines. IBO decreases the convergence time up to 35% and 13% 

Table 2 Virtual machines requirements

Bandwidth (MBPS) RAM Storage (GB) MIPS

VM Type 1 100 100 2.5 613

VM Type 2 100 200 2.5 870

VM Type 3 100 300 2.5 1740

Table 3 Physical machines configurations

Host Type Bandwidth (GBPS) RAM (GB) Storage (GB) MIPS

G4 Xeon 3040 30 8.5 125 3000

G4 Xeon 3075 30 8.5 125 3000

G3 Pentium D 930 30 8.5 125 3000

Table 4 Initial parameters

Parameters Value

Populations size 40

Maximum Iterations 150

Learning parameters k1 = 3, k2 = 2

Grouping factor 0.4

Mutation probability 0.8

Crossover probability 0.7

Selection Roulette wheel selection
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compared to Hybrid and EPSO, respectively. Furthermore, it demonstrates greater 
consistency in finding the optimal solution and a faster convergence rate even with a 
higher number of VM requests. IBO and EPSO are clearly superior to Hybrid in terms 
of convergence. As the number of VMs increases, IBO outperforms EPSO and Hybrid 
approaches. The consistency of each algorithm is calculated as the number of times the 
global optimum solution is found versus the number of runs. In other words, we calcu-
lated how many times the global optimum was achieved when repeating the experiment 
for a fixed number of times. Figure 7 plots how many times each optimum is achieved. 
We compared the proposed algorithm with other algorithms by running the experiment 
with 200 virtual machines and repeating it 50 times. From the experimental analysis, we 
see that the proposed approach reached the global optimum 18 times (36%), whereas the 
EPSO achieved the same global optima only 7 times (14%). Further, we observed that 
PSO, GA, ILP, and HBF are not able to achieve the global optimum point at 1.12 while 
our algorithm does. Figure 7 also shows that IBO and EPSO are able to explore all the 
optimal points, whereas the remaining algorithms fail and get stuck in local optima.

Robustness and scalability analysis

As data centers grow in size and complexity, scalability becomes a significant chal-
lenge. Many existing VM placement methods struggle to maintain performance and 
efficiency at scale. We study the scalability and robustness of the proposed approach 
by including more varied scenarios, such as varying data center sizes and increasing 
the workload. First, we perform experiments by increasing the data center size (num-
ber of hosts) from 500 to 5000 and fixing the number of VMs to 1000. We use the 
same parameters, VM, and Host characteristics discussed in “Experimental setup”. 

Fig. 3 Number of VMs allocated for each active host in a data center with 20 hosts and 50 VMs
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The analysis helps understand how the proposed IBO approach is able to find the 
global optimal solution even in large search spaces. From the results in Table 7, we 
see that there is not much difference in the energy consumption of the data center, 
even if the number of hosts is increasing. This indicates that the proposed algo-
rithm is able to choose efficient hosts and place all the VMs in a minimum number 
of hosts. The rapidly changing workload patterns in cloud environments require 
adaptable and flexible VM placement strategies. We tested the proposed approach by 
increasing the number of VMs from 500 to 5.000 in a data center with 200 hosts. 
With 5000 VMs, the proposed approach can save 43.8% energy consumption com-
pared to HBF approach (Jangiti et al. 2020). This leads to monthly energy savings of 
501 kWh. Assuming the cost of €0.402/KWh and an emission factor of 0.92 lbs CO2

/kWh, the monthly cost savings will be €201.4 euro and CO2 Savings will be 460.92 
lbs CO2/month. Looking at Table  8, one notices that the proposed approach has 

Fig. 4 Comparative analysis of energy consumption for state-of-the-art approaches in a data center with 100 
hosts and varying VMs

Table 5 Energy consumption of state-of-the-art approaches with 100 hosts and varying VMs

Energy consumption (kWh)

Approach/VMs 50 100 150 200 250 300

IBO (Proposed) 0.91 0.95 1.3 1.35 1.52 2.08

Reddy et al. (2020a, b) 0.91 1.01 1.30 1.45 1.70 2.25

Potu et al. (2021) 0.91 1.01 1.10 1.50 1.65 2.12

Jangiti et al. (2020) 1.10 1.52 2.02 2.35 2.64 3.15

Kolodziej et al. (2015) 1.09 1.31 1.82 1.89 2.50 2.93

Kumar and Raza (2015) 0.92 1.03 1.40 1.65 1.92 2.47

Gonzalez and Tang (2020) 0.92 1.20 1.60 1.75 1.97 2.50
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less energy consumption compared to the state-of-the-art approaches, even with 
the growing workload. Further, we analyzed the total simulation time in CloudSim. 
Total simulation time includes the time for VM placement, VM selection, migra-
tion, and job execution. With 200 hosts and 5000 VMs, our proposed approach took 
1 h 30 min, whereas other approaches took up to 2 h 25 min. GA, PSO, and Hybrid 
approaches took more time to converge than the proposed approach, and the remain-
ing approaches had more migrations than the proposed approach, which led to more 
simulation time.

We compared our proposed approach with each of the other approaches by per-
forming the following statistical tests. We use the T-test to compare the means of the 
two groups to see if they are statistically significantly different from each other. The 
p-value indicates the probability of obtaining results as extreme as those observed. 
A low p-value (typically < 0.05) suggests that the observed differences are unlikely 
to be due to chance, thereby indicating statistical significance. To conduct this test, 
we have repeated the experiment with 100 hosts and 500 VMs for 30 times with each 
approach. We use paired two-tailed T-test  (Zimmerman 1997) to see the obtained 

Fig. 5 Comparative analysis of the total number of migrations for various placement algorithms with 100 
hosts and increasing number of VMs

Table 6 Overall SLA violations

Overall SLA violations (%)

Approach/VMs 50 100 150 200 250 300

IBO (proposed) 0.41 1.14 1.12 1.2 1.67 2.09

Reddy et al. (2020a, b) 0.72 1.25 1.32 1.25 2.03 2.26

Potu et al. (2021) 0.72 1.21 1.26 1.19 1.72 2.17

Gonzalez and Tang (2020) 0.75 1.27 1.4 1.5 1.95 2.2

Kolodziej et al. (2015) 0.75 1.34 1.54 1.66 2.21 2.41

Kumar and Raza (2015) 0.94 1.38 1.52 1.7 2.5 2.78

Jangiti et al. (2020) 1.02 1.75 1.69 1.84 2.4 3.13
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mean values of all approaches have a distinguished difference with 58 degrees of 
freedom at 0.05% level of significance. These results with t-value and p-value are 
presented in Table  9. The obtained values indicate strong statistical significance, as 
all t-values are positive and all p-values are less than 0.00001. This suggests that our 
proposed method demonstrates a statistically significant improvement over other 
methods.

Fig. 6 Global optimum convergence analysis with respect to the average number of iterations

Fig. 7 Consistency analysis
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Discussion and conclusions
Our work focuses on optimizing power consumption and resource utilization in a 
data center with heterogeneous server configurations. Most of the existing algo-
rithms for solving the VM placement problem have slow convergence rates, weak-
ness in local search, and run the risk of getting stuck into local optima in the case 
of high-dimensional search spaces. These approaches involve many parameters, and 
the results will depend on how one tunes them. Further, these algorithms fail to bal-
ance between exploration and exploitation. To address these limitations, we proposed 
a novel imitation-based optimization algorithm with fewer parameters to improve 

Table 7 Scalability analysis of IBO

Scalability analysis of the IBO algorithm for varying data center sizes

Number of hosts 500 1000 2000 3000 4000 5000

Number of VMs 1000 1000 1000 1000 1000 1000

Energy consumption 5.49 kWh 5.51 kWh 5.51 kWh 5.50 kWh 5.55 kWh 5.51 kWh

Number of VM migrations 11865 11696 12034 13147 13690 9706

Table 8 Comparative analysis of energy consumption with increasing workloads for 200 Hosts

Number of VMs 500 (kWh) 1000 (kWh) 2000 (kWh) 3000 (kWh) 4000 (kWh) 5000 (kWh)

IBO 2.74 4.89 8.95 13.23 17.15 21.42

Potu et al. (2021) 2.97 4.99 9.25 14.02 18.27 22.31

Reddy et al. (2020b) 2.93 5.27 9.60 14.56 18.45 22.83

Kumar and Raza (2015) 3.11 5.62 9.70 14.75 18.98 23.49

Gonzalez and Tang (2020) 3.30 5.76 10.34 15.63 20.47 25.42

Kołodziej et al. (2015) 4.18 8.33 13.69 20.25 26.89 33.22

Jangiti et al. (2020) 7.26 9.52 16.35 23.65 28.43 38.12

Table 9 T-test statistical analysis results for 100 hosts and 500 VMs

*indicates Not Applicable/Not Required

IBO 
(proposed)

Potu et al. 
(2021)

Reddy et al. 
(2020b)

Kumar and 
Raza (2015)

Gonzalez 
and Tang 
(2020)

Kołodziej 
et al. (2015)

Jangiti 
et al. 
(2020)

IBO (pro-
posed)

*

 Potu et al. 
(2021)

t: 8.5939
p < 0.00001

*

 Reddy et al. 
(2020b)

t: 9.1311
p < 0.00001

t: 6.7983
p < 0.00001

*

 Kumar and 
Raza (2015)

t: 8.5939
p < 0.00001

t: 4.3707
p < 0.00001

t: 2.4909
p < 0.00001

*

 Gonzalez 
and Tang 
(2020)

t:29.1319
p < 0.00001

t: 20.6052
p < 0.00001

t: 16.6166
p < 0.00001

t: 6.7983
p < 0.00001

*

 Kołodziej 
et al. (2015)

t: 72.2772
p < 0.00001

t: 64.2367
p < 0.00001

t: 59.7736
p < 0.00001

t: 35.0676
p < 0.00001

t: 40.0430
p < 0.00001

*

 Jangiti et al. 
(2020)

t: 507.5297
p < 0.00001

t: 341.6171
p < 0.00001

t: 271.5684
p < 0.00001

t: 83.3146
p < 0.00001

t: 141.4511
p < 0.00001

t: 59.5184
p < 0.00001

*
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the resource allocation strategy. The proposed IBO employs fewer servers for the VM 
placement and has greater exploration and exploitation capabilities than state-of-the-
art approaches. The IBO algorithm explores the search space rapidly thanks to the 
proposed imitation phase as part of Algorithm 2, where each particle imitates a ran-
dom leader and reaches the global optimum. In most swarm-based approaches, par-
ticles try to reach the location of a single global best particle. This sometimes leads 
to falling into local optima. To avoid this, the proposed approach considers multi-
ple best particles as Leaders and randomly chooses one to imitate, which significantly 
improves the exploitation capability. Furthermore, we introduce randomness in every 
iteration to ensure we can obtain a better solution than the one obtained after imita-
tion. This guarantees exploration and escapes from local optima.

The detailed analysis showed that the proposed IBO approach significantly reduces 
energy consumption when compared to EPSO, Hybrid, PSO, ILP, GA, and HBF. We 
found that there is a reduction of up to 43.8% in energy consumption with increas-
ing workloads. The proposed IBO algorithm reduces the energy consumption at an 
average of 7%, 10%, 11%, 28%, 17%, and 35% compared to Hybrid, EPSO, PSO, GA, 
ILP, and HBF, respectively. This leads to monthly energy savings of up to 501kWh. 
The monthly cost savings will be €201.4 euro, and CO2 Savings will be 460.92 lbs CO2

/month. The proposed algorithm consistently delivers optimal solutions with superior 
exploration and exploitation capabilities. Further, we observe fewer VM migrations 
and SLA violations in all cases compared to other approaches. On the negative side, 
Mahalanobis distance does not properly identify the groups if there are many outliers. 
This decreases the algorithm exploration capability in a few cases.

In our future work, we plan to include other factors, such as cooling, along with 
advanced machine learning methods to predict resource utilization in a real cloud 
environment to make resource allocation energy-efficient. Further, we will use rein-
forcement learning algorithms for real-time feedback and changing conditions. This 
will help in the proactive placement and dynamic adjustment of VMs. The algorithms 
should consider the use of renewable energy sources and reduce the carbon footprint 
of data centers. CloudSim offers six distinct power models, namely, Linear, Cubic, 
Spec Benchmarks, Square, and Square root. However, most of these models are based 
on CPU utilization, static, and maximum power of the servers. With better power 
models considering other relevant factors, one might obtain better overall energy 
savings.
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