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Introduction
With the changing global energy structure and increasing environmental requirements, 
new energy vehicles are rapidly becoming the development direction of the future auto-
motive industry. As the core component, the power of batteries directly affects the 
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ing, particle swarm optimization, and SVR is constructed. It optimizes regression param-
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filtering-regression vector regression algorithm. The mean square error of lithium-
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with comparison models. The mean square error value of lithium titanate battery 
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with comparison models. It improves the prediction accuracy in lithium-ion batteries. 
Its application in battery health management can provide important technical sup-
port for improving battery performance and extending service cycles. The proposed 
method can be used for battery monitoring and management of power grid energy 
storage system. By accurately predicting the capacity decline of battery, the operation 
strategy of energy storage system can be optimized to ensure the efficient operation 
and long life of the system. The battery management system can be used for drones 
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ensuring the safety and reliability of flight missions.

Keywords: Unscented particle filtering, Particle swarm optimization algorithm, SVR, 
Lithium-ion batteries, Life prediction

Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

RESEARCH

Liu and Liang  Energy Informatics            (2024) 7:49  
https://doi.org/10.1186/s42162-024-00356-w

Energy Informatics

*Correspondence:   
liuhongxing2023@126.com

1 School of Automobile 
Engineering, Guilin University 
of Aerospace Technology, 
Guilin 541004, China

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s42162-024-00356-w&domain=pdf


Page 2 of 21Liu and Liang  Energy Informatics            (2024) 7:49 

vehicle’s endurance, safety, and economy. Lithium-ion Battery (LB) is the mainstream 
choice for power batteries due to its high energy density, and good electrochemical per-
formance (Che et al. 2023; Kong et al. 2022). However, as the usage time increases, the 
battery performance will gradually decline. This seriously affects the service life and 
safety performance of the vehicle. Therefore, how to accurately predict battery capac-
ity degradation has become an urgent technical challenge. At present, the research on 
battery health management systems mainly focuses on predicting battery capacity and 
internal resistance attenuation. Among them, machine learning prediction methods 
have received widespread attention due to their ability to handle nonlinear problems. 
Especially, support vector machines, neural networks, and regression analysis meth-
ods have shown excellent performance in battery life prediction (Guo et  al. 2023; Liu 
et al. 2022). Accordingly, they typically need rich historical data to train the model. In 
addition, their stability and accuracy in dealing with data with significant uncertainty 
still need to be improved. Therefore, a comprehensive prediction model consisting of 
Unscented Particle Filtering (UPF), Particle Swarm Optimization (PSO), and Support 
Vector Regression (SVR) is proposed. It is expected to improve the prediction accuracy 
and stability of capacity degeneration in LB. UPF is an advanced filtering method, com-
bining the advantages of Unscented Kalman filter (UKF) and Particle Filter (PF). UPF 
can effectively deal with nonlinear and non-Gaussian noise problems. In the battery 
capacity decline prediction, UPF is able to update and adjust the prediction model in real 
time, deal with noise and uncertainty in the data, and enhance prediction reliability. PSO 
is a global optimization algorithm based on swarm intelligence, which seeks the opti-
mal solution by simulating the foraging behavior of birds. PSO has strong global search 
ability, simple implementation and few parameters. In the prediction of battery capacity 
decline, PSO can be used to optimize the parameter combination of SVR to improve the 
prediction performance of the model. SVR is a regression method based on statistical 
learning theory. By introducing kernel function technique, SVR can deal with complex 
non-linear relations, which has good generalization ability. In the prediction of battery 
capacity decline, SVR controls the model complexity through the principle of structural 
risk minimization to prevent over-fitting. The research innovation lies in proposing a 
multi-algorithm combination prediction model. PSO optimizes the parameters of the 
SVR model to adapt to different battery data characteristics. It is a new attempt in the 
battery life prediction. The research has four parts. The first summarizes the research 
achievements on PSO and battery testing technology. The second part builds a predic-
tive model for the lifespan decline of LB. The third part conducts performance and appli-
cation testing on the constructed model through relevant datasets. The last summarizes 
the results, existing problems and future research directions.

With the advancement of new energy vehicles, the life testing of automotive power 
batteries has become a focus. The current mainstream method for predicting lifespan 
is based on models constructed using PSO. Mao et al. developed a dual group collabo-
rative PSO to recognize noise immunity in LB. The deviation was reduced by 35 dB. It 
exceeded existing methods in terms of noise resistance, reliability, and accuracy (Mao 
et  al. 2022). Zhang et  al. proposed an improved PSO for extreme learning machine 
neural networks. The algorithm had mean square errors of 0.31%, 0.32%, and 0.14% for 
battery charging state in mixed pulse power characteristics, Beijing bus dynamic stress 
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testing, and dynamic stress testing conditions, respectively. The proposed algorithm 
solved the poor accuracy in battery SOC estimation in the past (Zhang et al. 2022). Ra 
et al. developed a power loss optimization method for the battery storage system based 
on PSO technology. This method maximized the efficiency of the overall battery system 
(Ra et al. 2022). Sevilgen et al. used PSO to optimize the liquid cooling system of battery 
modules. The results showed that the proposed algorithm reduced pump power con-
sumption by 22.4% while maintaining cooling performance (Sevilgen et al. 2022).

Xiong et al. proposed a fusion model that combined correlation coefficient and Relief. 
The study used two types of lithium batteries for battery health estimation. The estima-
tion accuracy of this model was improved by 63.5% and 71.1% in two types of lithium 
batteries, respectively (Xiong et al. 2023). Sun et al. built a battery life prediction model 
based on health feature parameters. This method combined empirical mode decomposi-
tion, incremental capacity analysis, and gated recursive units. The study aimed to vali-
date the NASA lithium battery dataset. The error was 0.3% (Sun et al. 2022). Ma et al. 
built a framework to achieve real-time health prediction of invisible battery. It achieved 
an average testing error of 0.176% and 8.72% in capacity estimation and remaining ser-
vice life prediction (Ma et al. 2022). Hu et al. proposed an attention-based LB calendar 
health prediction model. It achieved good domain complementarity based on battery 
experience knowledge. In experiments on actual battery calendar aging, this method 
outperformed other prediction strategies in predicting and generalizing unknown con-
ditions (Hu et al. 2022).

In summary, although there have been some achievements in current research on 
battery health detection, the above methods mainly rely too much on precisely defined 
model parameters and algorithm optimization. This inevitably limits the generaliza-
tion ability in facing real and complex environments. Moreover, these studies still show 
certain limitations in dealing with the uncertainty and noise of battery data, which may 
affect the prediction accuracy. To address current shortcomings, the study adopts UPF 
to handle the uncertainty and noise of battery data. Then a combined model UPF-PSO-
SVR based on the parameter optimization ability of PSO is proposed.

Construction of automotive power battery testing model based on improved 
PSO
The study focuses on the comprehensive testing of power batteries for new energy vehi-
cles. Firstly, a life decline prediction model for LB is constructed using PSO. The batter-
ies are tested from the perspective of battery health. Next, to address the shortcomings 
of PSO, the UPF algorithm is introduced to improve PSO. Finally, an SVR model is intro-
duced to construct a health prediction model for new energy vehicle power batteries. 
This combined model is chosen because the three methods complement each other. 
UPF performs well in filtering noise, deals with non-linear and non-Gaussian problems, 
and provides more accurate and stable data input for SVR. PSO provides global optimal 
parameter setting for SVR, which improves the prediction performance and accuracy 
of SVR. SVR improves the overall performance of the prediction model by capturing 
complex non-linear relationship in battery capacity decline through kernel function 
technique.



Page 4 of 21Liu and Liang  Energy Informatics            (2024) 7:49 

Construction of degeneration model for LB

LB has extensive applications in daily life. For example, as a power battery in new 
energy vehicles, the lifespan of new energy vehicles is related to the quality of LB. The 
anode of LB is lithium oxide. The cathode is carbon material with micro-pores. Dur-
ing battery operation, the anode decomposes lithium ions, while the cathode accom-
modates the decomposed ions. In an electrolyte solution, a high concentration of 
lithium ions indicates a large storage capacity inside the lithium battery. During the 
battery charging, the current is around 0.2C–1C. If the current is high, the internal 
chemical reaction is more intense. It causes the battery heating (You et al. 2022). Its 
working state is displayed in Fig. 1 (Zhang and Zhao 2023).

In Fig.  1, lithium ions move back and forth between the two poles. At this point, 
there is electrolyte solution and membrane loss inside the battery. Moreover, external 
environmental factors can affect battery cycling and lead to irreversible degradation. 
Therefore, during continuous operation, the performance will deteriorate. Before the 
battery is completely damaged, it is necessary to predict its lifespan to prevent acci-
dents from occurring. LB has the non-linear capacity degradation in life prediction. 
Therefore, conventional battery health assessment may lack accuracy (Nsugbe 2023; 
Cao et al. 2023). The study uses a double exponential empirical degradation strategy 
to represent the battery degradation model, as shown in formula (1).

In formula (1), Qk stands for the battery power. k represents the cycles of lith-
ium ions. a and c stand for parameters of battery resistance. b and d are parameters 
of the battery capacity decline rate. Formula (1) is used to quantify the capacity 
decline of the battery. It provides a basis for the subsequent model construction. 
To make the degradation model more closely fit the actual value of battery capacity 
degradation, the state and observation formulas of the prediction model are pre-
sented in formula (2).

(1)Qk = a ∗ exp(b ∗ k)+ c ∗ exp(d ∗ k)

Fig. 1 Working state of LB
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In formula (2), v(k) is the Gaussian white noise. w represents the observation noise. 
σ represents the variance. Formula (2) is used to represent the relationship between 
the actual observed value and the model predicted value, taking into account the effect 
of noise on the observed result. In general, the PSO algorithm can be applied to solve 
the degradation prediction model constructed above. The PSO is a heuristic optimiza-
tion algorithm that uses particles to search in the search space. Particles continuously 
updates their position and velocity to complete the optimal value solution (Pervaiz et al. 
2022). In the battery life prediction model, the PSO can be applied to optimize param-
eters. The PSO algorithm updates particles in a specific way, as shown in formula (3).

In formula (3), V i
k represents the particle velocity. Xi

k stands for the particle position. 
Rand(·) stands for a random number selection function, with the value ranging from 0 
to 1. ω represents the inertia factor. µ1 represents the learning factor. There is a positive 
correlation between the value of ω and the global search ability of PSO. Gbest represents 
the global optimum. Pi

best represents the individual optimum. During the particle update 
process, PSO uses Gbest and Pi

best as references and updates them through formula (3). 
Particles have a certain directionality. Particles approach particles with higher weights. 
From a macroscopic perspective, the weight of more particles will increase, while the 
variance of particle weights will decrease. These parameters together determine the 
motion mode of particles in the search space and the search efficiency. By adjusting 
these parameters, global search and local search capabilities can be balanced. The con-
vergence speed and the quality of the algorithm can be improved. Formula (3) is used to 
optimize the model parameters, so that the battery degradation model can predict the 
battery life more accurately. Therefore, PSO is combined with UPF to address the parti-
cle degradation. The PSO-UPF combination model mainly improves the fitness function 
and granular updating mechanism. Among them, the model defines a fitness function 
according to the characteristics of the PSO optimization algorithm, as shown in formula 
(4). It makes particle updates closer to particles with higher weights.

In formula (4), Zk represents the particle observation value at the current time. Ẑi
k 

represents the particle’s predicted value. Rk represents the observed noise’s covariance. 
Formula (4) is used to evaluate the merits and demerits of particles. In the optimiza-
tion process, the fitness function is minimized to improve the prediction accuracy of 
the model. The model evaluates the fitness of each particle by calculating the error 
between the current particle position and the actual observation data. Formula (4) gives 

(2)

X(k) = a(k) b(k) c(k) d(k)
a(k + 1) = a(k)+ wa(k),wa ∼ N (0, σa)
b(k + 1) = b(k)+ wb(k),wb ∼ N (0, σb)
c(k + 1) = c(k)+ wc(k),wc ∼ N (0, σc)
d(k + 1) = d(k)+ wd(k),wd ∼ N (0, σd)
Qk = a(k) exp(b(k) ∗ k)+ c(k) exp(d(k) ∗ k)+ v(k)

(3)
{

V i
k = ωV i

k−1 + µ1Rand(0, 1)(P
i
best − Xi

k−1)+ µ2Rand(0, 1)(Gbest − Xi
k−1)

Xi
k = Xi

k−1 + V i
k

(4)f = exp

[

−
1

2Rk
(Zk − Ẑi

k)
2

]
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this assessment and adds a penalty factor to prevent over-fitting. According to the fit-
ness function value, the PSO algorithm adjusts the speed and position of each particle 
to gradually approach the optimal solution. In each iteration, the PSO algorithm tracks 
the individual optimal position and the global optimal position for each particle. The fit-
ness function values are compared to determine whether to update these optimal posi-
tions. In the whole optimization process, PSO algorithm is integrated with the battery 
capacity degeneration model. The prediction accuracy is improved by continuously opti-
mizing the model parameters. Ultimately, the optimized parameters are used to build 
a more accurate battery capacity prediction model. In the particle update mechanism, 
the model has a Gaussian distribution function to update the velocity and position. The 
update method is replaced with fixed velocity and inertia factors. This method enhances 
the diversity while retaining the inherent convergence characteristics of the PSO algo-
rithm. Therefore, the particle update is shown in formula (5).

In formula (5), 
∣

∣Ramdn(0, 1)
∣

∣ represents a positive random digit that satisfies a Gauss-
ian distribution. In formula (5), random numbers satisfying Gaussian distribution are 
added in the process of particle renewal to enhance the diversity of particle population, 
retain the inherent convergence characteristics, and weakens the degradation effect. 
According to formula (5), global particles can continuously move towards the real state 
region, gradually approaching the real state, and enhancing the tracking performance. 
However, the model is constrained by internal factors of the battery and external envi-
ronment. The particle degradation phenomenon has uncertain information. Therefore, 
the study uses UPF algorithm to improve the PSO model and achieve battery life predic-
tion. The flowchart of the UPF-PSO model is shown in Fig. 2 (Zhi et al. 2022).

In Fig.  2, particle initialization is first completed through PSO. p(X0) is used as the 
initial prior probability distribution. The initialization state set of particles is obtained 
by selecting particles from p(X0) , denoted as Xi

0 . w
i
0 =

1
N  represents the initial weight 

of the particle. The second step of UPF is to suggest sampling the probability density 
distribution. In this stage, the extended Kalman filtering is applied to update the sam-
pling points. This operation obtains the suggested distribution function, updates the 

(5)

{

V
i

k−1
=

∣

∣Ramdn1(0, 1)
∣

∣(Pi

best
− X

i

k−1
)+

∣

∣Ramdn2(0, 1)
∣

∣(Gi

best
− X

i

k−1
)

X
i

k
= X

i

k−1
+ V

i

k−1

k k 1

Fig. 2 UPF-PSO flowchart
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weights, and normalizes the particle weights. The third step is the resampling stage, 
which involves resampling the particle set to obtain a new one. The fourth step is to 
perform state estimation and variance output in the new particle set. The UPF algorithm 
constructed above can effectively solve the particle degradation phenomenon limiting 
the accuracy of predicting battery life. However, this algorithm still generates inevitable 
and undeniable errors in filtering iterative prediction. Therefore, further error correction 
is adopted in research to optimize the accuracy and stability.

Battery testing model based on UPF‑PSO‑SVR

The study introduces SVR into the model. It aims to find the optimal hyperplane in non-
linear regression problems to best fit the given training data. Unlike traditional regres-
sion methods, SVR not only focuses on the prediction accuracy of points, but also on 
the minimum distance between the boundary between the model and the training sam-
ples. For specific regression problems, SVR first represents the training dataset with 
{

xi, yi
}n

i=1
 , where the two elements are the input feature vector and the output target 

quantity. The formed regression model should be as close to the output as possible. Its 
equation expression is shown in formula (6).

In formula (6), φ(x) represents a non-linear function. B represents the bias vector. For-
mula (6) is used to construct the SVR model and find the optimal hyperplane to fit the 
training data in the non-linear regression problem. There are some differences between 
SVR and traditional regression models, because SVR allows for a certain degree of error 
in the regression model and the real data. This error is recorded as ε . From this, SVR 
actually minimizes structural risk. Therefore, it is represented by formula (7) to mini-
mize structural risk.

In formula (7), C stands for the penalty factor, which balances the model’s general-
ization ability and classification accuracy. ‖w‖2 shows the complexity of the model. ξi 
represents the relaxation factor. Formula (7) optimizes the SVR model to ensure good 
prediction accuracy while ensuring generalization ability. The Lagrange function is used 
to solve formula (7), as shown in formula (8).

(6)f (x) = wTφ(x)+ B

(7)























min �w�2

2
+ C

n
�

i=1

(ξi + ξ̂i)

s.t.







f (xi)− yi ≤ ε + ξi

yi − f (xi) ≤ ε + ξ̂i

ξi ≥ 0, ξ̂i ≥ 0, i = 1, 2, ..., n

(8)

L(w,B,α, α̂, ξ , ξ̂ ,µ, µ̂) =
1

2
�w�2 + C

n
∑

i=1

(ξi + ξ̂i)−

n
∑

i=1

µξi−

n
∑

i=1

µ̂ξ̂i

+

n
∑

i=1

αi(f (xi)− yi − ε − ξi)+

n
∑

i=1

α̂i(yi − f (xi)− ε − ξ̂i)
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In formula (8), µ and α are both Langrange day multipliers. Formula (8) transforms the 
original problem into a dual problem to optimize the regression model by solving the 
Lagrange function. The first step of the Lagrange derivation process is to take the partial 
derivative of the Lagrange function and set the function as 0 to eliminate the Lagrange 
multiplier. In the second step, the dual problem is constructed. The kernel function 
is used to deal with the high-dimensional feature space, so as to solve the non-linear 
regression problem effectively. The dual function is shown in formula (9).

In formula (9), K  stands for the kernel function of the regression model. (α̂i − αi) 
stands for the support vector. The radial basis kernel function is used to study kernel 
functions, mapping input data to high-dimensional feature spaces, and thus handling 
nonlinear problems. In practical applications, the number of support vectors is much 
smaller than the total number of samples, so as to ensure the sparsity and efficiency of 
the model. Formula (9) is used for the final regression model solution. The kernel func-
tion is used to deal with the non-linear problem and predict the battery capacity. The 
penalty factor and kernel function parameters are the two most crucial parameters in 
the SVR. The improved model can be used for actual battery capacity prediction. The 
filtered state space equation is represented by formula (10) according to formula (1).

(9)f (x) =

n
∑

i=1

(α̂i − αi)K (xi, xj)+ B

(10)
{

xk+1 = xk + wk

yk = ak ∗ exp(bk ∗ k)+ ck ∗ exp(dk ∗ k)+ vk

(0) [ (0) (0) (0) (0)]X a b c d

( ) ( )
11ˆ ˆi i
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Fig. 3 Prediction process of battery capacity decline based on fusion model
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From formula (10), vk cannot be avoided throughout the battery degradation predic-
tion process. Formula (10) is used to describe the dynamic process of battery capacity 
degradation, which is filtered and predicted by state transition and observation formula. 
Therefore, it can only reduce the overall impact of errors on the model. The process of 
using PSO-SVR to reduce observation errors is shown in Fig. 3 (Du et al. 2022).

Figure 3 displays the overall process. The first step is to input battery observation data 
to determine the initial model parameters. Secondly, UPF is carried out. The filtering pro-
cess includes generating particles and learning state transition function. The UKF is used 
to generate recommendation distribution, calculate mean and variance of particles, and 
update weight and status after resampling. Then, it is judged whether the prediction capac-
ity reaches the given range. If it reaches the given range, the result is output. If it does not 
reach the given range, the measurement error is obtained. PSO is adopted to optimize the 
parameters. Finally, the measurement error is obtained and the filtering operation is per-
formed again (Du et al. 2022).

The model initialization is as follows: determine the prediction starting point and set the 
prediction time point to T  . Before T  , the cycle cycles obtained by the model are used as 
training set data. The data obtained after T  is the testing set data. The initial parameters are 
determined using a sparse vector machine. The expression is shown in formula (11).

Formula (11) is used to determine the initial parameters of the SVR model. The sparse 
vector machine is used to obtain the initial value of the model, which provides the basis 
for the subsequent prediction. The UPF process includes generating particles, learning state 
transition functions, generating recommendation distributions, calculating the average and 
variance of particles, updating weights, and updating the state after resampling. This step 
can be represented by formula (12).

In formula (12), Xi
k represents calculating the mean of particles. Pi

k represents calculating 
the variance of particles. Formula (12) is used to update and evaluate the particle state and 
improve the filtering accuracy. The particle resampling is displayed in Fig. 4 (Du et al. 2022).

In Fig. 4, the particle size represents the corresponding weight. Before resampling, the 
weights of particles are unevenly distributed. After resampling, particle sets with equal 
weights can be obtained. In the prediction observation error stage of the model, an observa-
tion time point is set, denoted as T  . The observation error data before T  is used as training 

(11)X(0) =
[

a(0) b(0) c(0) d(0)
]

(12)
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set of the model to correct subsequent errors. Therefore, an SVR model for observing the 
error before time T  is established. The specific expression of this model is shown in formula 
(13).

In formula (13), ηk stands for the SVR model. ξ stands for the relaxation factor. 
(α̂i − αi) represents the support vector of the model. B represents the bias vector. K  
represents the kernel function. Formula (13) trains the model using the observation 
errors before the predicted time point, and predicts the observation errors at the 
predicted time point. Then the corresponding SVR model is established to provide a 
prediction framework for subsequent observation errors. After training with formula 
(13), the observation error of the model is corrected. The corrected observation error 
can be represented by formula (14).

In formula (14), v̂k+1 represents the predicted observation error value at the pre-
dicted time point. Formula (14) predicts and corrects the observation error by SVR 
model to further improve the prediction accuracy. In the above process, the UPF-
PSO-SVR fusion algorithm is proposed. The SVR algorithm utilizes the degradation 
information at the previous moment and the filtering results, effectively reducing 
the influence of observation noise. At the same time, PSO is adopted to optimize the 
SVR penalty coefficient C , as well as kernel function parameter γ . The state update 
method of the UPF algorithm is modified to compensate for the inability of the UPF 
algorithm to obtain real data after the set prediction time point. The battery status is 
determined by the first set battery failure range. If the predicted capacity reaches the 
battery failure range, the remaining service life is taken as the distinctions between 

(13)ηk = f (ξk) =

T−m
∑

i=1

(α̂i − αi)K (ξi, ξk)+ B

(14)v̂k+1 = f (ξk+1−t) =

T−mt
∑

i=1

(αi − α∗
i )K (ξi, ξk+1−t)+ B

0 1

Fig. 4 Process of particle resampling
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the forecast cycle period T  and the failure period. If the failure range is not met, the 
error is further predicted and updated.

Performance verification of battery capacity degradation model based 
on UPF‑PSO‑SVR
To display how the constructed model performs, a comprehensive test is conducted 
on LB using the model. Four different LBs are selected for testing in the experiment. 
The model is assessed using the Mean Absolute Error (MAE) and Root Mean Square 
Error (RMSE) in the actual and the test value. Uncertainty analysis and error anal-
ysis are conducted to predict the probability distribution of the results. The health 
status of battery performance and the correlation between health characteristics are 
analyzed.

Performance analysis of the improve model

The experiment is conducted using the Battery Date Set dataset, which is provided by 
the Aerospace Excellence Fault Prediction Center. The dataset contains relevant data for 
batteries 5#, 6#, 7#, and 18#. The first three groups of batteries have 179 sets of cycle 
data, and the last group of batteries has 143 sets of cycle data. The initial parameters are 
appeared in Table 1.

The study validates the improved model in the experimental environment mentioned 
above. Unscented Particle Filter-SVR (UPF-SVR) and Unscented Particle Filter-Regres-
sion Vector Regression (UPF-RVR) are used as comparative models to test batteries 5#, 
6#, 7#, and 18#, respectively (Meng et al. 2023). The results are shown in Fig. 5.

Figures 5a and b represent the prediction for 60 and 100 cycles of battery 5#, respec-
tively. Figures 5c and d represent predictions for 60 and 100 cycles of battery 6#. Fig-
ures  5e and f respectively represent prediction for 60 and 100 cycles of battery 7#. 
Among them, the RMSE value of UPF-PSO-SVR in 5# was 0.0011, which was the small-
est value in the comparison results. The MSE value in 6# was 0.0007. The RMSE value 
in battery 7# was 0.022. The results show that the UPF-PSO-SVR model has higher 
accuracy in capturing real changes in battery capacity degeneration. In contrast, the tra-
ditional regression model and the neural network model have higher prediction error 
and MSE value under the same conditions. Moreover, the prediction error distribution 
of UPF-PSO-SVR model is more concentrated. Most of the error values are close to 

Table 1 Initial settings of model parameters

No B0005 B0006 B0007 B0018

a 1.98 1.57 1.96 1.86

b − 0.002719 − 0.005576 − 0.002098 − 0.002917

c − 0.1697 0.489 − 0.0971 0.0002

d − 0.0694 0.0009 − 0.0971 0.0002

T/Cycle 60 60 60 40

C 79.58 33.48 35.26 97.16

K RBF

γ 0.04287 0.06483 0.05891 0.01819
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Fig. 5 Comparison of the prediction effects of each model on batteries
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zero, while the error distribution of other models is more scattered, and there are more 
extreme error values. This further proves the superiority of UPF-PSO-SVR model in 
dealing with complex datasets and non-linear relationships. The prediction performance 
of battery 18# is shown in Fig. 6.

In Fig.  6, UPF-PSO-SVR had the smallest RMSE among all models, with a value of 
0.0013. The prediction curve of UPF-PSO-SVR model still followed the actual capac-
ity decline curve. The prediction results show that UPF-PSO-SVR model can maintain 
consistent prediction accuracy and stability under different test conditions. This further 
demonstrates the advantages of the UPF-PSO-SVR in predicting battery capacity degra-
dation, verifying the robustness and wide adaptability of the UPF-PSO-SVR model.

Uncertainty and error analysis of prediction results

To discuss the uncertainty and error, the study selects the B0005 battery from the NASA 
dataset for uncertainty analysis. The study evaluates the prediction performance by pre-
dicting the PH and the convergence index of the algorithm. The life prediction results 
and PH performance results of different prediction algorithms for different prediction 
beginning points are shown in Fig. 7.

In Fig. 7, the lifetime prediction and PH prediction using the UPF-PSO-SVR algorithm 
were superior to the UPF-RVR and UPF-SVR algorithms. For the PH results, the error 
of UPF-PSO-SVR model reached the allowable range when the battery charge and dis-
charge cycle was 50cycle. The prediction error of UPF-RVR model reached the allowable 
range at 80cycle. The prediction error of UPF-SVR model reached the allowable range at 
70cycle. The results show that the UPF-PSO-SVR model has excellent performance in 
predicting real battery data, both short-term and long-term prediction. The convergence 
index of the model is shown in Fig. 8.

In Fig.  8, the convergence of the UPF-PSO-SVR was better than that of UPF-RVR 
and UPF-SVR. From the convergence results, the UPF-PSO-SVR had lower conver-
gence at earlier prediction cycles. In later prediction, the convergence speed of the UPF-
PSO-SVR was faster and more stable. The fast convergence shows that the model can 

Fig. 7 Life prediction and PH of various algorithms at various prediction beginning points
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achieve high prediction accuracy in a short time, saving training time and computing 
resources. The stable convergence ensures that the model can achieve consistent perfor-
mance under different operating environments and conditions, avoiding fluctuation and 
instability in the training process. As for the uncertainty of the model prediction results, 
in the study, a histogram is used to represent the probability distribution of measure-
ment results. It clearly displays the probability density distribution of type prediction 
errors. By observing the probability distribution of prediction errors, the performance 
of the UPF-PSO-SVR model in different prediction error ranges is more obvious. The 
high density region indicates that the model appears more frequently in this error range, 
reflecting the centrality and reliability of the model prediction. The result of the prob-
ability distribution histogram is shown in Fig. 9.
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Figure 9 shows the probability distribution of the end of battery life cycle. The true bat-
tery capacity degradation was around 105 cycles, and the prediction starting point was 
60 cycles. In the histogram of the prediction results, the highest probability of predicting 
the end of life cycle was 105 cycles, with a probability value of 28.18%. In order to weigh 
the calculation effect of the model, the running time, memory usage and processor uti-
lization of the model are analyzed through comparative experiments. The results were 
shown in Table 2.

In Table 2, for the UPF-SVR model, the running time, memory usage, and processor 
utilization were 182.4s, 153.2 MB, and 80%, respectively. For the UPF-RVR model, the 
running time, memory usage, and processor utilization were 203.3  s, 164.7 MB and 
85%, respectively. UPF-PSO-SVR model was 217.6s, 181.4 MB, and 90%, respectively. 
The results show that the proposed UPF-PSO-SVR model has higher computational 
resource requirements and running time in terms of computational efficiency, which 
is due to the complex computational process combining PSO optimization and UPF 
filtering. However, despite the high computing resource requirements, the UPF-PSO-
SVR model shows significant advantages in prediction accuracy and stability. It pro-
vides more accurate and reliable technical support for capacity decline management 
and health assessment of lithium-ion batteries. In order to test the performance of 
UPF-PSO-SVR model on different types of batteries, the study selects three differ-
ent types of batteries to carry out capacity decline prediction experiments, including 
nickel metal hydride batteries, lithium iron phosphate batteries and lithium titanate 
batteries. Carried out capacity decline prediction experiments. The results are shown 
in Table 3.

In Table 3, the UPF-PSO-SVR model haf better prediction performance than the PSO-
SVR and UPF-SVR models on different battery types. It demonstrates that the designed 
method has strong adaptability on different battery types. UPF-PSO-SVR model 
can be easily expanded and adjusted due to its modular structure. For different types 

Table 2 Comparison results of calculation efficiency of the model

Evaluation index Running time (s) Memory usage (MB) Processor 
utilization 
(%)

UPF-SVR 182.4 153.2 80

UPF-RVR 203.3 164.7 85

UPF-PSO-SVR 217.6 181.4 90

Table 3 Prediction errors of the model for different types of batteries

Battery type Evaluation index UPF‑PSO‑SVR PSO‑SVR UPF‑SVR

Nickel metal hydride battery MSE 0.0015 0.0023 0.002

MAE 0.0048 0.0071 0.0065

Lithium iron phosphate battery MSE 0.0013 0.0021 0.0017

MAE 0.0045 0.0067 0.0058

Lithium titanate battery MSE 0.0011 0.0018 0.0014

MAE 0.004 0.0059 0.0052



Page 16 of 21Liu and Liang  Energy Informatics            (2024) 7:49 

of batteries, the model parameters and data preprocessing methods only need to be 
adjusted according to the characteristics of the specific battery. The research continues 
to verify the prediction accuracy and reliability of the proposed model through practical 
tests. In this study, the new energy vehicle data collected by BMS is used as experimen-
tal data. The electric vehicle in the data is lithium iron phosphate, and the collection 
frequency is 20s/ times. The data includes total vehicle mileage, vehicle status informa-
tion, as well as total battery voltage, total current, maximum temperature, minimum 

Fig. 10 Actual test results of different models
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temperature, and SOC. The model is tested using this data and evaluated by battery 
State of Health (SOH) and Relative Error (RE). The results are shown in Fig. 10.

In Fig. 10a, the SOH estimation curves of UPF-SVR model and UPF-RVR model had 
roughly the same variation trend. The SOH estimation results continued to approximate 
the true value with the advance of time series. The prediction results of UPF-PSO-SVR 
model were closer to the target value. The results verify the validity of UPF-PSO-SVR 
model for SOH estimation. From Fig. 10b, the RE of the three models in the early stage 
of SOH estimation was approximately the same, among which UPF-SVR model was the 
lowest. As the battery is used, the RE of SOH estimation was gradually reduced. Finally, 
the RE value was only 1%.

Among the above results, the proposed model achieves low SOH error. At present, 
the existing errors are mainly systematic errors. Specifically, improper model parameter 
settings prevent the model from fully learning the nonlinear characteristics of battery 
performance changes. Because the battery performance has very complex changes, the 
model can not fully learn the law of battery degeneration, which leads to certain system-
atic errors. It is not susceptible to systematic error in short-term prediction, but has a 
certain impact on long-term prediction. However, under sufficient data conditions, the 
model can still control the prediction error within a reasonable range.

Health testing of LB

To prove the effects of health characteristics on the SOH evaluation results, Shapley val-
ues of various features are obtained. The absolute Shapley values of all feature points 
within the class are taken. Then the average Shapley values of various health features are 
obtained to characterize the influence of health features on SOH evaluation results. The 
test results are shown in Fig. 11.
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Fig. 11 Summary of shapley values for health characteristics
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Figure  11a shows the average Shapley values of battery health characteristics. The 
results showed that the average Shapley values of Constant Current Charge Time 
(CCCT), Constant Voltage Transition Charge Time (CVTCT), Discharge Time Window 
(DTW), and Weighted Average State (WAS) were higher. Therefore, these four types of 
features were considered as key health characteristics of batteries. Figure 11b shows the 
battery health characteristics. The highest Shapley of CCCT was around 0.08, while the 
lowest Shapley value of DTW was − 0.16. CCCT and CVTCT have a positive impact 
on battery SOH. With the increase of characteristic values, the Shapley value increases, 
corresponding to a higher battery SOH. Battery SOH was negatively affected by DTW 
and WAS. As the characteristic values increase, the Shapley value gradually decreases, 
corresponding to a lower battery SOH. However, other health characteristics have a rela-
tively small impact on battery SOH. By averaging the Shapley value, the study was able to 
quantify the influence of each feature on the model prediction results. A higher Shapley 
value indicates that the feature contributes more to the model prediction. A lower Shap-
ley value indicates that the feature contributes less. More in-depth data mining and pro-
cessing can be carried out for features with greater contribution. For features with low 
contribution, the dimensionality can be reduced or the data quality can be optimized 
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to improve the overall performance of the model. The study analyzes the evaluation 
between health characteristics and battery SOH. Figure 12 presents the results.

Figure 12a shows the Shapley value variation of DTW and its relationship with CCCT 
features. When the DTW eigenvalue was less than 400, the Shapley value was positive, 
which had a positive impact on the SOH evaluation results. With the increase of DTW 
eigenvalues and the decrease of CCCT eigenvalues, there was a significant negative cor-
relation between them. Figure 12b shows the Shapley value variation of CVTCT and its 
relationship with CCT features. When the change of constant voltage charging voltage 
remained stable for more than 5000 s, the Shapley value turned positive. It had a positive 
impact on the SOH evaluation results. With the increase of stable duration, the duration 
of constant voltage charging increased synchronously, showing a positive correlation 
between them. Key health features reveal the importance and impact of features on bat-
tery health prediction through the interaction and correlation between features. Some 
characteristics may have a greater impact on predicted outcomes under certain condi-
tions and less impact under others. The interaction between dependency and key health 
features helps to understand the complex contribution of features to prediction results. 
In summary, it can accurately predict the remaining life of batteries. It can provide com-
prehensive feature analysis and performance testing for battery health. The experimen-
tal results show that the non-linear and non-Gaussian noise problems of the system 
are dealt with by UPF. The reliability of the data and the robustness of the model are 
significantly improved. Compared with traditional filtering algorithms, UPF can more 
accurately capture the noise characteristics of battery capacity changes, thus reducing 
prediction errors. SVR uses kernel function technique to deal with complex non-linear 
relationship, which can better reflect the real change of battery capacity decline. PSO 
algorithm optimizes the parameter combination of SVR through global search. There-
fore, SVR can find the optimal kernel function parameter and regularization parameter 
in the high-dimensional parameter space. This optimization process improves the pre-
diction accuracy of the model.

Through the above comparative analysis, the UPF-PSO-SVR model shows significant 
advantages in predicting the capacity decline of lithium-ion batteries. The model is sig-
nificantly better than the centralized comparison model in the performance indicators 
such as MSE and MAE, showing a high prediction accuracy. However, higher computing 
resource requirements, including longer running time and higher memory and proces-
sor usage, reflect the complexity of the model. In terms of implementation difficulty, the 
UPF-PSO SVR model is more complex, but its adaptability is strong. It can effectively 
deal with complex non-linear relations and data noise, which is suitable for a variety of 
different battery types and scenarios. Therefore, the UPF-PSO-SVR model shows impor-
tant practical value in applications requiring high prediction precision.

Conclusion
In vehicles powered by new energies, the stability and safety of battery performance are 
one of the most critical technical challenges. Especially, the battery capacity degrada-
tion has a direct impact on the service life of batteries and the performance of the entire 
vehicle. The LB detection model based on UPF-PSO-SVR was built for testing LB. This 
model combined the particle filtering and PSO technology. Then the remaining life and 
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the health characteristics of batteries were analyzed through SVR. Experiments were 
carried out on 5#, 6#, 7#, and 18#. In the 5# battery test, the UPF-PSO-SVR model was 
able to reduce RMSE to 0.0011. In predicting 18# battery, the RMSE was reduced to 
0.0013. From the analysis of model uncertainty and error, the model had good stability 
and accuracy. In the analysis of health characteristics, the results showed that CCCT 
and CVTCT positively affected battery SOH, while Battery SOH negatively affected 
by DTW and WAS. The UPF-PSO-SVR was effective and accurate in predicting bat-
tery capacity degradation, providing an effective technical means for capacity degrada-
tion management and health assessment. The main contribution of the research is to 
improve the reliability of the data and the robustness of the model. Therefore, the model 
can show higher stability and consistency when processing the actual battery data. The 
prediction accuracy of the model is improved, so that it can maintain high precision 
prediction under different battery types and usage conditions. The prediction perfor-
mance of SVR is significantly improved, especially in the high-dimensional parameter 
space, which ensures the superior performance of the model under various complex 
conditions. Through the innovative combination of UPF, PSO and SVR, the ability to 
process noisy data, capture nonlinear relationships, and optimize parameter settings is 
enhanced. Although it has achieved certain results, there are still some limitations. For 
example, in order to reduce the influence of external factors on the experimental results, 
the research tries to maintain the consistency of the experimental environment as much 
as possible, thus lacking discussion and analysis of the external environment. In future 
research, a detailed analysis of the impact of external factors on battery performance 
will be conducted. At the same time, the model structure is further simplified to improve 
algorithm efficiency and explore parameter adjustment strategies applicable to a wider 
range of battery types.
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