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Introduction
In the course of the energy transition, residential buildings contain increasingly more 
electricity-related components such as heat pumps for heating and supplying domestic 
hot water, roof solar systems for self-generating electricity, home charging stations for 
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Gossen’s First Law describes the law of diminishing marginal utility. This paper aims 
to further verify the proposed hypothesis that Gossen’s First Law also holds in the mod-
eling for Demand Side Management (DSM) with a thorough heat pump case study. 
The proposed hypothesis states that in general the complexity-utility relationship 
in the field of DSM modeling could be represented by a diminishing marginal util-
ity curve. On the other hand, in data based modeling, when utilizing a large dataset 
for validation, the data integrity is critical to the reliability of the results. However, 
the absence of partial time series data may occur during the measurement due 
to missing sensors or IT related issues. In this work, an extensive real-world open 
dataset of a ground source heat pump is utilized for the case study. In the raw data, 
one key variable namely the flow rate is missing. Thus, three different algorithms based 
on machine learning and deep learning architectures namely Random Forest (RF), 
Long Short-Term Memory (LSTM) and Transformer are applied to predict the flow rate 
by utilizing an open loop forecasting. The raw data are first pre-processed with a time 
interval of one hour and then used for training, validation and forecast. Furthermore, 
a modified persistence model as the baseline is also defined. The predicted flow rate 
using LSTM yields the lowest error of 7.47% nMAE and 10.56% nRMSE respectively. The 
forecast results are then utilized in the following step of modeling of a heat pump use 
case. With the introduced quantification method for complexity and a modified version 
for utility, we further verify the proposed hypothesis with a longer time horizon of 7 
days.
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e-mobility and even fuel cell systems as home power plants (Thomas et al. 2020). These 
components, called as Distributed Energy Resources (DERs), provide the possibility of 
adapting the electricity load to electricity production, also known as Demand Side Man-
agement (DSM) (Energie-Agentur 2016). However, when modeling such components 
and their synergies for DSM, it is often unclear how detailed models need to be for dif-
ferent DSM applications since there is always an interaction effect between the utility 
and the complexity of a model. A complex model can usually provide more meaningful 
results than a simple model, but the effort required to modeling it increases accordingly. 
Therefore, it’s necessary to investigate the relationship between the utility and complex-
ity of a model in order to provide a quantified reference for different DSM applications. 
Mainly inspired by Gossen’s First Law in economics and by research results in other 
modeling applications, e.g., in Building Information Modeling (BIM) (McArthur 2015), 
a novel approach and hypothesis was proposed by integrating Gossen’s First Law into 
DSM modeling based on a first ground source heat pump study in Li et al. (2024). The 
proposed hypothesis states that in general the complexity-utility relationship in the field 
of DSM modeling could be represented by a diminishing marginal utility curve, thereby 
shedding light on the quantified relationship between model complexity and utility. 
However, there are two major limitations in this first study (Li et al. 2024), the first is 
that only one day, i.e., 24  h in February has been selected for validation, which could 
limit the robustness and generalizability of the proposed hypothesis, since different days 
might have different patterns. Secondly, potential applications of the findings, especially 
in real-world scenarios, should be discussed and summarized in more detail.

In order to tackle the mentioned limitations, it’s necessary to select a larger real-world 
dataset with a longer time span for validation, where more temporal impacts throughout 
the time will be captured. However, the absence of some time series data may occur dur-
ing the measurement. Before utilizing the data in modeling and analysis, it is important 
to generate or forecast the absence data as accurate as possible. This is especially inevi-
table when these data are crucial for decision making. For data generation or forecast, 
there have been several methods and approaches in literature such as single imputation 
(Zhang 2016) and machine learning approaches (Emmanuel et  al. 2021). More details 
will be discussed in Sect. 2.

The main contribution of this paper is to further verify the proposed hypothesis in 
the previous work Li et al. (2024) with a longer time horizon of 7 days and more, i.e., 5 
model classes. The proposed hypothesis in Li et al. (2024) is only validated for 24 h based 
on a Ground Source Heat Pump (GSHP) in a stand-alone house with 4 model classes 
as the preliminary work. In the present work, the heat pump modeling and thorough 
hypothesis validation are carried out based on an extensive real-time updated database 
from Switzerland [Meyer (https://​www.​effiz​iente-​waerm​epumpe.​ch/​messd​aten/​index.​
php)], where historical raw data such as supply and return temperatures, thermal power 
and electrical power with a time interval of 15 min are extracted for the years 2021 and 
2022. However, one key variable for modeling, namely the flow rate, is missing in the 
raw data. To tackle this problem as a necessary pre-step for the following model clas-
sification, utility comparison and validation, different machine learning (Random Forest) 
and deep learning (Long Short-Term Memory, Transformer) based approaches in partial 
time series data forecast with the modified persistence model as the baseline are utilized 

https://www.effiziente-waermepumpe.ch/messdaten/index.php
https://www.effiziente-waermepumpe.ch/messdaten/index.php
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and compared in the present work. The raw data are first pre-processed into time series 
data on hourly resolution. Then the data in January and February 2021 are selected for 
training with cross-validation and generation based on the frequency of zeros in the pre-
processed data. A time horizon of 168 h, i.e., 7 days is determined for the time series 
data forecast and generation. By utilizing the descriptive statistics, i.e., nRMSE and 
nMAE, the accuracy of different approaches is compared and the best results for this 
use case are selected for the following step of heat pump modeling and simulation. With 
the generated data, the quantified relationship between model complexity and utility are 
illustrated with a longer time span and therefore the hypothesis is further explored. In 
addition, it’s worth noting that the term data generation refers to an open loop forecast-
ing in this context, which are interchangeably used throughout the text. The workflow of 
the present work is summarized in Fig. 1.

The remainder of the paper is divided into the following four parts. Section 2 presents 
related work on modeling of demand response or DSM technologies as well as in dif-
ferent approaches for data generation or forecast and proposes the selected approaches 
in this work. In Sect. 3, a brief description of each algorithm used for data generation 
is given. Besides, the methods and ideas for quantifying complexity and utility are also 
introduced. Section  4 describes the selected ground source heat pump system for the 
large real-world dataset and then the raw data together with the results of the pre-
processing are presented. Section 5 presents, analyses and discusses the results of data 

Fig. 1  Workflow of the present work
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generation and heat pump simulation. Finally, the main conclusions of this work are 
highlighted in Sect. 6.

Related work
In recent years, there has been an increasing amount of literature on modeling of 
demand response or DSM technologies. For instance, in Turitsyn et al. (2011) a mod-
eling framework for 4 types of individual devices which are expected to participate in 
future demand-response markets are introduced. The purpose is to pursue their opti-
mal price-taking control strategy under a given stochastic situation. The models are dif-
ferentiated into 4 types which are optimal and generic. Therefore, modeling of specific 
systems and synergies between different systems are not investigated. In 2013, a more 
generic taxonomy for modeling flexibility in Smart Grids are defined in Petersen et al. 
(2013), which divided all systems into three categories and used them to optimize and 
solve flexibility problems in Smart Grids. This type of modeling approach simplifies 
the modeling process and improves optimization efficiency. However, the challenges of 
considering different influencing factors in real energy systems such as temperature are 
not solved since the models are too abstract. For this reason, the models are hard to be 
directly applied to real energy systems on the demand side.

In contrast, Keeling and Butcher (2013) Peralta et al. (2021) Śliwa and Gonet (2005) 
used very detailed theoretical models and complex numerical techniques such as Lax-
Wendroff finite difference approximations for a specified system, i.e., heat pump and 
its subsystems. These models are capable of delivering accurate results, however, yield 
very high complexity and low performance, meaning more computing resources and 
measurements are required, which limits the optimization efficiency as well as practical 
operations. This will limit the practical application in the field of DSM. In summary, we 
conclude that models of varying degree of complexity have different utilities, as men-
tioned in Sect. 1. However, there is no, to the best knowledge of the authors, straightfor-
ward investigation of the effect of model complexity on model utility in DSM. Hence, it’s 
necessary to investigate the relationship between the utility and complexity of a model in 
order to provide a better reference for different DSM applications.

Moreover, dealing with partially missing data in modeling when utilizing large 
datasets for validation, has been an important topic, not only in engineering but 
also in other fields such as medicine for a long time. In order to address this prob-
lem more accurately and reliably, different approaches, from the common statistical 
techniques to machine learning based methods in recent years, are explored based 
on different use cases in many publications. In Zhang (2016), the implementation 
of R code to perform single imputation of missing data such as mean, median and 
mode imputations is conducted. However, no quantified results are summarized in 
the article. The authors in Austin et  al. (2021) have developed a model based on 
Multiple Imputation (MI) to create imputed data and proven that the created val-
ues by using MI are plausible in their use case. Another new technique, which is a 
hybrid approach of single and multiple imputation techniques, is proposed in Khan 
and Hoque (2020) in two variations to impute categorical and numeric data. The 
experimental results show that the proposed algorithm achieves around 20% higher 
F-measure for binary data imputation and around 11% improvement in terms of 
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error reduction for numeric data. To handle the nonlinear associations between the 
variables in multilevel models, a flexible sequential approach based on Bayesian esti-
mation techniques is proposed in Grund et al. (2021), which outperforms the con-
ventional MI methods for multilevel models with nonlinear effects. In Weber et al. 
(2021), the authors have introduced a new Copy-Paste Imputation (CPI) method for 
imputing energy and power time series. The method takes into account the total 
energy of each gap and outperforms the selected three benchmark imputation meth-
ods in their work.

In addition to using statistical methods to reconstruct missing data, machine learning 
imputation methods are also widely used for imputation of missing data. For instance, 
the authors in Jerez et al. (2010) compare the performance of machine learning based 
techniques such as multi-layer perceptron (MLP) and k-nearest neighbor (KNN) with 
statistical techniques such as MI. The results reveal that the machine learning tech-
niques lead to a significant enhancement of accuracy compared to statistical procedures. 
Similarly, eight statistical and machine learning imputation methods are compared 
based on real data and predictive models in Li et al. (2024). The most effective results are 
attained by KNN and Random Forest (RF). In the survey paper Emmanuel et al. (2021), 
the authors aggregate different imputation methods, particularly focusing on machine 
learning techniques. They evaluate the performance of KNN and missForest, which is 
an iterative method based on RF, by utilizing a power plant fan dataset. The results are 
promising for future research direction. Besides the common machine learning tech-
niques, deep learning methods are also explored for dealing with missing data such as 
Long Short-Term Memory (LSTM). In Tian et al. (2018), a new model named as LSTM-
M is proposed for managing missing data in the traffic flow, which outperforms several 
other methods such as Support Vector Regression (SVR) in terms of accuracy. Likewise, 
the authors in Ma et  al. (2020) propose a LSTM-BIT model, which is a hybrid LSTM 
model with Bi-directional Imputation and Transfer Learning (BIT). The results show 
that the proposed model achieves a 4.24% to 47.15% RMSE under different missing rates.

Moreover, since Transformer was proposed in 2017 Vaswani et  al. (2017), the 
exploration about applications based on its architecture is still ongoing. The huge 
success of this architecture in natural language processing (NLP) and computer 
vision (CV) motivates the exploration of its other potential such as handling time 
series data (Hertel et al. 2023). However, there have been very few works that focus 
on utilizing Transformer for handling data generation. Based on the related work 
above, three different approaches are selected for data generation in this work, 
namely RF, LSTM and Transformer. Furthermore, we propose a modified persis-
tence model as the baseline for a better quantitative comparison and discussion.

Methodology
In this section, the algorithms for forecasting the flow rate in the heat pump mod-
eling are first presented, including a modified persistence model as the baseline. And 
to visualize the relationship between complexity and utility, the method for quantifi-
cation of complexity and utility are then discussed.
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Prediction algorithms and modified persistence model

In the present work, three different algorithms are chosen for forecasting as mentioned 
in Sect. 2. In this subsection, each of them is briefly described. Besides, the definition of 
our modified persistence model as the baseline is also included in this subsection.

Random forest (RF)

As an ensemble learning method for classification and regression problems (Breiman 
2001), RF has been widely used in many classification and regression problems. When 
dealing with data generation, it also shows promising results as stated in Emmanuel et al. 
(2021) Li et al. (2024). When the data is presented through time series, it requires trans-
forming the time series dataset into a supervised learning problem first. Figure 2 shows 
this transformation process, i.e., sliding window, with an input size of one as an exam-
ple, where Y is the value at each time step. However, there is a limitation of this method 
that cannot be ignored, i.e., random forest cannot extrapolate. It means that predicted 
values are always within the range of the training set. In this work, different input sizes 
are tested to find an ideal parameter. Finally, we create a bagged regression ensemble 
object with an input size of 5 together with the temporal features of days such as Mon-
day, Tuesday etc. as the 6th input, to use bootstrap aggregation method for model train-
ing, since there are no significant improvements with further increased input sizes.

Long short‑term memory (LSTM)

For predicting data based on time series while avoiding the vanishing gradient problem, 
LSTM has been developed as a modified version of traditional RNN. By introducing the 
so-called gates, LSTM can regulate the flow of information and maintain valuable infor-
mation. In comparison to other RNN, LSTM can deal with large amounts of data and 
time steps more easily (Zhu et al. 2019). Besides, it’s also powerful when managing miss-
ing data as presented in Tian et al. (2018) Ma et al. (2020). Based on these advantages, it’s 
been chosen as one of the algorithms in the paper.

Transformer

For all RNNs, one major limitation is that the computations must be performed in the 
sequence’s order, which makes parallel computation difficult and thus limits the effi-
ciency when dealing with long sequences. The proposed Transformer architecture in 
Vaswani et al. (2017), which relies on the self-attention and multi-head attention mech-
anism, solved this limitation, making it more efficient than RNNs. While there is still 
debate about the advantages of Transformer in time series as remarked in Wen et  al. 
(2022), the consideration and introduction of this new architecture to deal with time 
series data generation is worthwhile.

Fig. 2  Transformation of time series into a supervised learning problem with input size of one
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Modified persistence model

The persistence model (Notton and Voyant 2018) is often used as a trivial reference 
model when different forecast models are compared. In this work, a modified version 
of the persistence model is defined by considering the temporal impacts. Instead of gen-
erating the future value by assuming that no changes happen between the current time 
step and next time step, we use the values a week ago of the same time period, i.e., same 
days in the week as presented in Fig. 3.

Method for quantification and visualization

The proposed hypothesis uses a diminishing marginal utility curve to represent the com-
plexity-utility relationship in the field of DSM modeling. As with Gossen’s First Law, the 
marginal utility itself is an inherently abstract concept and needs to be quantified first, 
such as income (Layard et al. 2008), in order to illustrate its relationship with consump-
tion or other properties. Similarly, the method for quantifying the complexity and utility 
of DSM modeling is also crucial to visualize the interaction between them. This subsec-
tion discusses separately what kinds of quantitative options for complexity and utility are 
available and then explains those that have been chosen in the present work.

Quantification of complexity

In computer sciences complexity is measured in various ways, such as required time, 
number of operations, required memory and Big O notation. They do depend on the 
specific algorithms, their implementation, and the hardware they are running on. For 
instance, Big O notation is often used to classify the efficiency or complexity of algo-
rithms according to how their rum time grows as the input variable increases. However, 
for modeling we need other measures. Different from computational complexity theory 
or information theory, this work focuses on the modeling of physical structures and 
dynamic processes of energy components in DSM applications. Thus, an appropriate 
method in our scenario should help to understand the practical complexity of different 
models such as the measurement setup and how the model works, thereby promoting 
transparency and reliability in their practical application. Furthermore, an appropriate 
method for quantification applicable for all possible system components is required.

In Bao et al. (2014a, 2014b); Jiang and Wang (2012) different time scales are used in 
energy systems of different complexity. In the process of modeling, if transient processes 
within a system are non-decisive, we could neglect the details and use larger time scale 
to simplify the whole process. However, this option cannot differentiate the complexity 
of the same model because different time scales can also be chosen during the simula-
tion for the same model.

Fig. 3  Modified persistence model
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Besides choosing different time scales, another option to quantify complexity would 
be by the power range that can cover the range from milliwatt (mW) to gigawatt (GW). 
Different power ranges would have an impact on dynamic responses of the model, lead-
ing to more complex model and corresponding controls (De Brito et al. 2011). However, 
the limitations of this option are also significant because the power range is generally 
determined for a given energy system. Therefore, the power range of a model cannot 
always be artificially changed to quantify its complexity.

A third way of quantifying complexity could be based on the number of required 
parameters in models. On a structural basis, any model is a combination of different 
input and output parameters. Furthermore, for the same model, the number of param-
eters could be adjusted according to the study objectives or experimental conditions, so 
that models of different complexity can be built.

Among the three methods mentioned above, the third method has the best applica-
bility and feasibility. Besides, it aids in a better unterstanding of how the models work. 
Based on that, the included parameters of a model, i.e., the number of required param-
eters, has been chosen to quantify the complexity in our work.

Quantification of utility

The main goal of DSM applications is to improve the flexibility of a power system (Ener-
gie-Agentur 2016). In this context, the methods for the quantification of utility are as 
same as those for quantifying flexibility in DSM applications. In Péan et al. (2019) four 
typical ways for quantifying flexibility in DSM, namely load-shifting, peak shaving, 
reduction of energy use and valley filling, are explained and summarized. In De Coninck 
and Helsen (2016) two more specific approaches, namely daily primary energy use and 
daily energy costs are used to show the improved and quantified flexibility.

In addition, it is worth noting that the accuracy of a model must first be verified 
through offline simulations before the model is used to analyze flexibility in DSM appli-
cations. Models with high predictive and simulation accuracy can assist grid operators 
or DSM participants in optimizing recourse allocation, reducing unnecessary energy 
waste and effectively lowering operational costs (Panda et al. 2022), thereby improving 
the overall efficiency and profitability of DSM applications. According to ISO 5725-1, 
the general term “accuracy” describes the closeness of a measurement to the true value. 
Based on this definition, we can quantitatively describe the accuracy of a model with 
the help of some useful metrics in descriptive statistics such as normalized Root-Mean-
Square Error (nRMSE) and normalized Mean-Absolute-Error (nMAE).

One focus of this work is on the accuracy of different models in an offline simulation and 
uses quantified accuracy to represent utility of models. In order to reduce the impact of 
absolute values on the accuracy analysis, two descriptive statistics namely nRMSE and 

(1)nRMSE(Ŷ ) =
nRMSE(Ŷ )

max(Ya)−min(Ya)

(2)nMAE(Ŷ ) =
nMAE(Ŷ )

max(Ya)−min(Ya)
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nMAE are defined in (1) and (2), where Ŷ  is the generated or simulated value and Ya is 
the ground truth.

Measurement system and data preprocessing
In this section, the overview and setup of the selected ground source heat pump sys-
tem (GSHP) [Meyer (https://​www.​effiz​iente-​waerm​epumpe.​ch/​messd​aten/​index.​php)], 
which measures and stores the real-world dataset, is briefly described first. After that, 
the structure of the raw data is presented. In the second part, discussion of the necessary 
data preprocessing for the generation of flow rate is carried out.

Measurement system

The selected system uses a GSHP together with a smaller hot water tank for the domes-
tic hot water supply and a larger hot water tank for the house heating. Figure 4 shows 
the schematic heat matrix of the overall heating system along with different positions of 
installed temperature sensors. It shows that 4 temperature sensors are installed at differ-
ent layers in the large heating storage tank and 3 sensors are placed for the smaller one 
with the equal distance. This layout leads to the modification of the thermal model of 
heat pump storage, which will be discussed in Sect. 6.

Data preprocessing: generation of flow rate

Fig. 4  Schematic heat matrix consisting of positions of installed temperature sensors

https://www.effiziente-waermepumpe.ch/messdaten/index.php
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The real-time updated databank has an update interval of 30 s to 60 s according to Meyer 
(https://​www.​effiz​iente-​waerm​epumpe.​ch/​messd​aten/​index.​php). In this work, the his-
torical raw data with a time interval of 15 min are extracted for the years 2021 and 2022. 
Due to the space limitation, Table 1 shows an excerpt from the extracted raw data, where 
Tsupply and Treturn are the supply and return temperature of the heat pump respectively. 
The coefficient of performance (COP) presents heat pump’s overall performance, which 
is defined as the ratio of PQ and P, where PQ is the thermal power and P is the consumed 
electrical power. However, one key variable is missing in the raw data, which is the flow 
rate, i.e., V̇w in (3), where cw is the specific heat capacity of water and ρw is the density of 
water. This variable is used for calculating the thermal power and thus needs to be gen-
erated first for the following comparison and simulation.

According to the date and time, the raw data are pre-processed into time series data 
by hour at first. Besides, it’s assumed that the thermal power and the electrical power 
are constant throughout each time interval. Moreover, it’s worth noting that the thermal 
power will be equal zero when the heat pump is turned off, which means that the fre-
quency of zeros in the pre-processed data should be as small as possible to avoid the case 
of sparse data. Based on these three conditions mentioned above, the data from January 
4th to February 7th in 2021 and from January 31st to March 6th in 2022 are selected for 
the calculation of the average flow rate by hour. Each time period starts on Monday and 
ends on Sunday. The reason for choosing another month in 2022 is that several days of 
data are completely missing in January.

Figure 5 shows the results of calculated flow rate of the selected 5 weeks in 2021 and 
2022. The frequency of zeros of the selected time period in 2021 and 2022 are 23.57% 

(3)PQ = cw · V̇w · ρw · (Tsupply − Treturn)

Table 1  Excerpt from the raw data

Date and time T supply [ ◦C] T return [ ◦C] PQ [W] P [W] COP

2021-01-02 03:00:00 42.4 34.6 13898 3440 4.04

2021-01-02 03:15:00 51.9 44.3 13494 4040 3.34

2021-01-02 03:30:00 58.3 51.1 12775 4612 2.77
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Fig. 5  Average flow rate during the selected time period in 2021 and 2022

https://www.effiziente-waermepumpe.ch/messdaten/index.php
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and 32.38% respectively. It shows that the data in 2021 are less sparser than the data in 
2022. Therefore, the chosen time period in 2021 will be determined for the following 
work.

Results and discussion
In this section, the results of the predicted flow rate by using different algorithms are 
first given and compared. In the following step, different model classes are defined based 
on the complexity, i.e., the number of required parameters. By utilizing the generated 
flow rate, the simulation results are then presented along with the discussion.

Flow rate generation results

As mentioned in Sect.  4, the selected time period in 2021 contains 5 weeks. The cal-
culated flow rate in the first 4 weeks is used as training set with cross-validation. The 
subsequent week, namely a time horizon of 7 days, serves as the ground truth for the 
generated data. Different from predicting multiple subsequent time steps in a closed 
loop forecasting, we use an open loop forecasting for generating the data at the next 
time step. It means that for subsequent time steps, the true value, which is the calculated 
flow rate in our case, is collected until the last time step and used as input.

Compared to a conventional approach, which is to create forecast models for each 
measured variable namely the thermal power, the supply and return temperatures in (3) 
and then to use the predicted values to calculate the flow rate, the proposed pre-process-
ing approach is more straightforward and less complex. The proposed approach calcu-
lates the flow rate in the past explicitly and only needs to create a forecast model for the 
flow rate directly.

To optimize the forecast results of each method, we have tuned the hyperparameters 
in different approaches separately, where the hyperparameters for RF are automatically 
optimized in MATLAB and the tuned hyperparameter settings for LSTM and Trans-
former in PyTorch are shown in Table 2. It’s worth noting that hyperparameters such as 
Epoch and number of layers in LSTM and Transformer, which have a significant impact 
on the complexity and the run time of both approaches, are set to be the same in order 
to ensure that the complexity of both methods does not differ too much within the range 
of tuned values.

Two descriptive statistics, as described in Sect 3.2.2, are summarized in Table 3. The 
detailed plots are presented in Figs. 6 and  7. It should be noted that not all training data 

Table 2  Hyperparameter setting for LSTM and Transformer

LSTM Transformer

Input size 1 Num heads 16

Hidden size 256 Hidden dimension 512

Hidden layer 1 Num layers 1

Batch size 128 Batch size 4

Epoch 200 Epoch 200

Learning rate 0.01 Learning rate 0.001

Optimizer Adam Regularization Dropout = 0.1
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are plotted in order to better demonstrate the comparison between the ground truth and 
the generated data.

According to the results in Table 3, the minimum error of the generated data is given 
by LSTM with a nRMSE of 10.56% and a nMAE of 7.47% . On the other hand, the results 
of RF are no better than the baseline with the modified persistence model. This demon-
strates the limitation of RF when dealing with sparse data, although the input size of RF 
is longer compared to LSTM. In addition, it should be noted that the summarized results 
represent the capability of each machine learning algorithm under the current tuned 
hyperparameter settings in this scenario. For the model classification and utility com-
parison in Sect. 5.2, the LSTM generated results with the smallest error will be utilized.

Modeling and simulation results

In this subsection, the heat pump models are first briefly modified and described based on 
the selected heat pump system in Meyer (https://​www.​effiz​iente-​waerm​epumpe.​ch/​messd​
aten/​index.​php). Afterwards, different model classes based on the number of required 
parameters by combining different mathematical models are defined. Then, the defined 

Table 3  Summary of descriptive statistics for each algorithm

Persistence model RF LSTM Transformer

nRMSE 22.08% 22.00% 10.56% 24.46%

nMAE 15.14% 16.26% 7.47% 19.73%
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Fig. 6  Generated average flow rate with RF and the modified persistence model
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Fig. 7  Generated average flow rate with LSTM and Transformer
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model classes are used to perform offline simulations of the load profile for the following 
analysis. Lastly, the subsection concludes with a discussion of the hypothesis mentioned in 
Sect. 1.

Modification and classification of the models

In Li et al. (2024), the modeling of the ground source heat pump is carried out based on 
three main subsystems for heat transfer, namely the thermal model of the borehole ground 
heat exchanger (GHE), the thermal model of the heat pump itself and the thermal model 
of the heat pump storage. However, due to the new structure of the selected system in the 
current work, it’s necessary to modify the models. The heat transfer in the borehole GHE is 
unchanged modeled in (4) and (5), where Tin and Tout are the inlet and outlet temperature 
of the borehole GHE as shown in Fig. 4. cb is the specific heat capacity of the brine and ṁb 
is the mass flow of the brine. Besides, Pabs

Q  is the absorbed thermal power, which is also the 
difference between PQ and P.

To model the performance of the heat pump itself, one simple way is to calculate the 
COP directly with the measured thermal and electrical power over a period of time 
and obtain an average value as presented in (6). Moreover, the thermal power can be 
obtained as mentioned in (1).

In this work, the system contains two different hot water tanks for different purposes as 
described in Sect. 3. As the central storage for thermal energy, the temperature and cor-
responding energy changes have a significant impact on the overall system. Therefore, 
it’s necessary to consider the energy changes of the storage separately. In general, the 
thermal energy change in the storage between two successive time steps could be calcu-
lated in (7) under the assumption that the density and the specific heat capacity of hot 
water as constant. In (7), the Vs is the volume of the hot water tank and (Tmean

t − Tmean
t−1

) 
donates the average temperature change of the hot water, which are determined in (8) 
and (9) for the small and the large storage respectively with the assumption that the tem-
perature is evenly distributed in each layer at every time step.

(4)Tout =Tin +
Pabs
Q

cb · ṁb

(5)Pabs
Q =PQ − P

(6)COP
avg =

1

n

n

t=1

PQ,t

Pt

(7)�Qs =cw · Vs · ρw · (Tmean
t − Tmean

t−1 )

(8)Tmean,s
t =

T 25cm
t + T 50cm

t + T 100cm
t

3
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Using the modified models, we introduce five different model classes (A, B, C, D and E) 
with decreasing complexity in terms of the number of required parameters. All model 
classes utilize (3) to calculate the thermal power with the generated average flow rate 
to further obtain the electrical power, while Model A considers the energy changes in 
both storages, Model B and Model C neglect the impact of the small and the large hot 
water tank respectively. Moreover, Model D is further simplified by ignoring the energy 
changes in both storage. The last model class directly uses the average COP to calculate 
the consumed electrical power. Table 4 presents the model classification and the number 
of required parameters and an overview of the individual parameters that apply to each 
model class is given in Table 5.

(9)Tmean,l
t =

Tbottom
t + T 25cm

t + T 50cm
t + T

top
t

4

Table 4  Model classification with respect to parameters

Model class Combination Number of 
required 
parameters

Model A (3)(4)(5)(7)(8)(9) 16

Model B (3)(4)(5)(7)(9) 14

Model C (3)(4)(5)(7)(8) 13

Model D (3)(4)(5) 9

Model E (3)(6) 7

Table 5  Overview of the applied parameters to each model class

Parameter Model A Model B Model C Model D Model E

T supply � � � � �

T return � � � � �

V̇w � � � � �

ṁb � � � �

Tout � � � �

T in � � � �

Tbottom � �

T 25cm � � �

T 50cm � � �

T 100cm � �

T top � �

ρw � � � � �

cw � � � � �

cb � � � �

Vs � � �

Vl �

PQ �

P �
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Results and utility comparison

The quantification of the utility of the models is modified with the new definition in 
(10), where U represents the utility of a model in percentage. The reason to use nMAE 
instead of MAPE as described in Li et  al. (2024) is that the ground truth contains 
zeros, which makes the calculation of MAPE not feasible.

As mentioned in Sect. 1, a time horizon of 168 h is determined for the simulation and 
analysis. Besides, different from the initialization in the previous work (Li et al. 2024), 
the initial value of the consumed electrical power is calculated by utilizing the gener-
ated flow rate. Figure 8 shows the results of different models along with the differences 
between them and the ground truth.

The diagram shows that the results of Model A are the closest to the measured 
results, whereas Model B and Model D show several large deviations at some time 
steps as shown in some tips of the curve. What these two models have in common 
is that neither considers the energy changes in the small storage for domestic hot 
water. Therefore, one possible reason for this behavior is that the usage patterns of the 
domestic hot water are more dynamic than heating. In addition, the simplest Model 
E in our case presents a larger value than the ground truth in most cases, which could 
be caused by the underestimated average COP in (6), since COP is equal zero when 
the heat pump is turned off.

In order to describe the overall statistic features of the simulation results and the 
utility of the models as defined above, we calculate the nMAE und the correspond-
ing U, yielding the results presented in Table 6. Model A, with the highest complex-
ity in terms of the required parameters, has the lowest nMAE of 3.77% compared to 

(10)U = (1− (nMAE)) · 100[%]
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Fig. 8  Comparison between model results and measured results

Table 6  nMAE and Utility of each model class

Model A Model B Model C Model D Model E

nMAE 3.77% 10.62% 16.99% 20.78% 26.79%

U 96.23% 89.38% 83.01% 79.22% 73.21%
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other four model classes and thus has the highest utility among all models. Besides, 
it’s worth noting that Model B has a lower nMAE than that of Model C despite the 
large deviations at some time steps, which means the overall impact of the large hot 
water storage is greater than that of the small one.

With the definition in (10), the relationship between the utility and the complexity of 
all five model classes are illustrated in Fig. 9. This demonstrates that the results with a 
longer time horizon of 7 days are further verifying the proposed hypothesis in the previ-
ous work (Li et al. 2024), which is that the complexity-utility relationship in the field of 
DSM modeling could be represented by a diminishing marginal utility curve. However, 
it should be noted that the graph line is not as smooth as an approximated diminishing 
marginal utility curve by using a polynomial curve of degree 2, which is also presented in 
orange dashed line as a reference in Fig. 9. The deviation between the simulation and the 
approximation results, such as the data point of Model C, reveals that there could exist 
gaps between the simulation and an ideal value by approximation, which is reasonable.

Conclusion
This paper investigates thoroughly the proposed hypothesis of diminishing marginal 
utility in DSM modeling with a heat pump case study according to Gossen’s First Law 
in economics. The simulation results are basically in line with the diminishing marginal 
utility curve and further verify our proposed hypothesis. In this process, a large real-
world dataset with the predicted flow rate data is utilized as the input. To handle the 
problem of the absence of time series data in the dataset, we first utilize and compare 
three different machine learning algorithms together with our modified persistence 
model, which serves as the baseline. The results show that generation with LSTM deliv-
ers the smallest error, i.e., a nRMSE of 10.56% and a nMAE of 7.47% , by utilizing the 
open loop prediction as the generation method. With the generated flow rate, we then 
carry out the heat pump system modeling, model classification based on the complex-
ity namely the number of required parameters and load profile simulation for a time 
horizon of 7 days with different patterns. Due to the zero values of electrical power in 
our dataset, we modify the definition of utility of models in the present work compared 
to Li et al. (2024) and then illustrate the relationship between the complexity and util-
ity among all five classified model classes. With these findings, potential applications 
could be identified in real-world scenarios. For instance, if we have a pre-defined range 
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of acceptable error, we could use the curve to find a balanced modeling solution, which 
satisfies the error range and contains less complexity at the same time.
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