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Introduction
One of the most widely used technologies at the moment for exploring offshore oil 
and gas potential is FPSO technology. This study places a particular emphasis on 
numerical analysis of critical hawser tensions. Since offloading operations constitute 
essential part of oil and gas exploration and production process, mooring/hawser 

Abstract 

Floating Production Storage and Offloading (FPSO) unit being an offshore vessel, stor-
ing and producing crude oil, prior to crude oil being transported by accompanying 
shuttle tanker. Critical mooring/hawser strains during offloading operation have to be 
accurately predicted, in order to maintain operational safety and reliability. During 
certain types of offloading, excessive hawser tensions may occur, causing operational 
risks. Current study examines FPSO vessel’s dynamic reactions to hydrodynamic wave-
induced loads, given realistic in situ environmental conditions, utilizing the AQWA 
software package. Current study advocates novel multi-dimensional spatiotemporal 
risks assessment approach, that is particularly well suited for large dataset analysis, 
based on numerical simulations (or measurements). Advocated multivariate reliability 
methodology may be useful for a variety of marine and offshore systems that must 
endure severe environmental stressors during their intended operational lifespan. 
Methodology, presented in this study provides advanced capability to efficiently, 
yet accurately evaluate dynamic system failure, hazard and damage risks, given rep-
resentative dynamic record of multidimensional system’s inter-correlated critical 
components. Gaidai risk assessment method being novel dynamic multidimensional 
system’s lifetime assessment methodology. In order to validate and benchmark Gaidai 
risk assessment method, in this study it was applied to FPSO and potentially LNG (i.e., 
Liquid Natural Gas) vessels dynamics. Major advantage of the advocated approach 
is that there are no existing alternative risk assessment methods, able to tackle unlim-
ited number of system’s dimensions. Accurate multi-dimensional risk assessment had 
been carried out, based on numerically simulated data, partially verified by available 
laboratory experiments. Confidence intervals had been given for predicted dynamic 
high-dimensional system risk levels.

Keywords:  FPSO, Energy, Reliability, Risk, LNG, Offshore operations

Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

RESEARCH

Gaidai et al. Energy Informatics            (2024) 7:51  
https://doi.org/10.1186/s42162-024-00350-2

Energy Informatics

*Correspondence:   
y_cao@shou.edu.cn

1 Shanghai Ocean University, 
Shanghai, China
2 Chongqing Jiao Tong 
University, Chongqing, China
3 Jiangsu University of Science 
and Technology, Zhenjiang, 
China

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s42162-024-00350-2&domain=pdf


Page 2 of 18Gaidai et al. Energy Informatics            (2024) 7:51 

systems play significant role in the overall FPSO design. Tandem offloading being 
popular method, suitable for offshore deep-water areas. However, it was shown that 
SBS (i.e., Side-By-Side) offloading being more feasible, cost-efficient, as compared 
with tandem offloading for FPSOs operating for example in Bohai Bay offshore area, 
which being main focus of the current study.

During SBS offloading operations, it’s necessary to consider how 2 vessels move 
relative to each other, accounting for fenders’ response forces, along with tensions in 
the mooring hawsers. In-situ ecology might suffer potential damage and there could 
be considerable financial losses, if the SBS offloading system malfunctions in a dif-
ficult climate. Hawser mooring tensions, which are our primary reliability concern 
here, hence being the focus of this study, (Stanisic et al. 2018). Numerous researches 
on hydrodynamic interactions between 2 nearby floating objects had been conducted 
within recent decades, for more FPSO accident analysis details, (Cho et al. 2012; Wu 
et al. 2022). Utilizing Wigely-type model, the authors (Bhardwaj et al. 2021) have eval-
uated the second order pressures and moment for the SBS arrangement. In (Bhardwaj 
et al. 2022) authors used a time-domain numerical modeling, to assess hydrodynamic 
interactions of an LNG-FPSO with its moored LNG (i.e., Liquid Natural Gas) car-
rier. In (Kashiwagi et al. 2005; Kim et al. 2003) authors focused on the hydrodynamic 
reactions between the driving LNG-FPSO along with its SBS positioned LNG carriers 
by using linear 3D (i.e., 3-Dimensional) potential theory. In (Hagen et al. 2015; Hong 
et  al. 2005) reliability approach has been utilized, to study FPSO offloading opera-
tions, while in Zhang et al. 2016a; Zhang et al. 2019; Zhang et al. 2023) weakest fail-
ure/hazard/damage modes were studied for in-situ SBS offloading operations. For 
recent research on excessive mooring and hawser FPSO tensions include following 
studies, (Buchner et al. 2001). In this work, the offloading process between the FPSO 
and its ST (shuttle tanker) was accurately numerically modelled utilizing FEM (i.e., 
Finite Element Method) AQWA software, (AQWA user’s manual 2013; AQWA theory 
manual 2013).

Note that aforementioned methods could not handle multi-dimensional risk 
assessment problems for SBS dynamic offloading and mooring system. Each hawser 
is essential for operational safety because of the unique features of the SBS offload-
ing process. Due to the linked dynamic mooring system’s complexity along with high 
dimensionality, new, precise, and reliable methods are needed throughout the SBS 
offloading process. Any hawser failure might have detrimental effects on the envi-
ronment in addition to monetary losses. In order to handle all hawser concurrently 
during SBS offloading operations, the authors have created a unique approach. Apply-
ing a unique multi-dimensional risk assessment approach to the complicated SBS 
offloading processes of the FPSO and ST under actual in-situ environmental circum-
stances was the main goal of this work. To tackle various mechanical nonlinear effects 
associated with FPSO hawser mooring/hawser line tensions, without any reductions 
beyond those already present in numerical models, this research has concentrated on 
utilizing a simple yet highly applicable enhanced numerical MC (i.e., Monte Carlo) 
based technique, (Naciri et  al. 2007). Major engineering benefit of the advocated 
MC-based approach, being that there are no existing alternative matching reliability 
methods, able of tackling large number of dynamic system’s components/dimensions. 
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The reliability evaluation approach for SBS offloading FPSO mooring system, which is 
based on identifying the weakest failure mechanism, refer to Zhang et al. 2016b.

For experimental study on SBS offloading operations of FSRU, LNGC vessels, see 
(Failed 2012). For experimental investigations on FLNG connection system’s dynamic 
response, during SBS offloading operations see (Zhao et al. 2017). For experimental 
investigations on influence of liquids inside FLNG tanks subjected to wave loads dur-
ing SBS offloading operation, see (Vieira et al. 2018; Wang et al. 2012). For contempo-
rary practices and relevant research directions within hydrodynamics for FLNG-SBS 
offloading, see (Zhao et  al. 2018a). For hydrodynamics aspects of conceptual FLNG 
system in SBS offloading operations, see (Jin et al. 2019).

Figure  1 provides schematic flow diagram for the MC-based multivariate system 
reliability analysis.

Wave statistics
The in-situ wave scatter diagram in the Bohai Bay (also called Bohai Sea) region 
(within potential FPSO area of operations) had been obtained, using satellite-based 
in-situ areal wave statistics, (Global wave statistics (2024); OCIMF 1994). Annually-
averaged spatial PDF (i.e., Probability Density Function) of wave heights, and associ-
ated wave periods within the Bohai Sea in  situ planned operational area, (Lv et  al. 
2014) had been used to produce relevant load case scenarios for MC simulations. For 
each in-situ environmental sea-state Hs,Tp  , corresponding environmental condi-
tions have been used to identify relevant environmental sea-states, assuming for sim-
plicity head-wind’s and wave’s 180° direction, as in Fig. 2.

In the next section numerical modelling details will be presented.

Fig. 1  Flowchart describing long-term MC-based risks evaluation methodology
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Numerical modeling of SBS operation of FPSO next to its SBS ST
Non-linear impacts between the time- and frequency-domains have been combined 
using the FEM software programme AQWA to precisely evaluate vessel movements, 
according to recommended practices, (DNV-RP DNV 2010; Veritas 2012, 2011; Design 
API 2005). The main FPSO parameters, along with its ST are shown in Table 1. Figure 3 
left shows the SBS offloading system and the multi-point an FPSO mooring system.

Hawser lines arrangement presented in Fig. 3 left. Figure 3 right schematically illus-
trates the connected panel concept for FPSO, positioned next to its ST. As this study was 

Fig. 2  FPSO vessel with ST positioning during SBS, (Yoo et al. 2022)

Table 1  Main particulars of FPSO vessel along with its ST

Designations Symbols Units FPSO ST

Length overall LOA m 235.6 207.0

Length between perpendicular LPP m 225.0 194.0

Breadth B m 46.0 36.0

Depth D m 24.1 16.1

FPSO draft T m 11.2 8.7

FPSO displacement � t 1.1·105 4.9·104

Fig. 3  SBS offloading system layout, along with its multi-point SBS hawsers (marked H1, …, H10), (Xu et al. 
2023)
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focused on a general applicability of the advocated lifetime assessment methodology, 
only few most critical load cases, corresponding to particular sea states, within in-situ 
scatter diagram, had been taken into consideration in MC simulation. The significant 
wave-height range has been selected to be between 1.5  m and 2.5  m, with 4 random 
seeds calculated for each significant wave-height.

Experimental validation notes

Experimental setup for ST model next to its FPSO in the laboratory tank, with fitted SBS 
hawser system, has been described in more detail in Xu et al. (2023). While being acti-
vated by regular waves of various in-situ frequencies, vessel RAO (i.e., Response Ampli-
tude Operator) of 2 vessels had been experimentally measured. The motion RAOs of the 
FPSO estimated, using software package AQWA and associated experimental data had 
been compared, (Xu et al. 2019, 2023; Balakrishna et al. 2022); AQWA numerical results 
had been found to be in quite good agreement with available experimental dataset, the 
latter acted as software package AQWA partial validation. CFD (i.e., Computational 
fluid dynamics), software tools like ANSYS Fluent had been utilized to estimate current-
related force coefficients, see (Fan et  al. 2014). Ten hawsers (H1,…, H10), as shown in 
Fig.  3, constitute SBS hawser system. These contained 110  mm diameter nylon ropes. 
Figure 4 illustrates load-extension curve for the nylon rope.

Proper friction model for nylon ropes may account for inner friction effects, contribut-
ing to fatigue—the latter, however, was beyond the scope of this study.

Gaidai risk assessment method
This section briefly presents methodology, suitable for LTD (i.e., Life Time Distri-
bution) estimation, suitable for complex environmental or energy dynamic systems, 
given multiple hazard/failure/risk modes, active during entire pre-designed opera-
tional time. When hazard/failure thresholds are selected, successive time spans (i.e., 
lifetimes) between data points show crossings of the relevant hazard/failure thresh-
old. These crossings are represented as  ’s, which show the sequential life durations 
Li of the dynamic, where i = 1,2, . . . , multi-dimensional FPSO vessel system. Thus, L, 
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Fig. 4  The load-extension relationship of the nylon rope, (Xu et al. 2019). MBL is the Minimum Breaking Load
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which represents the lifespan of a dynamic system, being a random variable. In for 
instance, modern engineering risk assessment approaches do not necessarily provide 
readily applied solutions to evaluate the LTD of complicated energy or high-dimen-
sional environment systems, particularly if the number of important dimensions/
components (failure modes) of a system is significant. Let one assess CDF (i.e., Cumu-
lative Distribution Function)

this CDF may be directly assessed through either enough measurement data, or through 
direct extensive MC simulations, (Gaidai et al. 2021, 2022b, 2023a, 2022a, 2022c, 2022d, 
2022e; Gaidai and Xing 2022). Both potential experimental expenses, as well as com-
puting costs may be well prohibitive for many engineering complex offshore energy sys-
tems. The authors have proposed a unique way for evaluating the limited computational 
and measurement expenditures that are necessary during the design phase of a system. 
This innovative LTD method is appropriate for complicated multidimensional environ-
mental, engineering, and energy systems.

Let one examine a structurally dynamic MDOF (i.e., Multi-Degree-Of-Freedom) 
that is depicted by a response/load (a component) vector (X(t),Y (t),Z(t), . . . ) ,. This 
vector is composed of the critical/key flexible components of the system 
(X(t),Y (t),Z(t), . . . ) , that are either calculated or mathematically simulated through a 
representative (0,T ) timelapse that is long enough. The global maxima of a multidi-
mensional vessel systems component or 1D (unidimensional) dynamical energy are 
then indicated below, as Xmax

T = max
0≤t≤T

X(t) , Ymax
T = max

0≤t≤T
Y (t) , Zmax

T = max
0≤t≤T

Z(t), . . . . 

By sufficiently long (namely, representative) timelapse T  one primarily means large 
enough T  value, with respect to the dynamic or vessel system’s auto-correlation, as 
well as dynamic vessel system’s relaxation times. With X1, . . . ,XNX being temporally 
increasing vessel system’s critical component’s process X = X(t) local maxima, 
extracted from the raw time-series, recorded at discrete time-increasing temporal 
instants tX1 < · · · < tXNX

 spotted throughout (0,T ) . The other essential components of 
the MDOF system are defined in the same way:Y (t),Z(t), . . . specifically Y1, . . . ,YNY ; 
Z1, . . . ,ZNZ etc. The local maxima of every system with dynamics were taken to be 
positives for the purpose of simplification, and

having been a possibility of surviving for the target dynamical system, possessing 
critical levels of that system’s essential components, represented asηX,ηY ,ηZ ,… and 
pXmax

T ,Ymax
T ,Zmax

T ,... being the joint PDF of individual vessel system critical component’s 
global maxima. High dimensionality of complex systems means that most complicated 
dynamic offshore environmental, mechanical, and offshore energy systems could be 
much beyond the reach of both experimental expenditures and computing expenditures. 
With a conditional probability decomposition, non-exceedance chances/probability P(�) 
may now be evaluated

(1)LTD (L) ≡ Prob(Lifetime ≤ L)

(2)P =

(ηX ,ηY ,ηZ ,... )
∫∫∫

(0,0,0,,... )

pXmax
T ,Ymax

T ,Zmax
T ,...

(

xmax
T , ymax

T , zmax
T , . . .

)

dxmax
T dymax

T dzmax
T . . .



Page 7 of 18Gaidai et al. Energy Informatics            (2024) 7:51 	

Since neighboring Rj dependencies are not always insignificant in reality, the a 
single-step (level of conditioning k = 1 ) memory approximations that follows is 
presented.

With 2 ≤ j ≤ N (conditioning level k = 2 ), the approximate result provided by 
Eq. (4) may be precisely stated as

wherein 3 ≤ j ≤ N  (the conditioning level k = 3 ), etc. The later derivation’s primary goal 
was to avoid locally inter-correlated exceeds from cascades or clustering by recording 
each individual failed or hazard that happened directly initial and on time, (Gaidai et al. 
2023b, 2022f, 2022g, 2023c, 2023d, 2023e, 2023df; Gaidai et  al. 2023g, 2023h, 2023i, 
2023j, 2023k). Updates to the statistical independence assumptions in Eq. (5). The latter 
category of approximations enables a more precise representation of statistical depend-
ence effects among neighboring maxima. Assuming that the first MDOF process, R(t) , is 
ergodic and thus stationary, the probability 
pk(�) : = Prob{Rj > η

�
j |Rj−1 ≤ η

�
j−1,Rj−k+1 ≤ η

�

j−k+1} for j ≥ k is dependent on the con-
ditioning level k and independent of j . Consequently

Equation (6) deviates from Eq. (1) by eliminating Prob(R1 ≤ η
�
1) ≈ 1 , as N ≫ k and 

the expected failure/hazard probability needs to be modest. It is rather obvious that 
there is converging with respect to the level of conditioning k

With a non-exceedance probability connection, Eq.  (6) for k = 1 yields the com-
monly used means up-crossing rates function as well.

The authors have proposed a unique approach for LTD assessment, which may 
reduce the expenses associated with experimentation, measurement, and calculation. 
This technique is particularly appropriate for a range of high-dimensional offshore 
environmental and energy systems. It may not always be practically sensible to esti-
mate the joint PDF pXmax

T ,Ymax
T ,Zmax

T ,... of the target system, and thus the target dynamic 

(3)

P(�) =ProbRNη
�
N , . . . ,R1η

�
1 =

=Prob{RN ≤ η
�
N |RN−1 ≤ η

�
N−1, . . . ,R1 ≤ η

�
1} · Prob

{

RN−1 ≤ η
�
N−1, . . . ,R1 ≤ η

�
1

}

=

=

N
∏

j=2

Prob{Rj ≤ η
�
j |Rj−1 ≤ η

�
1j−, . . . ,R1 ≤ η

�
1} · Prob

(

R1 ≤ η
�
1

)

(4)Prob{Rj ≤ η
�
j |Rj−1 ≤ η

�
j−1, . . . ,R1 ≤ η

�
1} ≈ Prob{Rj ≤ η

�
j |Rj−1 ≤ η

�
j−1}

(5)
Prob{Rj ≤ η

�
j |Rj−1 ≤ η

�
j−1, . . . ,R1 ≤ η

�
1} ≈ Prob{Rj ≤ η

�
j |Rj−1 ≤ η

�
j−1,Rj−2 ≤ η

�
j−2}

(6)Pk(�) ≈ exp (−N · pk(�)) , k ≥ 1.

(7)P = lim
k→∞

Pk(1); p(�) = lim
k→∞

pk(�)

(8)P(�) ≈ exp (−ν
+
(�)T ); ν+(�) =

∫ ∞

0
ζpRṘ(�, ζ )dζ
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system survival probabilityP , using sufficient lab measurement data or by conduct-
ing extensive direct (or enhanced) MC simulations when the number of degrees of 
freedom of the environmental or offshore energy dynamic system is large (Gaidai 
et al. 2023l, 2023m, 2023on 2023o, 2023p, 2023q, 2023r, 2023s, 2023t, 2023u, 2023v, 
2024a). Following Eq.  (1), it is simple to determine the damage/hazard/failure risk/
probability Pfailure of a system as well as the predicted Lexpected of a connected dynamic 
system from the lifespan CDF distribution LTD(L) of an underlying dynamic system.

having the damage/failure/hazard risk/probability of the systemPfailure = 1− P , which is 
supplementary to the longevity probability P of the dynamic system. The dynamical tech-
nology is now considered to have failed or been damaged instantly (or to have reached 
a hazardous condition), if either of its critical componentsX(t) , orY (t) , or Z(t) etc., 
once exceededηX , orηY  , orηZ , etc., respectively. Fixed damage/hazard/failure levelsηX,ηY
,ηZ ,… this is determined for each 1D system separately dynamic system critical compo-
nentsXmax

NX
= max {Xj ; j = 1, . . . ,NX } = Xmax

T ,Ymax
NY

= max {Yj ; j = 1, . . . ,NY } = Ymax
T

,Zmax
Nz

= max {Zj ; j = 1, . . . ,NZ} = Zmax
T  , … Dynamic system’s 1D critical components 

X ,Y ,Z, . . . being now re-scaled, and non-dimensionalized

making all dynamic system’s components non-dimensional, and having same target haz-
ard/failure limits, when � = 1 , with dynamic system’s target damage/hazard/failure risk/
probability P = P(1) . P(�) to be a normal function of the inserted non-dimensional lev-
els may be defined using Eq. (9).

The localized maxima of the 1D dynamical system’s critical component 
are then combined to form the 1D temporally not declining systems vector 
R(t) ≡

−→
R = (R1,R2, . . . ,RN ) in line with the merging temporal-vector t1 < · · · < tN  , 

N ≤ NX + NY + NZ + . . . , of the associated dynamic system. The local maxima of 
Rj for each dynamical system component, which are associated with X(t) or Y (t) , or 
Z(t) , or any other dynamic system’s crucial component, are actually confronted by 
the local maxima of the dynamical or environmental system’s crucial components, 
[Gaidai et  al. ]. It is absolutely essential to note that the generated synthetic 1D 

−→
R

-vector has an overall 0 (zero) losses on the data set. Having now introduced increas-
ing in time, synthetic system 1D vector 

−→
R  , along with its increasing occurrence time 

instants t1 < · · · < tN  , the LTD random variable L may be now presented as

for i = 2, . . . ,N  . Hence, composed 1D synthetic dynamic system process R(t) holds a 
key information about the target dynamic system LTD. Survival probability P = P(1) 
may be expressed via associated mean up-crossing-rate-function

(9)
T

Pfailure
= Lexpected ≡ E[L] =

∞
∫

0

LdLTD(L)

(10)X →
X

�ηX

,Y →
Y

�ηY

,Z →
X

�ηX

, . . .

(11)Li= ti − ti−1
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with ν+(�) being the mean up-crossing-rate of damage/limit/failure threshold level � for 
the above discussed synthetic non-dimensional structure vectors R(t) in 1D. The Rice 
formula is used to express the mean of the up-crossing-rate-function in Eq. (12), where 
pRṘ represents the combined PDF for 

(

R, Ṙ
)

 and Ṙ = R′(t) is the appropriate time-deriv-
ative (if it is easily distinguished), (Wang et al. 2012; Wu et al. 2022; Xu et al. 2018; 2019; 
2023; Yakimov et al. 2023). When � → 1 , a dynamic system will get closer to its specified 
damage, failure/hazard state

in line with Eq.  (12). Here, we suppose that the MDOF dynamical system is jointly-
stationary. Each unique environmentally short-term environment phase has a distinct 
probability qm and 

∑M
m=1 qm = 1 considering an in-situ environmentally scatter-diagram 

having m = 1, ..,M environment-sea-states. The conventional long-term probabilities 
the equation is that

Having pk(�,m) denoting the same functions that are used in Eq.  (6), and m stand-
ing for a particular short-term surrounding sea condition. The next section will provide 
examples of how the relevant LTD q− quantiles

may be evaluated using the Poisson assumptions and q ∈ (0, 1) from the observed or 
simulated timeseries of the fundamental dynamic systems. Function LTD−1  is the LTD 
function’s inverse, or LTD LTD−1 = 1 , where ◦ denotes functional composition and 1 is 
the identity operator. The dynamic system’s breakdown, risk, and danger events become 
almost independent at high or severe damage, collapse, and hazardous levels. As a result, 
the system’s lifespan PDFs closely resemble the distribution of Poisson, with param-
eter ν+(�)T  . Although this research’s primary foundation is the previously mentioned 
Poisson procedures concept, it may have broader applicability if dynamic system criti-
cal components that are approaching breakdown or hazards levels do not indicate an 
impending system breakdown or destruction; rather, they merely reflect streaming criti-
cal/damaging inter-correlated/clustered actions. The PDF-tail extrapolation method is 
based on an improved (4-parameter) Weibull extrapolation technique, (Yakimov et  al. 
2023a; 2023b; Yan and Gu 2010; Yoo et  al. 2022; Yue et  al. 2020; Zhang et  al. 2016a; 
2016b).

Table 2 lists main benefits of the advocated Gaidai risk assessment methodology.
Classic reliability methods being mostly restricted to 2D, whereas Gaidai risk assess-

ment methodology having no restriction on NDOF, (Zhang et al. 2019; 2023; Zhao et al. 
2014; 2017; 2018a; 2018b).

(12)P(�) ≈ exp (−ν
+
(�)T ); ν+(�) =

∫ ∞

0
ζpRṘ(�, ζ )dζ

(13)lim�→1Pfailure =
T

Lexpected
= ν

+
(�)T ⇒ Lexpected =

1

ν+(1)

(14)LTD(L) ≡

M
∑

m=1

LTDm(L)qm

(15)Lq = LTD−1
(q)
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Discussion and results
Research on the SBS dynamics of the floating multi-objects system has been reported 
recently in a number of publications. Authors in Liu and Falzarano (2019) have investi-
gated the coupling effects and hydrodynamic interaction of two floating platforms, and 
findings revealed considerable differences in roll and sway between exact and approxi-
mation solutions. Using the SIMO software tool, the authors of Zhao et  al. (2014) 
examined the hydrodynamics for LNG carriers and found that the stiffness and haw-
ser pretensions of the system had an impact on the entire hydrodynamic reliability of 
the dynamical SBS offloading system. Given the in situ environmental circumstances of 
the Caspian Sea, scholars in Tafazzoli et al. (2021) investigated the hydrodynamic inter-
actions between the FPSO and its ST using the boundary-element approach. Employ-
ing potential flow theory-based techniques, the authors of Liu and Falzarano (2019) 
proposed a wall-damping approach for SBS offloading operational gap prediction. The 
damping lid technique was utilized in Yue et al. (2020) to study the hydrodynamic asso-
ciations of the LNG SBS dynamic mooring system with the FSRU (i.e., Floating Storage 
and Regasification Unit), and the findings showed good agreement with existing experi-
mental data. Potential flow theory was used by the researchers in Zhao et al. 2018a to 
evaluate gaps resonant. Authors examined LNG-FPSO parameter optimization in Tan-
nuri et al. (2021) by combining neural network technology with optimization techniques. 
Using an improved Weibull approach, the authors of Gaidai et al. (2021) looked at the 
excessive hawser stresses of the FPSO along with ST. Research has shown that poten-
tial theory of flow is both feasible and useful for modelling the dynamic SBS offloading 
mechanism that operates between the FPSO along with its shuttle’s carrier. Conse-
quently, this research also used the potential flow theory-based programmed AQWA to 
investigate high hawser tensions that arise during SBS offloading procedures. In order to 
conduct a series of MC numerical models for the offloading operating process between 
the FPSO and its ST, this research made use of the potential flow-based software pro-
grammed AQWA for both the time and frequency domains; for additional information, 
consult the AQWA instructions, (AQWA theory manual 2013).

This Section offers an example of the above-mentioned procedure in action. Provided 
head wind-wave direction, 4 different most critical FPSO internal hawser tension forces 
(H1,.., H4, shown in Fig. 3) had been selected, as system’s critical components X ,Y ,Z,W  
providing an illustration of a 4-dimensional dynamics vessel systems. FPSO numeri-
cal simulations had been performed with fine discrete time-step dt = 0.2 seconds, see 
Fig. 5. For other load cases with different wind-wave directions, critical hawser set, as 

Table 2  Gaidai multivariate risks evaluation methodology benefits, NDOF = Number Degrees Of 
Freedom

Gaidai multivariate risks 
evaluation methodology

Classic 1D/2D reliability/
risk assessment 
methods

Potential to study complex nonlinear multivariate 
systems

NDOF=∞ D NDOF ≤ 2D

Potential to fully account for system’s non-linearities Full Partial/full

Potential to analyze systems with defect/degradation Full Partial
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well as number of critical hawsers will obviously vary—the latter however will not alter 
applicability of the suggested methodology. Note that this is methodological study—
hence there was no objective to cover all possible load cases (including wind-wave direc-
tions), therefore only few head wind-wave direction had been studied.

For simplicity the global maxima of each hawser 1D tension force, had been 
taken as its critical/limit/risk thresholds, causing the whole FPSO hawser system 
to be damaged or fail. To bring all four measured underlying timeseries together 
X ,Y ,Z,W  , following scaling has been carried out, following Eq.  (6), making all 4 
vessel system’s critical components non-dimensional, having the same failure/haz-
ard/risk limits, equal to 1. Next, all local maxima from 4 measured timeseries have 
been merged into 1D single timeseries, by keeping them in a temporally increasing 
order:

−→
R = ({X1,Y1,Z1,W1}, . . . , {XN ,YN ,ZN ,WN }) with the whole synthetic vector 

−→
R  

being sorted, according to the non-decreasing times of occurrences of these assembled 
dynamic system component’s local maxima, with NDOF ≡ N = 4 , (Zhang et al. 2019, 
2023, 2016b; Buchner et  al. 2001; AQWA user’s manual 2013; AQWA theory manual 
2013; Naciri et al. 2007; Zhao et al. 2017, 2018a, 2014, 2018b; Vieira et al. 2018; Wang 
et al. 2012; Jin et al. 2019; Koo and Kim 2005; last accessed January 2024; OCIMF, Oil 
1994, 2007; Lv et al. 2014; Yoo et al. 2022; DNV-RP, D. N. V. 2010; Veritas 2012, 2011; 
ABS 2011; Design 2005; Xu et  al. 2019, 2023, 2018; Balakrishna et  al. 2022; Fan et  al. 
2014; Gaidai et al. 2021, 2022a, 2022b, 2022c, 2022d, 2022e, 2023a, 2023b, 2022f, 2022g, 
2023c, 2023d, 2023e, 2023df; Gaidai and Xing 2022; Gaidai et al. 2023g, 2023h, 2023i, 
2023j, 2023k, 2023l, 2023m, 2023on 2023o, 2023p, 2023q, 2023r, 2023s, 2023t, 2023u, 
2023v, 2024a, 2024b, 2024c, 2024d, 2024e, 2024f, 2024g, 2024h; Failed 2024; Gaidai 2024; 
Jian et  al. 2018; Liu and Falzarano 2019; OCIMF, Oil Company International Marine 

Fig. 5  H1,…, H4 hawser tensions sample timeseries
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Form 2013; Qian et al. 2014; Tannuri et al. 2021; Tafazzoli et al. 2021; Stansberg et al. 
2002; Sun et al. 2023, 2023a; Yakimov et al. 2023, 2023a; Yakimov et al. 2023b; Yan and 
Gu 2010; Yue et al. 2020).

A non-dimensional constructed system’s 1D vector 
−→
R  , represented by the local max-

ima of the constructed system’s critical components and determined FPSO hawser ten-
sion forces, is shown in Fig. 6a. The � > 0.05 cut-on constrain has only been used as a 
demonstration because lower values � ≥ 0 are obviously not relevant for extrapolating 
the damage/failure/hazard PDF tail regarding the desired level � = 1 . Because 1D syn-
thetic vectors 

−→
R  is made up of many important components of the system, it should be 

noted that it might not have any physical significance by itself. Just a running index of 
the local maxima from the dynamic system component observed in the expanding tem-
poral sequence is represented by index j . The estimated 95% CI for the goal dynamic 
system survival probability P(�) is shown by dot-lines in Fig. 6b. Figure 6b exhibits quite 
narrow 95% CI, the latter being a clear advantage of the advocated approach. For the tar-
get hazard/failure/damage level � = 1 mean-up-crossing-rate P(�) ≈ exp (−ν

+
(�)T ) 

have been extrapolated, one may conclude, that target dynamic system’s LTD follows the 
homogeneous Poisson’s distribution, having Poisson parameter ν+(�)T  , with ν+(1) 
being mooring system’s failure/hazard rate, measured in years−1. Expected dynamic sys-
tem’s LTD being then Lexpected = 1

ν+(1)
 following Eq. (9).

Extrapolation in Fig. 6b highlights CPU cost reduction, when using advocated meth-
odology. It is seen that extrapolation in the PDF tail was done l orders of magnitude 
down on the decimal logarithmic scale, l > 2 . Since N-dimensional MDOF system has 
been analyzed with N = 4 , the total cost reduction will be n · l decimal orders of magni-
tude. Figure 6b visually illustrates 95% CI, uncertainty is roughly speaking inversely pro-
portional to the dataset size and quality, thus it does not originate from the advocated 
method itself, as proposed method being exact.

To summarize results:

•	 Classical reliability methods mostly deal only with system’s unidimensional com-
ponents, which even being critical, do not fully reflect multi-dimensionality of the 
whole system. Moreover, only expected lifetime E[LTD] being given.

•	 Advocated Gaidai risk assessment methodology, on the contrary, tackles nonlinear 
multivariate dynamic system as a whole, accounting for complex inter-correlations 
between different systems’ critical components. The latter approach will lead to a 
more conservative design estimate of the system’s projected lifetime. Moreover, 
Gaidai risk assessment methodology supplies full LTD (i.e., Life Time Distribution), 
instead of only single expected lifetime value E[LTD].

Advocated methodology being designed for multi-dimensional nonlinear dynamic 
systems, when direct MC methods may become simply unaffordable. As mentioned 
above, the key novelty of Gaidai risk assessment methodology being its ability to treat 
complex nonstationary systems with practically unlimited number of critical compo-
nents/dimensions. To author’s knowledge there are no alternative multivariate risk 
assessment methods that can treat systems with number of dimensions higher than 
2, hence the only validation that can be done is versus direct MC simulations. For the 
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Fig. 6  a Example of dimensionless assembled system vector 
−→
R  . b Extrapolation of P(�) towards the critical/

hazard/damage level (red star). Extrapolated 95% CI marked with 2 dotted-lines. Rotated red plot illustrated 
LTD PDF
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latter sake of method’s validation, the original data sample size had been reduced 10 
times, by keeping only each 10th datapoint, then predictions by Gaidai risk assess-
ment method have been compared with the original raw/full dataset, and quite close 
estimates have been obtained. Regarding future work, nonstationary systems, espe-
cially systems with initial damage will be studied by applying Gaidai risk assessment 
methodology. Regarding proposed methods validation versus alternative reliability/
risk assessment methods, to author’s knowledge there are no available general pur-
pose reliability methods, suitable for systems with dimensionality higher than 2, 
N > 2 . Hence only extrapolation itself can be validated, but any extrapolation method 
can be plugged into by Gaidai risk assessment methodology.

Conclusions
Contemporary timeseries risk assessment approaches being often unable to take into 
account nonlinear cross-correlations between high-dimensional environmental and 
offshore energy system’s critical components. Suggested methodology’s key benefit lies 
within its robust capacity to assess complex dynamic system lifetime distribution, espe-
cially for high-dimensional nonlinear offshore engineering and environmental systems. 
This study examined FPSO mooring system dynamics, under realistic in-situ environ-
mental loads. Brief note on experimental validation has been provided. Dynamic system 
service lifetime distribution, assessed throughout the whole course of intended design 
lifespan, has been accurately estimated, using novel Gaidai system’s risk assessment 
approach. Theoretical underpinning of the advocated methodology has been briefly 
presented. Although direct measurements, as well as extensive MC simulations being 
attractive methods to assess complex dynamic systems risk assessment, high-dimen-
sional dynamic systems necessitate development of novel, accurate, yet reliable risk 
assessment approaches, that can reduce necessary underlying dataset size, yet optimize 
its usage. Methodology, advocated in this study has previously shown quite effective, 
when employed for a large variety of simulation models, but only for one-dimensional 
dynamic system components. To summarize key findings:

•	 Main objective of this study was to provide a multi-dimensional, multi-purpose, 
spatiotemporal, yet user-friendly environmental and offshore energy system’s risk 
assessment approach. As has been shown, the proposed Gaidai risk assessment 
methodology yielded reasonably narrow confidence intervals.

•	 Suggested methodology could be well useful for complex risk assessment evaluations 
of various nonlinear environmental and offshore dynamic systems. Provided offshore 
engineering example restricts in no way potential use of the novel methodology.

•	 Future studies will include more complex nonstationary dynamic systems, for 
example systems with initial manufacturing imperfections or with fatigue crack 
propagation. For that purpose, system component’s limits within advocated meth-
odology should be made slowly variable with time.

Primary limitation of the presented multivariate risk assessment methodology lies 
within assumption of system quasi-stationarity. In case of non-stationary systems, 
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with strong underlying trend, e.g., system degradation, one has to identify trend first, 
before applying advocated methodology.
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