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Introduction
On January 27, 2022, Cable News Network (CNN) reported that the US Pentagon said 
Russian buildup had increased “in the last 24 hours” near Ukraine, and tensions on the 
Russia–Ukraine border simmered (CNN 2022). When we examine the data, we can see 
that the Russia–Ukraine war had a significant impact on natural gas futures prices due to 
concerns about the imbalance in natural gas supply and demand.

In recent literature on natural gas, there have been studies on (i) natural gas hydrates 
as a new and clean energy source (e.g., Koh et al. 2016; Ding et al. 2017; Liu et al. 2018b; 
Xu et  al. 2018a, 2018b; Gambelli and Rossi 2019; Tupsakhare and Castaldi 2019; Zhu 
et  al. 2020), (ii) substitutes for natural gas production through CO methanation (e.g., 
Bian et al. 2016; Tao et al. 2016, 2017; Liu et al. 2018a; Zhang et al. 2020; Cisneros et al. 
2021), (iii) sustainable hydrogen production through enhanced natural gas production 
(e.g., Sanusi and Mokheimer 2019; Guban et al. 2020; Ji and Wang 2021; Olabi et al. 2021; 
Qureshi et al. 2022; Younas et al. 2022), (iv) mercury control technologies in natural gas 
(e.g., Pontes et al. 2014; Koulocheris et al. 2018; Chalkidis et al. 2019; Wang et al. 2020; 
Zhou et  al. 2020; Koulocheris et  al. 2023; Shen et  al. 2023), (v) the impact of natural 
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gas and hydrogen properties on internal combustion engine performance (e.g., Wei and 
Geng 2016; Thiruvengadam et al. 2018; Tutak et al. 2020; Kim et al. 2021; Wang et al. 
2021; Chen et al. 2023; Li et al. 2023), and (vi) market prices for natural gas (e.g., Wang 
et  al. 2022; Akcora and Kocaaslan 2023; Dastan 2023; Liu et  al. 2023; Su et  al. 2023; 
Mensi et al. 2024).

Reviewing the recent studies on market prices for natural gas, Wang et al. (2022) inves-
tigated the volatilities of oil rents and natural gas rents. Akcora and Kocaaslan (2023) 
examined the price bubbles in European natural gas markets. Dastan (2023) inves-
tigated the Turkish natural gas market during the supply disruptions that occurred in 
early 2022. Further, Liu et al. (2023) analyzed the impacts of oil and natural gas prices on 
China’s carbon efficiency. Su et al. (2023) examined whether there were multiple bubbles 
in the European natural gas market. Mensi et al. (2024) investigated the connectedness 
between bond, oil, and natural gas prices. Although not focused on natural gas, many 
studies have argued for the importance of analyzing market prices for energy (e.g., Ju 
et al. 2014; Tsuji 2018, 2020; van Eyden et al. 2019; Dutta et al. 2021; Puig-Gamero et al. 
2021; Jingjian et al. 2023).

Given this and considering the importance of actual natural gas market prices, our 
current analysis focuses on the impact of the the Russia–Ukraine war on natural gas 
futures prices. We suggest that in doing such new analysis, it is vital to incorporate fat-
tailed distributions and structural breaks. However, in existing studies, although either 
fat-tailed distributions (e.g., Geweke 1993; Fan et  al. 2008) or structural breaks (e.g., 
Wang and Moore 2009; Malik 2022) are considered, both components are not incorpo-
rated into a single model simultaneously. Therefore, our approach of newly considering 
and incorporating both in this study fills a research gap left by existing literature.

Hence, we examine natural gas futures volatilities of the period around the Russian 
invasion of Ukraine, with a particular focus on the impact of simmering tensions on the 
Russia–Ukraine border on natural gas futures volatilities, especially because at that time, 
a very large volatility spike was observed. We consider that this spike was due to height-
ened concerns about the imbalance in natural gas supply and demand, particularly at 
that time.

Our research questions are as follows. “How do we well capture the natural gas futures 
volatility spike when the tensions simmered on the Russia–Ukraine border by consid-
ering both fat-tailed errors and structural breaks as hybrid models?” and “What is the 
beneficial characteristic of the volatility estimated by our superior hybrid models?” To 
clarify these matters is the goal of this study. For this purpose, we develop new hybrid 
generalized autoregressive conditional heteroscedasticity (GARCH) models, which 
incorporate not only fat-tailed distribution errors but also structural breaks. To the best 
of our knowledge, no existing study has analyzed the points raised in our research ques-
tions mentioned above.

As a result of our careful examinations applying four new hybrid models, i.e., the 
autoregressive (AR) mean Student’s t (T) distribution error and structural break (SB) 
incorporated GARCH model (hereinafter, the AR–T–SB–GARCH model), the AR–gen-
eralized error distribution (GED)–SB–GARCH model (hereinafter, the AR–GED–SB–
GARCH model), the AR–T–SB–exponential GARCH (EGARCH) model (hereinafter, the 
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AR–T–SB–EGARCH model), and the AR–GED–SB–EGARCH model, we have uncov-
ered the following findings as new contributions to this topic area.

First, we reveal that it was not when Russia invaded Ukraine in February 2022, but 
rather when tensions on the Russia–Ukraine border simmered in January 2022, that the 
Russia–Ukraine war had the most impact on natural gas futures prices. Second, we clar-
ify that our hybrid models, which incorporate both fat-tailed distribution errors—either 
Student’s t distribution or GED errors—and structural breaks, are effective to capture 
the natural gas futures volatility jump in a timely manner when tensions on the Russia–
Ukraine border simmered.

Third, we also reveal that our hybrid modeling approach—incorporating both fat-
tailed errors and structural breaks—is effective not only in GARCH but also in EGARCH 
modeling. This proves the robustness of our hybrid approach for modeling natural gas 
futures volatilities. Fourth, we further uncover that the volatility estimates from our 
hybrid models of the AR–T–SB–GARCH and the AR–GED–SB–GARCH models have 
predictive power for the volatilities of nonhybrid versions of the AR–T–GARCH and 
AR–GED–GARCH models. We consider that because of this characteristic, our two 
hybrid GARCH models well capture the natural gas futures volatility spike when the ten-
sions on the Russia–Ukraine border simmered.

Fifth, we further reveal that the volatility estimates from our exponential-form hybrid 
AR–T–SB–EGARCH and AR–GED–SB–EGARCH models also have forecast power for 
the volatilities of nonhybrid AR–T–EGARCH and AR–GED–EGARCH models. This 
indicates the robustness of both (i) the volatility predictive power and (ii) our perspec-
tive that because of this timely characteristic of the volatility estimates from our hybrid 
models, our four hybrid GARCH and EGARCH models well capture the jump in natural 
gas futures volatility when tensions on the Russia–Ukraine border simmered.

Sixth, we suggest that our new evidence of the predictive power of hybrid models for 
the volatilities of nonhybrid models means that the volatilities from the nonhybrid mod-
els lag behind those of the hybrid models. We consider that because of this character-
istic, the nonhybrid models are inferior to hybrid models in capturing the natural gas 
futures volatility spike in a timely manner when tensions on the Russia–Ukraine bor-
der simmered. Seventh, in addition to the points mentioned above, we also derive many 
valuable interpretations, implications, and innovative perspectives for future energy 
informatics research and risk management in the energy industries through the use of 
artificial intelligence (AI). This emphasizes the significance of our work.

The remainder of the paper is organized as follows. Section “Data and the characteris-
tics” details the data and the characteristics, Section “Hybrid GARCH models” presents 
our hybrid GARCH models, and Section “Why are hybrid GARCHs effective?” tests the 
predictive power of their volatility estimates. Afterwards, Section “Hybrid EGARCH 
models” provides our hybrid EGARCH models, Section “Why are hybrid EGARCHs 
effective?” examines the predictive power of their volatility estimates, and Section 
“Implications and perspectives” provides the implications and our innovative perspec-
tives. Finally, Section “Contributions and conclusions” concludes the paper.
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Data and the characteristics
This study uses the natural gas futures price data from the New York Mercantile 
Exchange. Using the price series, denoted pNG , we compute the daily log-difference 
percentage return series as dlrNGt = ln(pNGt /pNGt−1)× 100 . To examine the effectiveness 
of our hybrid models described later for capturing the natural gas futures price fluc-
tuations during the Russian invasion of Ukraine, we analyze the returns, dlrNGt  , from 
January 3, 2020, to January 5, 2024. We note that this sample period also means the 
post-COVID-19 outbreak period.

Figures 1 and 2 plot the price and return evolution of the natural gas futures, respec-
tively. From these figures, we can see that before the Russian invasion of Ukraine in 

Fig. 1  Daily price evolution of natural gas futures, January 2020 to January 2024. Natural gas futures prices in 
US dollars

Fig. 2  Daily return evolution of natural gas futures, January 2020 to January 2024. Natural gas futures returns 
in percent
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February 2022, natural gas futures prices had jumped (Fig. 1), and the returns largely 
and sharply fluctuated (Fig. 2). Referring to the return data, the largest return jump 
took place on January 27, 2022, which was when tensions on the Russia–Ukraine bor-
der simmered as discussed.

Table 1 provides summary statistics of the daily natural gas futures returns. The high 
kurtosis values and large Jarque–Bera statistics in this period indicate that it is mean-
ingful to employ non-normal distribution errors in quantitative models like our present 
analysis. Moreover, the augmented Dickey–Fuller test statistic indicates that natural 
gas futures returns are stationary, suggesting that applying GARCH models like ours is 
applicable.

Furthermore, as Fig.  2 also indicates, there clearly exist structural breaks in natural 
gas futures returns. Hence, we investigated and identified the structural break points 
using the iterated cumulative sums of squares (ICSS) algorithm (Inclán and Tiao 
1994). We stress that this ICSS algorithm is a very effective algorithm for identifying 
structural breaks in time series data (e.g., Wang and Moore 2009; Malik 2022). More 
precisely, as the Bayesian information criterion (BIC) suggests the appropriate autore-
gressive lag order for the natural gas futures returns is one, we estimate the regression, 
dlrNGt = µ+ κdlrNGt−1 + τt , and identify the structural break points in the return residu-
als, τt.

As shown in Table 2, we find that the number of break points for our analysis period is 
seven. We also show these break points with the bands of ±3 standard deviations of the 
return residuals in Fig. 3. We consider that this figure clearly indicates the importance of 
taking structural breaks into consideration to analyze the impact of the Russia–Ukraine 
war on natural gas futures prices.

Table 1  Summary statistics for natural gas futures returns, January 2020 to January 2024

JB: Jarque–Bera statistic; ADF: augmented Dickey–Fuller test statistic. p-values are in parentheses

Mean Median Minimum

Statistic value 0.027 0.079 −30.048

Maximum Standard deviation Skewness

Statistic value 38.173 4.700 0.151

Excess kurtosis JB ADF

Statistic value 6.452 1,757.679 (0.000) −35.264 (0.000)

Table 2  Structural break points for natural gas futures return residuals, January 2020 to January 
2024

Break points are identified by the ICSS algorithm

Number Data point Date

1 179 September 16, 2020

2 188 September 29, 2020

3 285 February 18, 2021

4 417 August 25, 2021

5 523 January 26, 2022

6 531 February 7, 2022

7 838 April 27, 2023
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Hybrid GARCH models
Model constructions

This section constructs our hybrid volatility estimation models. Note that we use 
‘hybrid’ to refer to the incorporation of both non-normal fat-tailed errors and struc-
tural breaks throughout this study. Due to the non-normality of natural gas futures 
returns shown in Table 1, we employ either Student’s t distribution or GED errors in 
our models. This is because existing literature suggests the effectiveness of modeling 
fat-tailed asset returns using Student’s t or the GED distribution (e.g., Geweke 1993; 
Fan et al. 2008). As stated, the BIC suggests the adequate autoregressive lag order for 
natural gas futures returns is one, and we thus include only the first autoregressive 
variable in the mean equations of all our models.

Accordingly, the base models used to construct our hybrid GARCH models are the 
following AR–T–GARCH and AR–GED–GARCH models:

and

where dlrNGt  denotes the return of natural gas futures at time t; τt,t ( τg ,t ) denotes the Stu-
dent’s t distribution (GED) errors at time t with ν (k) being the distribution shape param-
eter; and ht,t ( hg ,t ) is the variance to be estimated by model (1) (model (2)) at time t. In 
addition, µ denotes the mean equation intercept; κ denotes the autoregressive term coef-
ficient; ψ is the variance equation intercept; χ is the ARCH-term coefficient; and ξ is the 
GARCH-term coefficient.

(1)
dlrNGt = µ+ κdlrNGt−1 + τt,t ,

ht,t = ψ + χτ 2t,t−1 + ξht,t−1,

(2)
dlrNGt = µ+ κdlrNGt−1 + τg ,t ,

hg ,t = ψ + χτ 2g ,t−1 + ξhg ,t−1,

Fig. 3  Structural breaks in natural gas futures return residuals. Bands of ±3 standard deviations and change 
points identified by the ICSS algorithm
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As the next step, we construct two hybrid GARCH models by including structural 
break effects into models (1) and (2). Namely, our hybrid GARCH models are the fol-
lowing AR–T–SB–GARCH and AR–GED–SB–GARCH models:

and

where τtsb,t ( τgsb,t ) denotes the Student’s t distribution (GED) errors in model (3) (model 
(4)) at time t; and htsb,t ( hgsb,t ) is the variance to be estimated by model (3) (model (4)) at 
time t.

In addition, DSB
i,t  denotes the i-th structural break dummy variable, n is the number of 

structural breaks, and φi is the i-th structural break dummy variable’s coefficient. The i-
th structural break dummy variable takes a value of zero until the break point identified 
for the return residuals by the ICSS algorithm, and one thereafter. This study employs 
the ICSS algorithm because existing studies suggest its effectiveness in capturing struc-
tural breaks in asset returns (e.g., Wang and Moore 2009; Malik 2022). For details of the 
ICSS algorithm, see Inclán and Tiao (1994). Note that including the parameters of the 
non-normal fat-tailed distributions, ν and k, the other notations of models (3) and (4) 
described above are the same as those of models (1)–(2).

Verifications

Table 3 provides the estimation results of models (1)–(4). We note that all model param-
eters are estimated using the maximum likelihood method throughout the paper. Pan-
els A–D present that all the model parameters including the shape parameters of the 
fat-tailed distribution errors are generally well estimated. In addition, as Panels B and D 
show, most of the coefficients of our structural break dummy variables—φ1 to φ7—are 
statistically significant.

It is noteworthy that when incorporating structural breaks, the ARCH effect disap-
pears (The significant coefficients, χ , in Panels A and C of Table 3 become insignificant 
in Panels B and D.) and the GARCH effect is weakened (The significant values of the 
coefficients, ξ , in Panels A and C of Table 3 become smaller in Panels B and D.). This also 
indicates the effectiveness of structural breaks in explaining the evolution of natural gas 
futures volatilities.

We also conduct likelihood ratio (LR) tests to compare the performance of models (1)–
(4) and present the results in Table 4. As shown in Table 4, the null hypotheses—the AR–
GARCH model, which has normal distribution errors, is superior to the AR–T–GARCH 
model (Panel A), the AR–T–GARCH model is superior to the AR–T–SB–GARCH 
model (Panel B), the AR–GARCH model is superior to the AR–GED–GARCH model 

(3)

dlrNGt = µ+ κdlrNGt−1 + τtsb,t ,

htsb,t = ψ + χτ 2tsb,t−1 + ξhtsb,t−1 +

n

i=1

φiD
SB
i,t ,

(4)

dlrNGt = µ+ κdlrNGt−1 + τgsb,t ,

hgsb,t = ψ + χτ 2gsb,t−1 + ξhgsb,t−1 +

n
∑

i=1

φiD
SB
i,t ,
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(Panel C), and the AR–GED–GARCH model is superior to the AR–GED–SB–GARCH 
model (Panel D)—are all strongly rejected.

Moreover, the values of the Akaike’s information criterion (AIC) for models (1)–(4) are 
5,784.032, 5,794.934, 5,716.146, and 5,716.906, respectively. That is, the LR test results 
and the AIC values clearly indicate the superiority of our hybrid models, the AR–T–SB–
GARCH model and the AR–GED–SB–GARCH model, and demonstrate the effective-
ness for taking both non-normal fat-tail errors and structural breaks into account in our 
analysis for natural gas futures volatilities.

Table 3  Estimation results for hybrid GARCH models

LL: log-likelihood value. *** and * denote the 1% and 10% significance levels, respectively

Panel A. AR–T–GARCH Panel B. AR–T–SB–GARCH

Coefficients Estimates p-value Coefficients Estimates p-value

Mean equations

 µ 0.148 0.195 µ 0.112 0.312

 κ  −0.033 0.305 κ −0.032 0.305

Variance equations

 ψ 0.159 0.149 ψ 7.879*** 0.002

 χ 0.079*** 0.000 χ −0.002 0.948

 ξ 0.918*** 0.000 ξ 0.457*** 0.005

φ1 50.923 0.145

φ2 −50.575 0.147

φ3 −6.264*** 0.008

φ4 12.491*** 0.003

φ5 154.596* 0.098

φ6 −152.890 0.101

φ7 −9.362*** 0.003

 ν 7.386*** 0.000 ν 27.037 0.162

LL −2886.016 LL −2845.073

Panel C. AR–GED–GARCH Panel D. AR–GED–SB–GARCH

Coefficients Estimates p-value Coefficients Estimates p-value

Mean equations

 µ 0.167 0.133 µ 0.112 0.307

 κ −0.034 0.254 κ −0.033 0.287

Variance equations

 ψ 0.143 0.167 ψ 8.034*** 0.001

 χ 0.079*** 0.000 χ −0.007 0.799

 ξ 0.919*** 0.000 ξ 0.462*** 0.003

φ1 50.372 0.133

φ2 −50.163 0.134

φ3  −6.295*** 0.005

φ4 12.461*** 0.002

φ5 155.468* 0.077

φ6  −153.715* 0.079

φ7  −9.461*** 0.002

 k 1.404*** 0.000 k 1.086*** 0.000

LL −2891.467 LL −2845.453
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Table 4  LR tests for GARCH model discrimination

*** denotes the 1% significance level. The test statistic follows a χ2(n)distribution with n degrees of freedom. The null 
hypotheses are: the AR–GARCH model is superior to the AR–T–GARCH model (Panel A); the AR–T–GARCH model is superior 
to the AR–T–SB–GARCH model (Panel B); the AR–GARCH model is superior to the AR–GED–GARCH model (Panel C); the 
AR–GED–GARCH model is superior to the AR–GED–SB–GARCH model (Panel D). AR–GARCH model has normal distribution 
errors

Panel A. AR–GARCH vs. AR–T–GARCH

χ2(1) 47.208***

p-value 0.000

Panel B. AR–T–GARCH vs. AR–T–SB–GARCH

χ2(7) 81.886***

p-value 0.000

Panel C. AR–GARCH vs. AR–GED–GARCH

χ2(1) 36.306***

p-value 0.000

Panel D. AR–GED–GARCH vs. AR–GED–SB–GARCH

χ2(7) 92.029 ***

p-value 0.000

Fig. 4  Estimated daily volatilities from AR–T–GARCH and AR–T–SB–GARCH models
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Why are hybrid GARCHs effective?
This section considers why our hybrid GARCH models are effective. For this pur-
pose, we plot the volatility estimates in Figs. 4 and 5 to compare our model estima-
tions. Specifically, Fig.  4 illustrates the volatility estimates from the AR–T–GARCH 
model with those from the AR–T–SB–GARCH model, and Fig. 5 presents the volatil-
ity estimates from the AR–GED–GARCH model with those from the AR–GED–SB–
GARCH model.

From Figs. 4 and 5, we can see that when volatilities spike, the volatility estimates 
from the AR–T–SB–GARCH and the AR–GED–SB–GARCH models lead the volatil-
ity estimates from the AR–T–GARCH and the AR–GED–GARCH models, respec-
tively. Considering this and clarifying why our hybrid GARCH models are effective, 
we test below whether our hybrid model volatility estimates have predictive power for 
the volatilities of the nonhybrid models.

Testing models

This section examines the predictive power of the hybrid model volatility estimates 
for the nonhybrid model volatilities (precisely, variances). Specifically, to test the 
forecast power of the volatility estimates from the AR–T–SB–GARCH model (3), we 
first use the following AR–T–GARCH–X model with 

√

ĥtsb,t−1 and the AR–GED–
GARCH–X model with 

√

ĥtsb,t−1:

Fig. 5  Estimated daily volatilities from AR–GED–GARCH and AR–GED–SB–GARCH models
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and

where 
√

ĥtsb,t−1 denotes the one-day lagged volatility estimates from our hybrid model 
(3), and � is the coefficient. Hence, the statistically significant positive � values indicate 
the predictive power of the volatility estimates from our hybrid model, the AR–T–SB–
GARCH model (3). Note that the other notations of models (5)–(6) are the same as those 
of models (1)–(2).

Moreover, to test the forecast power of the volatility estimates from the AR–GED–
SB–GARCH model (4) for the nonhybrid model volatilities (variances), we use the 
following AR–T–GARCH–X model with 

√

ĥgsb,t−1 and the AR–GED–GARCH–X 
model with 

√

ĥgsb,t−1 :

and

where 
√

ĥgsb,t−1 denotes the one-day lagged volatility estimates from our hybrid model 
(4), and � is the coefficient. Therefore, the statistically significant positive � values again 
mean the predictive power of the volatility estimates from our hybrid model, the AR–
GED–SB–GARCH model (4). Note that the remaining notations of models (7)–(8) are 
the same as those of models (1)–(2).

Results

Table  5 shows the results for the predictive power of our hybrid model estimates. 
Panel A shows the results for the volatility estimates from the AR–T–SB–GARCH 
model, and Panel B presents those for the volatility estimates from the AR–GED–
SB–GARCH model.

In these two panels, the estimated coefficients, � s, are always statistically signifi-
cant with positive signs. This indicates that the volatility estimates from our hybrid 
models, the AR–T–SB–GARCH and the AR–GED–SB–GARCH models, have pre-
dictive power for the volatilities (variances) of the nonhybrid AR–T–GARCH and 
AR–GED–GARCH models.

(5)
dlrNGt = µ+ κdlrNGt−1 + τt,t ,

ht,t = ψ + χτ 2t,t−1 + ξht,t−1 + �

√

ĥtsb,t−1,

(6)
dlrNGt = µ+ κdlrNGt−1 + τg ,t ,

hg ,t = ψ + χτ 2g ,t−1 + ξhg ,t−1 + �

√

ĥtsb,t−1,

(7)
dlrNGt = µ+ κdlrNGt−1 + τt,t ,

ht,t = ψ + χτ 2t,t−1 + ξht,t−1 + �

√

ĥgsb,t−1,

(8)
dlrNGt = µ+ κdlrNGt−1 + τg ,t ,

hg ,t = ψ + χτ 2g ,t−1 + ξhg ,t−1 + �

√

ĥgsb,t−1,
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We consider that these new findings mean that volatility estimates from our hybrid 
GARCH models (3)–(4) lead the volatilities of nonhybrid GARCH models (1)–(2). 
We thus believe that because of this favorable characteristic, the two hybrid GARCH 
models well captured the volatility jump of the natural gas futures when the tensions 
simmered on the Russia–Ukraine border.

Hybrid EGARCH models
Model constructions

This section formulates alternative hybrid volatility estimation models using exponen-
tial-form GARCH (Nelson 1991). As before, we employ the Student’s t distribution or 
GED errors, and we include the first autoregressive variable in the mean equations of 
our models.

The base models for building our alternative hybrid models are the following 
AR–T–EGARCH and AR–GED–EGARCH models:

Table 5  Results for predictive power tests of hybrid GARCH model volatility estimates

LL: log-likelihood value. ***, **, and * denote the 1%, 5%, and 10% significance levels, respectively

Panel A. Predictive power of volatility estimates from the AR–T–SB–GARCH model

Testing models

AR–T–GARCH AR–GED–GARCH

Coefficients Estimates p-value Coefficients Estimates p-value

Mean equations

 µ 0.107 0.337 µ 0.108 0.331

 κ −0.032 0.313 κ −0.033 0.270

Variance equations

 ψ  −17.700*** 0.000 ψ  −17.875*** 0.000

 χ 0.024*** 0.009 χ 0.024*** 0.009

 ξ  −0.936*** 0.000 ξ  −0.926*** 0.000

 � 12.839*** 0.000 � 12.854*** 0.000

 ν 21.895* 0.083 k 1.105*** 0.000

LL −2843.249 LL −2843.914

Panel B. Predictive power of volatility estimates from the AR–GED–SB–GARCH model

Testing models

AR–T–GARCH AR–GED–GARCH

Coefficients Estimates p-value Coefficients Estimates p-value

Mean equations

 µ 0.109 0.329 µ 0.109 0.337

 κ −0.035 0.266 κ −0.036 0.244

Variance equations

 ψ  −17.543*** 0.000 ψ −17.692*** 0.000

 χ 0.019** 0.047 χ 0.019* 0.052

 ξ  −0.918*** 0.000 ξ  −0.911*** 0.000

 � 12.747*** 0.000 � 12.762*** 0.000

 ν 22.546* 0.093 k 1.103*** 0.000

LL −2843.466 LL −2844.061
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and

where τ et,t ( τ eg ,t ) denotes the Student’s t distribution (GED) errors at time t with the dis-
tribution parameter νe ( ke ); and het,t ( heg ,t ) is the variance to be estimated by model (9) 
(model (10)) at time t. Further, µe denotes the mean equation intercept; κe denotes the 
autoregressive term coefficient; ψe is the variance equation intercept; χe is the ARCH-
term coefficient; and ξe is the GARCH-term coefficient.

As before, we construct the hybrid EGARCH models by including structural break 
effects into models (9) and (10). Our exponential-form hybrid models are the following 
AR–T–SB–EGARCH and AR–GED–SB–EGARCH models:

and

where τ etsb,t ( τ
e
gsb,t ) denotes the Student’s t distribution (GED) errors in model (11) (model 

(12)) at time t; hetsb,t ( hegsb,t ) means the variance to be estimated by model (11) (model 
(12)) at time t.

Furthermore, DSB
i,t  denotes the i-th structural break dummy variable and n is the num-

ber of the structural breaks as before, and φe,i is the coefficient of the i-th break dummy 
variable. The dummy variable is the same as in models (3) and (4). We also note that 
including the parameters of fat-tailed distributions, νe and ke , the other notations of 
models (11) and (12) described above are the same as those of models (9)–(10).

Verifications

Table  6 presents the estimation results of models (9)–(12). Panels A–D present that 
all the model parameters including the shape parameters of the fat-tailed distribution 
errors are well estimated. Further, as Panels B and D show, the coefficients of our struc-
tural break dummy variables—φe,1 to φe,7—are all statistically significant.

(9)
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We note that when incorporating structural breaks, the ARCH effect again disappears 
(The significant coefficients, χe , in Panels A and C of Table  6 become insignificant in 
Panels B and D.) and the GARCH effect is again weakened (The significant values of 
the coefficients, ξe , in Panels A and C of Table 6 become smaller in Panels B and D.). 
Therefore, we understand that this again shows the effectiveness of structural breaks in 
explaining the evolution of natural gas futures volatilities.

Moreover, we performed the LR tests to compare the performance of models 
(9)–(12) as before, and showed the results in Table 7. As Table 7 indicates, the four 
null hypotheses—the AR–EGARCH model, which has normal distribution errors, 

Table 6  Estimation results for hybrid EGARCH models

LL: log-likelihood value. *** denotes the 1% significance level

Panel A. AR–T–EGARCH Panel B. AR–T–SB–EGARCH

Coefficients Estimates p-value Coefficients Estimates p-value

Mean equations

 µe 0.145 0.200 µe 0.110 0.326

 κe −0.034 0.278 κe −0.031 0.318

Variance equations

 ψe  −0.077*** 0.002 ψe 1.343*** 0.000

 χe 0.157*** 0.000 χe −0.005 0.937

 ξe 0.985*** 0.000 ξe 0.498*** 0.000

φe,1 1.061*** 0.005

φe,2  −1.027*** 0.006

φe,3  −0.724*** 0.002

φe,4 1.006*** 0.000

φe,5 1.439*** 0.001

φe,6  −1.395*** 0.001

φe,7  −0.430*** 0.002

 νe 7.193*** 0.000 νe 25.260 0.137

LL −2881.586 LL −2846.020

Panel C. AR–GED–EGARCH Panel D. AR–GED–SB–EGARCH

Coefficients Estimates p-value Coefficients Estimates p-value

Mean equations

 µe 0.159 0.143 µe 0.109 0.324

 κe −0.040 0.177 κe −0.033 0.289

Variance equations

 ψe  −0.081*** 0.001 ψe 1.340*** 0.000

 χe 0.158*** 0.000 χe −0.018 0.768

 ξe 0.986*** 0.000 ξe 0.507*** 0.000

φe,1 1.046*** 0.003

φe,2  −1.022*** 0.004

φe,3  −0.718*** 0.000

φe,4 0.993*** 0.000

φe,5 1.428*** 0.000

φe,6  −1.382*** 0.000

φe,7  −0.430*** 0.000

 ke 1.414*** 0.000 ke 1.093*** 0.000

LL −2888.781 LL −2846.430
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is superior to the AR–T–EGARCH model (Panel A), the AR–T–EGARCH model is 
superior to the AR–T–SB–EGARCH model (Panel B), the AR–EGARCH model is 
superior to the AR–GED–EGARCH model (Panel C), and the AR–GED–EGARCH 

Table 7  LR tests for EGARCH model discrimination

*** denotes the 1% significance level. The test statistic follows a χ2(n)distribution with n degrees of freedom. The null 
hypotheses are: the AR–EGARCH model is superior to the AR–T–EGARCH model (Panel A); the AR–T–EGARCH model is 
superior to the AR–T–SB–EGARCH model (Panel B); the AR–EGARCH model is superior to the AR–GED–EGARCH model (Panel 
C); the AR–GED–EGARCH model is superior to the AR–GED–SB–EGARCH model (Panel D). AR–EGARCH model has normal 
distribution errors

Panel A. AR–EGARCH vs. AR–T–EGARCH

χ2(1) 54.899***

p-value 0.000

Panel B. AR–T–EGARCH vs. AR–T–SB–EGARCH

χ2(7) 71.131***

p-value 0.000

Panel C. AR–EGARCH vs. AR–GED–EGARCH

χ2(1) 40.509***

p-value 0.000

Panel D. AR–GED–EGARCH vs. AR–GED–SB–EGARCH

χ2(7) 84.703***

p-value 0.000

Fig. 6  Estimated daily volatilities from AR–T–EGARCH and AR–T–SB–EGARCH models
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model is superior to the AR–GED–SB–EGARCH model (Panel D)—are all strongly 
rejected.

Furthermore, the AIC values for models (9)–(12) are 5775.172, 5789.563, 5718.041, 
and 5718.860, respectively. That is, the LR test results and the AIC values clearly show 
the superiority of our alternative hybrid models, the AR–T–SB–EGARCH model and 
the AR–GED–SB–EGARCH model, and prove the effectiveness for taking both non-
normal fat-tail errors and structural breaks into consideration in our natural gas futures 
volatility analyses.

Why are hybrid EGARCHs effective?
This section considers why our hybrid EGARCH models are effective. For this purpose, 
we plot the volatility estimates from our alternative hybrid models (11) and (12) in Figs. 6 
and 7 to compare the model estimates. Specifically, Fig. 6 exhibits the volatility estimates 
from the AR–T–EGARCH model with those from the AR–T–SB–EGARCH model, and 
Fig. 7 displays the volatility estimates from the AR–GED–EGARCH model with those 
from the AR–GED–SB–EGARCH model.

From Figs. 6 and 7, we can see that when volatilities jump, the volatility estimates from 
the AR–T–SB–EGARCH and the AR–GED–SB–EGARCH models lead the volatility 
estimates from the AR–T–EGARCH and the AR–GED–EGARCH models, respectively. 
Considering this and to clarify why our hybrid EGARCH models are effective, we below 
test whether the volatility estimates from our two hybrid EGARCH models have predic-
tive power for the volatilities of the nonhybrid EGARCH models.

Fig. 7  Estimated daily volatilities from AR–GED–EGARCH and AR–GED–SB–EGARCH models
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Testing models

This section examines the forecast power of our hybrid EGARCH model estimates for 
the nonhybrid EGARCH model volatilities (precisely, variances). Specifically, to test the 
predictive power of the volatility estimates from the AR–T–SB–EGARCH model (11), 
we first use the following AR–T–EGARCH–X model with 

√

ĥetsb,t−1 and the AR–GED–
EGARCH–X model with 

√

ĥetsb,t−1:

and

where 
√

ĥetsb,t−1 denotes the one-day lagged volatility estimates from our hybrid model 
(11), and �e is the coefficient. Hence, the statistically significant positive �e values mean 
the predictive power of the volatility estimates from our hybrid EGARCH model, the 
AR–T–SB–EGARCH model. Note that the other notations of models (13)–(14) are the 
same as those of models (9)–(10).

Moreover, also to test the forecast power of the volatility estimates from the AR–
GED–SB–EGARCH model (12), we use the following AR–T–EGARCH–X model with 
√

ĥegsb,t−1
 and the AR–GED–EGARCH–X model with 

√

ĥegsb,t−1
:

and

where 
√

ĥegsb,t−1
 denotes the one-day lagged volatility estimates from our hybrid 

EGARCH model (12), and �e is the coefficient. Thus, the statistically significant positive 
�e again indicates the predictive power of the volatility estimates from our alternative 
hybrid model, the AR–GED–SB–EGARCH model. Note that the other notations of 
models (15)–(16) are the same as those of models (9)–(10).
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Results

Table  8 presents the results for the predictive power of our hybrid EGARCH model 
estimates. Panel A exhibits the results for the volatility estimates from the AR–T–SB–
EGARCH model, and Panel B shows those for the volatility estimates from the AR–
GED–SB–EGARCH model.

In these two panels, the estimated coefficients, �e s, are always statistically significant 
with positive signs; and thus this means that the volatility estimates from our hybrid 
EGARCH models, the AR–T–SB–EGARCH and the AR–GED–SB–EGARCH mod-
els, have predictive power for the volatilities (variances) of the nonhybrid models, the 
AR–T–EGARCH and the AR–GED–EGARCH models.

We consider that these new findings mean that volatility estimates from our hybrid 
EGARCH models (11)–(12) lead the volatilities of nonhybrid EGARCH models (9)–(10). 
Hence as before, we consider that because of this favorable characteristic, the two hybrid 
EGARCH models timely captured the volatility spile of the natural gas futures when the 
tension summered in the Ukraine-Russia border.

Table 8  Results for predictive power tests of hybrid EGARCH model volatility estimates

LL: log-likelihood value. *** and * denote the 1% and 10% significance levels, respectively

Panel A. Predictive power of volatility estimates from the AR–T–SB–EGARCH model

Testing models

AR–T–EGARCH AR–GED–EGARCH

Coefficients Estimates p-value Coefficients Estimates p-value

Mean equations

 µe 0.092 0.467 µe 0.095 0.422

 κe −0.032 0.311 κe −0.033 0.355

Variance equations

 ψe 1.500*** 0.000 ψe 1.511*** 0.000

 χe 0.048 0.413 χe 0.043 0.452

 ξe  −0.611*** 0.000 ξe  −0.615*** 0.000

 �e 0.695*** 0.000 �e 0.696*** 0.000

 νe 20.086* 0.057 ke 1.127*** 0.000

LL −2857.180 LL −2857.934

Panel B. Predictive power of volatility estimates from the AR–GED–SB–EGARCH model

Testing models

AR–T–EGARCH AR–GED–EGARCH

Coefficients Estimates p-value Coefficients Estimates p-value

Mean equations

 µe 0.093 0.432 µe 0.095 0.401

 κe −0.033 0.301 κe −0.034 0.269

Variance equations

 ψe 1.520*** 0.000 ψe 1.530*** 0.000

 χe 0.041 0.495 χe 0.035 0.543

 ξe  −0.611*** 0.000 ξe −0.615*** 0.000

 �e 0.691*** 0.000 �e 0.693*** 0.000

 νe 20.522* 0.058 ke 1.126*** 0.000

LL −2857.589 LL −2858.252
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Implications and perspectives
This section discusses how we can interpret our results and derive significant implica-
tions and perspectives for academic energy research and practical industries in the 
post-COVID-19 era. As in Ahmed et al. (2022), Chaklader et al. (2023), and Dirican 
(2015), AI will play a more significant role in various industries in the future. The 
implications of our study along with the innovative perspectives derived from our 
research are as follows.

Firstly, as we have demonstrated, to accurately capture the impact of significant 
events, natural gas futures volatilities should be estimated by incorporating fat-tailed 
errors and structural breaks. We believe that capturing structural breaks in a timely 
manner is particularly crucial for volatility modeling and future risk management in 
the energy markets and industries. This is because, as we found in Figs. 4, 5, 6, and 7, 
the volatilities derived from nonhybrid models lag behind the volatilities from our 
four hybrid models, which incorporate structural breaks. The lag is especially evident 
during the time when tensions simmered on the Russia–Ukraine border. Therefore, it 
is crucial for us to accurately forecast energy price volatilities without lagging behind 
significant events by utilizing innovative AI techniques such as machine learning. 
This will lead to more effective risk management in the energy markets and industries 
in the post-COVID-19 era.

Secondly, given the increasing importance of structural breaks in energy markets 
that we have observed, it is now more crucial than ever for us to accurately predict 
these breaks. We should note that these breaks are caused by information related 
to the energy markets. We should strive to accurately predict these breaks by using 
cutting-edge AI technologies. This will improve risk management in the energy mar-
kets and industries, particularly in the unpredictable post-COVID-19 world. We also 
believe that accurately predicting structural breaks allows us to forecast volatilities 
without falling behind sudden changes in energy prices caused by significant events.

Thirdly, as a policy implication, we suggest that policy makers and energy-related 
industry practitioners need to pay closer attention not only to the demand and sup-
ply balance for energy, but also to various news and its impact on energy market 
prices, even during normal circumstances. These efforts and close observation should 
help prevent potential imbalances in energy markets in the future. Furthermore, our 
results suggest that policy making and risk management in the energy industry should 
be conducted more swiftly than in the past. This is due to the fact that energy prices 
now respond more quickly to various events and news than ever before. One deeper 
interpretation of our results is that market efficiency in energy markets may have 
shifted. We believe that we should take this viewpoint into consideration in policy 
making and risk management in the energy industry.

Fourth, an interesting implication for future research would be to utilize machine 
learning approaches, such as reinforcement learning or deep learning for predicting 
energy price fluctuations. We consider that comparing traditional econometric mod-
els with machine learning approaches in our context would be a valuable direction 
for future research. We believe that our methods can be applied to other real-world 
assets, such as fuel and other energy commodities.



Page 20 of 23Tsuji ﻿Energy Informatics            (2024) 7:37 

While this study does not provide methods for forecasting structural breaks, the 
comprehensive inspections conducted in this paper provide many insightful inter-
pretations, implications, and innovative perspectives. Collectively, these demonstrate 
the importance of our current work for future energy research and practice. There-
fore, we believe that our empirical findings, along with the significant interpretations, 
implications, and innovative viewpoints discussed above, all signify our substantial 
contribution to current and future research on energy informatics.

Contributions and conclusions
Paying keen attention to the Russia–Ukraine war, and particularly its impact on natural 
gas futures prices when tensions simmered on the Russia–Ukraine border, this paper 
empirically examined natural gas futures volatilities. Using the four hybrid models, the 
AR–T–SB–GARCH, the AR–GED–SB–GARCH, the AR–T–SB–EGARCH, and the AR–
GED–SB–EGARCH models, which incorporated both fat-tailed errors and structural 
breaks, we derived the following findings as new contributions.

•	 First, we found that very interestingly, it was not when Russia invaded Ukraine in 
February 2022, but rather when tensions on the border simmered in January 2022, 
that the matter of the Russia–Ukraine war had the most impact on natural gas 
futures prices.

•	 Second, we revealed that our hybrid models, not only with fat-tailed errors—Stu-
dent’s t distribution or GED errors—but also with structural breaks, effectively cap-
ture the natural gas futures volatility spike when tensions on the Russia–Ukraine 
border simmered in January 2022.

•	 Third, we also uncovered that our hybrid modeling approach—incorporating both 
fat-tailed errors and structural breaks—is highly effective, not only in GARCH mod-
els but also in EGARCH models. This demonstrates the robustness of the effective-
ness of our hybrid modeling approach in capturing natural gas futures volatilities.

•	 Fourth, we also newly found that the volatility estimates from our hybrid models 
of the AR–T–SB–GARCH and the AR–GED–SB–GARCH models have predictive 
power for the volatilities of nonhybrid AR–T–GARCH and AR–GED–GARCH mod-
els. We consider that because of this beneficial characteristic, our hybrid GARCH 
models well captured the natural gas futures volatility jump when the tensions on the 
Russia–Ukraine border simmered.

•	 Fifth, we also uncovered that the volatility estimates from our exponential-form 
hybrid models of the AR–T–SB–EGARCH and the AR–GED–SB–EGARCH models 
also have forecast power for the volatilities of nonhybrid AR–T–EGARCH and AR–
GED–EGARCH models. This indicates the robustness of the predictive power, and 
again, we suggest that because of this characteristic, our hybrid EGARCH models 
also timely captured the natural gas futures volatility spike when the tensions in Rus-
sia–Ukraine border simmered.

•	 Sixth, we further elucidated that the evidence of the predictive power of our hybrid 
models for the volatilities of nonhybrid models means that the volatility estimates 
from the nonhybrid models lag behind the volatilities of the hybrid models. We con-
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sider that because of this characteristic, the nonhybrid models are inferior to the 
hybrid models in capturing sudden changes in natural gas futures volatilities.

•	 Seventh, in addition to the above, we have also developed and shared numerous val-
uable interpretations, implications, and innovative perspectives for future risk man-
agement, policy-making practices, and related research in energy informatics. This 
represents another significant contribution of our work. These interpretations, impli-
cations, and innovative perspectives, wihch include the effective use of AI, should be 
valuable not only for academic researchers but also for industry practitioners.

This study examined the impact of war as a manmade disaster on natural gas futures 
prices, which is of great importance for research in energy informatics. Additionally, the 
findings from our study indicate the growing significance of structural breaks in energy 
markets. This highlights the need to closely monitor the immediate news impact on con-
temporary energy markets.

As a broader implication for future research, studies that explore similar models in dif-
ferent energy-related markets or under various geopolitical scenarios would be interest-
ing. Further research into the adaptability and scalability of the proposed hybrid models 
in our current study would provide a pathway for ongoing contributions in the field of 
energy informatics. Given this, we believe that the many new findings derived from our 
present study make a significant contribution not only to the body of academic energy 
informatics research but also to actual practice in energy-related industries.
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