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Abstract 

The increasing global population and reliance on electrical devices for daily life resulted 
in sharply rising energy consumption. Also, this leads to higher household electricity 
bills. As a result, there is a growing demand for energy monitoring systems that can 
accurately estimate energy usage to help save power, especially for older home appli-
ances that are difficult or expensive to update with monitoring sensors. However, cur-
rent energy monitoring systems have some drawbacks, such as the inability to detect 
different types of appliances and the deployment complexity. Moreover, such systems 
are too costly to use in older power infrastructures. To address this issue, we proposed 
a centralized smart energy monitoring system designed for legacy home appliances, 
aiming to address the limitations of current energy monitoring systems by avoiding 
costly infrastructure upgrades to calculate the power consumption of legacy home 
appliances. The proposed system employs a two-layered architecture comprising 
hardware (Emontx device, Analog-to-Digital Converters (ADC), and Current Transformer 
(CT) sensors) and a software layer that includes Artificial Intelligence (AI) predictors 
using a pre-defined set of rules and K Nearest Neighbours (KNN) algorithms. We con-
ducted three experiments on real home appliances to evaluate the proposed work. 
The accuracy of the proposed system showed positive results after several modifica-
tions and hard tuning of several parameters in devices, specifically for Jordanian power 
plants.

Keywords: Smart homes, Energy monitoring, Power monitoring, Power consumption, 
Energy consumption, Legacy home appliance

Introduction
Economic expansion and the growing global population have increased energy con-
sumption lately (Farghali et  al. 2023). The efficiency of energy services has slowly 
improved due to technological advancement, energy efficiency enactment, and power 
monitoring and management tools and frameworks. Nonetheless, this improvement has 
not always been adequate to offset the increase in demand for energy services. Power 
monitoring tools and frameworks are crucial in reducing energy consumption, a global 
requirement impacting energy prices, emissions, and lawmaking (Toshiba 2019). Both 
individuals and organizations are highly interested in economizing energy usage in their 
homes and workplaces and positively impacting the environment, as illustrated in Fig. 1. 
However, power monitoring necessitates prerequisite requirements for specialized 
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monitoring devices, resulting in increased costs for investment and maintenance, which 
could ultimately lead to higher expenses for consumers (Zainuddin et al. 2020). Besides, 
this monitoring deployment type could strain power lines, leading to vertical clearance 
issues. Another method involves using a numerical calculation to determine conductor 
temperature as an indirect monitoring technique (Reddy et al. 2020). Then, the findings 
can be compared to measurement data to obtain accurate results. Line monitoring is 
challenging due to the inconsistent data for each span, particularly transmission lines 
running through complex terrains (Zainuddin et  al. 2020). Therefore, operators must 
determine the most effective data measurement strategy (Reddy et al. 2020). They must 
consider adequate monitoring equipment and a proper deployment position based on 
the terrain to read real-time conductor temperature accurately. Hence, ensuring accu-
rate data measurement throughout the operation with direct and indirect monitoring is 
challenging.

The monitoring system must be considered, so transmission engineers should design 
a robust system that addresses all sorts of concerns (Zainuddin et al. 2020; Krivohlava 
et  al. 2022). Several studies have been conducted to prevent unauthorized access and 
avoid time delays in data processing, collection, and transmission. Researchers recently 
introduced several solutions to monitor power consumption using different approaches 
ranging from hardware, software, and user usage behavior to utilizing Artificial 
intelligence(AI) algorithms.

To this end, we propose a centralized smart energy monitoring system in this paper 
to provide a practical solution for legacy home appliances employing a predefined set of 
rules and K Nearest Neighbours(KNN) AI algorithms. The proposed system optimizes 
power usage detection of legacy home appliances without requiring sensors on each 
device or upgrading the electrical wiring system. Our system is composed of hardware 
and software layers. The hardware layer includes an Emontx device to read the electrical 
current in wires, Analog-to-Digital Converters (ADC), and Current Transformer (CT) 
sensors. The software layer processes the data from the hardware layer to predict the 

Fig. 1 Power monitoring system [reproduced from] Toshiba (2019)
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power usage of each appliance. Our proposed system will enable more installations in 
legacy households by simplifying and reducing the cost of wiring each end pint outlet 
and the effort of extra wiring required by such solutions. We conducted three experi-
ment scenarios on actual home appliances to evaluate the proposed model. The Set of 
Rules achieved an accuracy of 16.1%, 16.1%, and 19.4% in the three experiments, while 
the KNN algorithm achieved 87.1%, 74.2%, and 80.6%. The contributions of our article 
are summarized as follows:

• First, we proposed a smart centralized power monitoring system for legacy home 
appliances that employs a two-layered architecture that does not require any upgrade 
of the current electrical grid installations.

• Second, we presented two AI approaches to predict appliances’ power consumption.
• Thirdly, we calibrated and altered the sensor readings to be more efficient with Jor-

dan’s electricity to improve the accuracy of CT sensors.
• Finally, we have evaluated the accuracy of the proposed system by building a real-

world testbed with three experiment scenarios.

The rest of the paper is organized as follows. Section 2 describes the background topics. 
Section 3 overviews and categorizes the related work. Our proposed model is presented 
in Sect. 4. Performance evaluation and results are presented in Sect. 5, while Sect. 6 con-
cludes the paper.

Background
Smart homes have recently obtained significant attention as they make people’s lives 
easier and more convenient. A smart home is the automatic control of electrical appli-
ances in the home (Hasan et al. 2018). The user can manage the devices remotely using 
electronic devices such as smartphones, personal devices, and laptops. Recent techno-
logical developments have also generated many intelligent and preceding systems that 
can promote intelligent technology in life (Shaban et  al. 2019). One of the benefits of 
having a smart home is the ability to monitor energy consumption, which is unattainable 
in non-smart homes. Non-smart homes, which are still common and dominant, con-
sume much energy and cannot monitor energy consumption, which can be costly for 
the user. However, before discussing monitoring systems, it is essential to understand 
power measurement. Power consumption and quality measurements should be part of 
any system’s design and testing for power systems. These measurements are crucial to 
optimizing system design, complying with standards, and providing users with helpful 
information.

This section will briefly discuss the background topics related to our research. We 
will describe necessary power basics, power monitoring systems, AC power theory, 
Arduinoś formulas, and the set of rules and KNN algorithms.

Power basic measurements

Electricity is gauged in units of power called Watts (W) in honor of James Watt (Co 
2010). A W is equal one Ampere A under the pressure of one volt V, which can be meas-
ured as Eq. 1:



Page 4 of 27Ahmad et al. Energy Informatics            (2024) 7:29 

One W is a small amount of power (Adminstration 2018), and some appliances consume 
only a few Ws to work, while others consume more. The power consumption of small 
appliances is usually measured in Ws. In contrast, the power consumption of larger 
devices is measured in kilowatts (KW), equal to 1000 Ws. Electric power generation 
capacity is often measured in multiples of KWs, such as megawatts (MW) and gigawatts 
(GW). One MW equals 1000 KW, and one GW equals 1000 MW. The electric power 
that is used over time is measured in Watt Hours (WH). A WH is equal to the power of 
one W fixedly supplied to, or taken from, an electric circuit for one hour. The amount of 
power a power plant generates or a customer’s electric power utility is usually measured 
in kilowatt-hours (KWH). One KWH is one kilowatt generated or consumed for one 
hour. For example, if you use a 30-watt (0.03 KW) light bulb for seven hours, you have 
used 210 WH, or 0.21 KWH, of electric power.

The power factor (PF) is the active power P ratio to the apparent power S. The 
power factor is the cosine of the angle between voltage and current and is expressed 
in percentage. Equations 2 and 3 (Chaudhari 2018) represent the relation.

Also,

In an inductive circuit, the power factor lags if the current lags behind the voltage. In 
contrast, the power factor leads to a capacitive circuit if the current leads to the voltage.

Power monitoring

Most home appliances can be classified into two types: straightforward and non-
straightforward (Monitor 2023). The straightforward type consumes all the energy 
given to them, including kettles, light bulbs, irons, water coolers, and electric water 
heaters. On the other hand, non-straightforward type devices use a partial amount of 
the given energy and then release part of it back into the source. Non-straightforward 
appliances include fridges, washing machines, pillar drills, and arc welders. Straight-
forward appliances resist loads according to Ohm’s Law, as shown in Eq. 4 (Monitor 
2023).

where I represents the current, V represents the voltage, and R represents the resistance.
When the power is constantly upbeat, electricity flows from the primary power 

source to the load (Co 2010). However, some appliances are more complex and 
include inductive or capacitive components in addition to the resistive compo-
nent. These appliances take in a certain amount of energy and then release part of 
that energy back to the primary power source. During specific periods, the flow of 

(1)
W = V ∗ A

(2)PF =
P

S

(3)PF = (cosθ)

(4)I =
V

R
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electricity may be negative, meaning that the positive portion flows to the load while 
the negative portion flows back to the primary power source.

Arduinoś power sensing

Arduino is limited in power sampling frequency between 50 and 100 measurements 
every 20 milliseconds by sampling the primary voltage and current at high frequency 
(Monitor 2023). They took 100 measurements every 20 milliseconds if they were sam-
pling only current and 50 measurements if they were sampling voltage and current 
together. The sampling limitations are due to the math used in Arduino. Figure 2 shows 
the Arduino sampling, where each reading sample is the instantaneous voltage or cur-
rent reading.

Emontx is the system we use in our proposed system to read the electrical current in 
wires and determine power usage. The Emontx most important formulas are depicted 
in (5) Real Power, (6) Real Power in discrete time, (7) Voltage, and (8) Current (Monitor 
2023).

Where U represents the Root Mean Square (RMS) voltage, i(t) represents the current, I 
represents the RMS current, and cos(Phi) represents the power factor.

(5)P =
1

T

∫

U(t) ∗ i(t), dt = U ∗ I ∗ cosφ

(6)P =
1

N

N−1

n=0

u(n) ∗ i(n)

Fig. 2 Arduino sampling of each instance [reproduced from Monitor 2023]
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Where u(n) represents the sampled instance of u(t), i(n) represents the sampled instance 
of i(t), and N represents the number of samples.

Where u(n) represents the sampled instance of u(t), and N represents the number of 
samples.

Where i(n) represents the sampled instance of i(t), and N represents the number of 
samples.

Set of rules

The set of rules is a method of deductive reasoning (Al-Janabi et al. 2018). The computer 
understands that zero means false and one means true. A set of Rules is a conclusion 
that comes after the hypotheses, for example, A ⇒ B , where statement A is the hypoth-
esis and statement B is the conclusion. The following gives a real example to help you 
understand the concept better. If the traffic light is red, then stop. The hypothesis is that 
the traffic light is red, and the conclusion is that you have to stop your car. This model 
is used when fast outputs are needed, when there is a risk of error, and when there is no 
planning for using Machine Learning (ML).

KNN

The KNN algorithm is a popular non-linear regression technique used in supervised ML 
(Al-Janabi et al. 2018). This algorithm uses the K closest samples of the training dataset 
to predict a new sample. KNN assumes symmetry between the available and new sta-
tuses. It looks to find symmetry points between these statuses to classify new inputs eas-
ily into the most symmetric category among obtainable categories.

Related work
Several solutions exist to read appliance power usage; these solutions can broadly be cat-
egorized into two main categories, as described below.

Traditional power monitoring systems

Numerous studies have looked into various aspects of household electricity monitoring 
and control systems. For instance, a Wireless Sensor Network (WSN) monitoring sys-
tem based on ZigBee is proposed in Hasan et al. (2018). The electrical socket’s primary 
components are the IRM-10-12 switched-mode power supply, XBee communication 
module, Arduino Nanosensor, and signal-conditioning modules. Another work (Shah 
and Mishra 2016) proposed a solution using the appliance’s IP address and port number 
to connect with STM32 using a remote control program so they could recognize room 
numbers by IP address. This guarantees that the host computer can accurately receive 

(7)Urms =

√

∑

N−1
n=0 u2(n)

N

(8)Irms =

√

∑

N−1
n=0 i2(n)

N
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information about each room’s electricity usage. Researchers in Serra et al. (2005) pro-
vided a specialized wireless sensing and monitoring platform with Internet of Things 
(IoT) capabilities to track temperature, relative humidity, and light in the context of 
building automation. The proposed IoT system comprises a transmitter node, a repeater 
node, and a sink node (receiver node) coupled to a PC powered by the USB interface. 
The proposed wireless IoT consists of a Pic microcontroller, light sensor, temperature 
and humidity sensor, and wireless transceiver.

The research work in Han et  al. (2011) developed a prototype using hardware and 
software tools. They used an AD7757 IC chip to measure electric power, a local micro-
controller to implement data acquisition, an external EEP-ROM to store several power 
profiles, an RS232 interface to provide communications with the personal computer, the 
I2C interface to provide communication with other telecommunication modules and 
ICD2, a set of subroutines in “C” languages for the micro-controller, and a created Visual 
Basic-based software module for the system’s connected personal computer. Researchers 
in Patel et al. (2010) proposed a reference energy usage profile accessed by two methods 
of communication. First, suppose a user signs up for the energy service portal offered. 
In that case, the reference energy usage profiles of all household appliances can be sent 
to the user’s home server to compare the energy usage of their appliances with server 
profiles. The second technique is manually installing the home appliance profile into the 
server. The equipment manufacturer might provide the typical reference energy usage 
profile for the model of home appliances as a device driver. Without signing up for the 
energy portal service, a user can determine the energy usage of household equipment 
by comparing it to the usually offered reference energy usage. Their hardware system 
included an electrical outlet that used ZigBee to measure power and energy.

In research work (Ueno et al. 2006), the power consumption is calculated using a cali-
brator connected to a PC through a USB connection. The GNU Radio software tool-
box is used for signal conditioning and processing, and the hardware uses a Honeywell 
HMC1022 sensor. In Zhao et al. (2014), the researchers suggested a solution that con-
sists of monitoring and distribution components. A Load-Survey Meter (LSM) and an 
End-Use Meter (EUM), which individually measure the amount of electricity used by 
a specific home appliance, are included in the monitoring component. Each of them 
measures power usage every 30 min. The Network Control Unit (NCU) receives the esti-
mated data via distribution lines throughout the home. Then, a PC uses telephone con-
nections to collect the data each night. The distribution component is a PC that sends 
data via mail to each home’s information terminal. Every morning, the distribution 
server receives logs of the information terminal’s operation and the users’ reactions to 
the energy tips.

AI‑based power monitoring systems

Several other research works have utilized AI, ML, and data mining in power moni-
toring and detection. The work in Zhao et  al. (2014) aimed to create an indirect data 
mining method that would be less intrusive to learn about occupant passive behavior 
and how it can affect office building heating, ventilation, and air conditioning (HVAC) 
energy usage in various climates. Several software data mining methods, such as data 
gathering experiment design, are evaluated and tested to develop occupant individual 
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behavior and group schedule prediction models. Each occupant’s unique office appliance 
electric power consumption data is gathered via wireless smart meters over 5 min. Lap-
top computers, task lighting, computer monitors, personal fans, chargers, and printers 
are among the workplace equipment that has been measured. The individual behavior 
models for each occupant and the group scheduling models are constructed using the 
electricity-metered data from office appliances. The findings revealed that installing the 
system led to a 9% reduction in power consumption.

In Sense (2023), the study developed a practical data mining approach using power 
consumption data from office appliances to understand the passive behavior of occu-
pants in a medium office building. The method achieved an average of 90.29% accuracy 
in classifying individual behavior instances and a correlation coefficient of 0.94 between 
predicted group schedules and ground truth. The experiment showed a consistent group 
occupancy schedule, capturing diversified individual behavior in using office appli-
ances. The study also investigated the impact of occupancy schedules on building HVAC 
energy consumption across 17 different climate zones, showing significant variations in 
the buildings under different climate conditions. The findings suggest the significance 
of developing systems to persuade occupants to change their behavior to reduce plug 
load energy consumption and the effectiveness of learning actual group schedules dur-
ing operation to reduce HVAC energy consumption.

In Rashid et al. (2019), the study suggests utilizing Internet-of-Things (IoT) and cogni-
tive IoT (CIoT) to create an energy monitoring system for household appliances. It uses 
Google Colab as the training server, a Raspberry Pi-powered smart plug as a gateway, 
and a Matplotlib-based dashboard. With a high accuracy rate of over 80%, the system 
can read current data from individual home equipment, forecast power bills, and alert 
customers to unexpected energy consumption. The performance measures include the 
training score, test score, R2 test, and mean squared error. The study tackles the prob-
lem of rising household energy consumption worldwide and in Malaysia, blaming it on 
the increase in urban population and energy-inefficient lifestyle choices. It describes the 
ideas behind CIoT and IoT, emphasizing how crucial machine learning is to improving.

According to related work, Table  1 summarizes existing solution comparisons. We 
observe that wiring every outlet in a legacy property requires established methods that 
can be costly or time-consuming. Thus, to address the complexity and cost of adding 

Table 1 Summary of the previous techniques using AI

Reference Software Hardware Connection 
Protocol

Configuration AI

 Zhao et al. 
(2014)

Java, Weka, and 
Python

Fitbit, Plugwise, 
Zigbee, gas 
furnace, VAV, and 
dampers

Bluetooth 
dongle

Distributed Data Mining 
models: NC, DT, 
LWNB, NR, LR, LWR, 
and SVR

 Sense  (2023) Not Specified embedded sys-
tem, and server 
analysis

WiFi Centralized Cocktail Party 
algorithm

 Rashid et al. 
(2019)

Google Colab 
server, Keras 
Tensorflow 
Matplotlib

RaspberryPi 3 
A+ MCP 3008 
ADC and non-
intrusive current 
sensor

WiFi Centralized LSTM (ANN)
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power monitoring solutions to legacy home appliances, our work is designed to offer a 
solution to these shortcomings of existing methods.

Proposed system
With the tremendous technological progress and development in this era, advanced 
energy monitoring systems have become extremely important and one of the primary 
concerns of our time. As a result, it is critical to develop a system that monitors build-
ingsénergy consumption without replacing their infrastructure to avoid excessive cost 
and installation complexity. This section presents our proposed centralized smart moni-
toring system for home appliancesénergy consumption.

Proposed power monitoring system architecture

Our proposed power monitoring system’s architecture consists of three layers, namely 
hardware, software, and reporting, as shown in Fig. 3. The software layer interacts with 
the hardware layer to collect data, which is then processed and analyzed. The reporting 
layer acts as the final interface module for users. Both layers can be combined on a single 
device or separated into two devices based on the user’s preference. The paper’s focus 
does not include the reporting layer; however, open-source reporting applications can 
be found in the Raspberry Pi community.

Hardware layer

To the best of our knowledge, CT sensors are the only existing sensors capable of read-
ing power flow in wires at any point along the wiring path to the device. Additionally, as 
will be shown later, Arduino contains all the hardware components needed to handle the 
CT sensor reading. Thus, our system consists of the following hardware:

• EmonTx Arduino Shield: EmonTx is used because of its low power consumption 
when sensing data from multiple CT sensors, optical pulse meters, and multiple one-
wire temperature sensors (Monitor 2018). EmonTx is a wireless energy monitoring 
node powered by 5V using a USB connector or AA batteries. Furthermore, it is fully 
compatible with Arduino IDE.

Fig. 3 Proposed power monitoring system architecture
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• Raspberry Pi: Raspberry Pi is a low-cost, miniature computer that is as small as a 
credit card, and it is an open-source ecosystem (Github 2019). Raspberry Pi enables 
users to develop hardware projects, program for physical projects, automate their 
homes, and even learn how to program for physical projects. In our work, we use 
Raspberry Pi to provide a back-end code server to implement the software layer in 
the proposed system.

• ADC: ADC converts analog signal data into a digital signal as the sensors used to 
measure the current are analog (Incorporated 2017).

• CT sensor: A CT sensor clamps around the primary wire to transform the magnetic 
field into voltage (Explained 2019).

Figure 4 illustrates how our power monitoring system’s components interact.

Software layer

Our proposed system utilizes a centralized sensor reading approach, meaning there is no 
need for individual CT sensors to monitor the energy consumption of each home appli-
ance. Instead, we have developed a detection system that employs two algorithms (Set 
of Rules and KNN) to identify running appliances from a single source. The collected 
data is then stored on a Raspberry Pi, which facilitates behavior detection and allows for 
comparison with similar devices in various locations. Section 4.4 explains in detail the 
main processes of the software layer.

Proposed system operation

In this section, we explain the operation of our system in the three phases described 
below.

• Step 1: The proposed system is installed at the primary circuit breakers. A CT sen-
sor is attached to each sub-breaker for each area and up to four sub-breakers. Even 
though the system is divided into up to four CT readers, they are all in the same 
place, so it is still considered centralized. Figure 5 illustrates the installation of the 
proposed system with home appliances.

Fig. 4 Proposed power monitoring system components
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• Step 2: The learning process starts when the system prompts users to run each appli-
ance separately to read its power consumption signature. The user is also asked to 
identify the device’s location to be placed in the future.

• Step 3: In this step, the system enters the detection process to read the device’s cur-
rent power consumption and attempt to determine which device is now operational (if 
this device is a TV, Kettle, Cooler, Refrigerator, or Microwave) using the If-Then Rule. 
The detection process starts using the If-Then rules engine to identify the running appli-
ance. If the If-Then Rule process cannot detect the running devices, the system will use 
the KNN algorithm. The latter algorithm works based on finding the nearest value via 
distance measurement. Finally, if the system cannot detect the device, the user will be 
asked to manually identify the running appliance to provide feedback to the system.

Fig. 5 Our proposed power monitoring system with details

Fig. 6 Proposed System Setup and Components
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Proposed system prototype

This section will describe the prototype configuration we used to evaluate our suggested 
system. The configuration for the prototype was as follows: using an ADC, we connected 
the Arduino to the intended computing equipment in our two-story house, as shown in 
Fig. 6. a. As shown in Fig. 6. b, we then wrapped the CT sensors around the main breaker 
wires in the home. Ultimately, we took individual and group measurements for every 
device. We used the Arduino IDE program to gather the power consumption readings of 
household equipment, as shown in Fig. 6. c

Main processes

In our system, Algorithm 1 depicts the data collection process. We require the user to oper-
ate each appliance separately during this phase to obtain the power consumption value that 
will be used in the detection procedure later on (lines 1-4). The algorithm will continuously 
ask the user to apply the suggested strategy to monitor every device and operate one device 
at a time, as represented in lines 5-9.

Algorithm 1 Collecting Data Process

The detection procedure is illustrated by Algorithm 2 (lines 1-3), which begins by 
examining the output of the suggested Algorithm 3. Then, the algorithm will execute 
the KNN algorithms (as shown on Algorithms 4 and 5) if no value has been identified 
(lines 4-9).

Algorithm 2 Detection Process

The detection process is the system’s heart, without which all this effort is futile. 
Below, we discuss our three proposed detection methods in detail and provide a brief 
comparison.
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Algorithm 3 Search for All Potential Candidates

A)  Search All Potential Candidates

The method outlined in Algorithm  3 concerns reading the power consumption of 
device X and adjusting the value if it exceeds 1000 watts. No changes are made if the 
value is within the acceptable range (lines 1-3). The system is calibrated using a set of 
adjustments based on Jordan electric plants. In line 4, the algorithm multiplies the value 
of X with these adjustment percentages and stores them in a variable called Z. The result 
of Z is then added to X and stored in variable Y (lines 4-5). Next, the calculated value 
(the sum of the power consumption of two or more devices measured separately) is 
subtracted from Y. Finally, the minimum distance between all the values is determined 
(lines 6-13).

Algorithm 4 First 5-KNN Candidates Ignoring the First One
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B) First 5-KNN Candidates Ignoring the First One

This method is represented by Algorithm 4 and is used to read the current power con-
sumption of M and store them in list L. If the M value exceeds 1000 watts, the algo-
rithm is applied to find the closest candidate. Otherwise, no changes are made, and the 
algorithm will find the most immediate value (lines 1 to 4). The system is provided by 
adjustments to calibrate the reading based on Jordan electric plants. As shown in line 4, 
the algorithm finds the five minimum distances (lines 5 to 7). Then, it ignores the first 
closest value and multiplies the other four values with predefined adjustment values. The 
results are then stored in variable S. K is the sum of S and M (lines 8 to 13). In line 15, 
the step subtracts each value of S from the calculated value and stores it in list R (lines 
14 to 16). Finally, the algorithm finds the minimum distance of the values in the list and 
displays the result (lines 17 to 23).

Algorithm 5 First 5-KNN candidates

C) First 5-KNN candidates

This method is represented in Algorithm 5. The point of this method is to read the 
current power consumption of N and store it in list T; if the value of N is more signifi-
cant than 1000 watts, then apply the algorithm. Otherwise, no changes are made (lines 
1 to 3). First, it finds the five minimum distances, then multiply their actual values with 
predefined adjustment values and stores them in a variable called F (lines 4 to 6). Then, 
add each result of F to N and store the result in variable J. Line 13 subtracts J from the 
calculated value and stores it in E. Finally, find the minimum distance in the list and then 
display the result (lines 7 to 21).
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Performance evaluation and results
This section shows the sample data we obtained during the training phase of several 
appliances such as Grills, Microwaves, Kettles, etc. Then, we will discuss the results, 
including the accuracy of each proposed detection algorithm.

Appliance power consumption readings

We collected data using a set of various home appliances to obtain different ranges of 
power consumption. Especially since electrical devices vary in running time character-
istics and internal power transformation, as explained in Sect. 2. We conducted three 
experiments using different home appliances, as follows:

• Experiment  1: This experiment measured the consumption values for rill, Micro-
wave, Kettle, LG Refrigerator, and Hitachi Refrigerator. Each device consumption 
value running individually is shown in Table 2.

• Experiment  2: This experiment measured the Grill, Microwave, Kettle, LG Refrig-
erator, and hairdryer consumption values. As we noticed, we replaced the Hitachi 
refrigerator with a hair dryer in this experiment. Table  2 shows the consumption 
value for the hairdryer running separately.

• Experiment 3: This experiment measured the consumption values for TV, Lamp A, 
Lamp B, Lamp C, and Straightener. Table  3 shows the consumption value for the 
hairdryer running separately.

As we see in Tables 2, 3, the readings are almost steady, and the devices are constantly 
consuming the same power over time. Such behavior may produce more accurate results 
in our proposed system. These results show the power consumption over 10 s using the 
emonTx sensor readings for the tested appliances.

To ensure that our proposed system is accurate, the reading of the power flow using 
the CT sensor must be correct. Thus, we conducted a calibration phase for the power 
consumption reading and the CT sensor based on the characteristics of electricity in Jor-
dan. To achieve the best accuracy of the CT sensor reading for devices using electricity 

Table 2 Power Consumption in Watt for devices of experiments no. 1 and no. 2

Time (Sec) Grill Microwave Kettle LG Fridge Hitachi Fridge Hairdryer

1 1092 1461 2085 184 175 435

2 1093 1451 2054 212 174 438

3 1096 1463 2037 223 173 429

4 1095 1466 2040 217 169 430

5 1093 1468 2042 210 169 427

6 1091 1467 2028 205 166 429

7 1091 1465 2035 200 165 426

8 1088 1465 2040 197 169 429

9 1091 1463 2027 192 169 430

10 1098 1456 2036 190 166 429



Page 16 of 27Ahmad et al. Energy Informatics            (2024) 7:29 

in Jordan, we executed multiple experiment trials to find the optimal values to be used in 
the configuration of the EmonTx device. Firstly, we discovered that using 220V instead 
of 230V for the value of Vrms in the Arduino sketch was optimal. Secondly, we changed 
the value of phase shift from 1.7 to lower amounts (1.6, 1.5, and 1.4) and verified the 
accuracy of the desired change through trial. The results of all calibrations performed 
are presented in the following subsection.

Phase shift calibration

The following results show the CT sensor readings using 1.4, 1.5, 1.6, and 1.7 phase 
shifts. We measured the power consumption of two devices running separately, a Micro-
wave and a Kettle. Then, we measured the power consumption of the two devices run-
ning together to detect the differences between the calculated value of consumption 
using the single read of each device and the actual value (the real value is the same as 
the sensor reading) from the CT sensor while the two devices were running at the same 
time. Table 4 shows the Microwave and Kettle consumption separately using phase shifts 
equal to 1.7, 1.4, 1.5, and 1.6.

Table 3 Power Consumption in Watt for devices of experiment no. 3

Time (Sec) TV Lamp A Lamp B Lamp C StraightLiner

1 122 16 30 22 139

2 124 15 31 22 139

3 125 15 31 22 140

4 125 16 30 23 140

5 125 16 30 23 139

6 125 15 30 23 139

7 125 15 29 23 139

8 125 16 28 24 139

9 125 15 29 23 139

10 125 15 28 23 139

Table 4 Power Consumption of Microwave, and Kettle separately at phase shift = 1.7, 1.4, 1.5, and 
1.6

Time (Sec) At phase shift 1.7 At phase shift 1.4 At phase shift 1.5 At phase shift 1.6

Microwave Kettle Microwave Kettle Microwave Kettle Microwave Kettle

1 1629 2067 1686 2096 1486 2112 1461 2085

2 1617 2065 1691 2081 1480 2102 1451 2054

3 1614 2060 1681 2077 1487 2103 1463 2037

4 1619 2047 1670 2078 1484 2104 1466 2040

5 1615 2054 1673 2072 1486 2106 1468 2042

6 1617 2046 1672 2071 1477 2102 1467 2028

7 1607 2052 1679 2080 1481 2112 1465 2035

8 1615 2048 1657 2086 1481 2126 1465 2040

9 1582 2052 1667 2083 1494 2123 1463 2027

10 1593 2043 1650 2082 1479 2118 1456 2036
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Table 5 shows the combination of Microwave and Kettle using phase shift equal to 1.7 
and 1.4. Table 6 presents the combination of Microwave and Kettle using phase shifts 
equal to 1.5 and 1.6.

To summarize the full results of the previous calibration, Table 7 shows the summary 
of all tested phase shift values. The 1.6 phase shift leads to the slightest variance between 

Table 5 Combinations of Microwave + Kettle at phase shift 1.7 and 1.4

Time (Sec) Microwave & Kettle at 1.7 Microwave & Kettle at 1.4

Calculated values Sensor reading Calculated Values Sensor reading

1 3696 3435 3782 3536

2 3682 3460 3772 3541

3 3674 3459 3758 3529

4 3666 3425 3748 3555

5 3669 3419 3745 3546

6 3663 3425 3743 3545

7 3659 3454 3759 3546

8 3663 3419 3743 3551

9 3634 3443 3750 3561

10 3636 3418 3732 3539

Average 3664.2 3435.7 3753.2 3544.9

Distance = 228.5 Distance = 208.3

Table 6 Combinations of Microwave and Kettle at phase shift 1.5 and 1.6

Time (Sec) Microwave & Kettle at 1.5 Microwave & Kettle at 1.6

Calculated values Sensor reading Calculated values Sensor reading

1 3598 3507 3546 3458

2 3582 3495 3505 3450

3 3590 3504 3500 3453

4 3588 3518 3506 3428

5 3592 3519 3510 3431

6 3579 3503 3495 3434

7 3593 3527 3500 3434

8 3607 3524 3505 3428

9 3617 3524 3490 3434

10 3597 3525 3492 3461

Average 3594.3 3514.6 3504.9 3441.1

Distance = 79.7 Distance = 63.8

Table 7 Summary of the phase shift percentages

The value in bold is the one chosen for the proposed work

Phase shift value  Difference of calculated & sensor reading values

1.4 208.3

1.5 79.7

1.6 63.8
1.7 228.5
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the calculated and actual values. The reading devices will be set to a 1.6 phase change for 
a low variance for the rest of our proposed work.

Set of rules algorithm results

In this algorithm, the system first reads the power consumption for each device. Then, it 
begins to build tables using the values calculated from the data of each individual read 
by summing the values of all possible combinations for those devices. The results are 
stored for future comparison with new cases. The system will then begin to apply the 

Table 8 Set of Rules, KNN, and All candidates in Experiment No. 1

Trial No. Devices Calculated value Sensor reading Match 
set of 
rules

Match KNN Match all 
candidates

1 Grill 1090.55 1090.55 Yes Yes Yes

2 Kettle 2040.11 2040.11 Yes Yes Yes

3 Microwave 1457.95 1457.95 Yes Yes Yes

4 Hitachi 168.26 168.26 Yes Yes Yes

5 LG 188.24 188.24 Yes Yes Yes

6 Kettle, Grill 3130.66 3119.12 No Yes Yes

7 Kettle, Microwave 3498.06 3438.5 No Yes Yes

8 Microwave, Grill 2548.5 2513.3 No Yes Yes

9 Microwave, Grill, Kettle 4588.61 4458.79 No No Yes

10 LG, Hitachi 356.5 353.92 No Yes Yes

11 LG, Hitachi, Microwave 1814.45 1796.5 No Yes Yes

12 LG, Hitachi, Kettle 2396.61 2329.55 No Yes Yes

13 LG, Hitachi, Grill 1447.05 1374.94 No Yes Yes

14 LG, Hitachi, Microwave, 
Kettle

3854.56 3752.65 No Yes Yes

15 LG, Hitachi, Kettle, Grill 3487.16 3324.4 No No Yes

16 LG, Hitachi, Grill, Micro-
wave

2905 2868.25 No Yes Yes

17 LG, Hitachi, Kettle, Grill, 
Microwave

4945.11 4607.41 No Yes Yes

18 LG, Microwave, Grill 2736.74 2661.85 No Yes Yes

19 LG, Microwave, Kettle 3686.3 3633.75 No Yes Yes

20 LG, Kettle, Grill 3318.9 3135.65 No Yes Yes

21 LG, Kettle 2228.35 2161.4 No Yes Yes

22 LG, Grill 1278.79 1240.96 No Yes Yes

23 LG, Microwave 1651.35 1650.3 No Yes Yes

24 Hitachi, Microwave 1626.21 1552.4 No Yes Yes

25 Hitachi, Kettle 2208.37 2132.3 No Yes Yes

26 Hitachi, Grill 1258.81 1182.94 No Yes Yes

27 Hitachi, Microwave, 
Kettle, Grill

4756.87 4520.21 No No Yes

28 Hitachi, Microwave, Grill 2716.76 2605.78 No Yes Yes

29 Hitachi, Microwave, 
Kettle

3665.83 3563.72 No Yes Yes

30 Hitachi, Kettle, Grill 3298.92 3223.03 No Yes Yes

31 LG, Grill, Microwave, 
Kettle

4776.85 4511.94 No No Yes
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Fig. 7 Set of Rules Power Differences for Experiment no. 1

Fig. 8 KNN Power Differences for Experiment no. 1
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predefined Set of Rules. As shown in Table 8, the Set of Rules achieved an accuracy of 
16.1 percent, which is five correct matches out of 31.

Figure 7 shows that most devices running together produce less power consumption 
than expected. Such performance showed unacceptable results in overall accuracy. The 
achieved accuracy using the Set of Rules technique in experiment no. 2 is 5 of 31, and in 
experiment no. 3 is 6 of 31. Such performance also showed no excellent results for the 
later experiments.

KNN algorithm results

The accuracy of the Set of Rules algorithm was 5 of 31, with the detection failure 
being about 26 of 31. As a result, the following detection step was required to achieve 
an acceptable accuracy percentage. We used a regression KNN algorithm with the 
Euclidean function without a validation technique, as we do not have prior or long 
datasets. Also, the calculated value is always more significant than the actual value, 
so there is no need to perform an absolute function. As shown in Table 8, the KNN 
algorithm achieved 87.1% accuracy, 27 correct matches out of 31 in experiment no. 1.

Figure 8 shows that some devices running together produce less power consumption 
than expected. Such performance increased the accuracy of the previous algorithm. 
However, the results on the overall accuracy of the corresponding experiment still do 
not yield acceptable behavior. We found that the KNN achieved an accuracy of 23 out 
of 31 in experiment no. 2, which has an accuracy of 74.2%. Also, we found that the KNN 
attained an accuracy of 25 of 31 in experiment no. 3, which has an accuracy of 80.6%.

However, further enhancement is desired to achieve an acceptable system. Thus, the 
following section discusses the suggested modifications to the previously proposed algo-
rithms and the obtained accuracy in detail.

Fig. 9 All candidates Power Differences in Experiment no. 1
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Enhancing the reading accuracy

This section illustrates the results of the three methods we used to enhance previous 
algorithms’ reading accuracy. Table 8 shows that the accuracy of All candidates achieved 
an accuracy of 31 out of 31 in experiment no. 1, which has an accuracy of 100%.

As shown in Fig. 9, most devices running together match the calculated value with the 
actual reading value. Such performance showed promising results regarding the over-
all accuracy of the corresponding experiment. We did the same for experiment no.  2, 
with an accuracy of 24 out of 31, which is 77.4%. In experiment no. 3, we did not apply 
the method because the sensor reading was less than 1000 watts. So, the accuracy will 
remain at 25 out of 31 as before.

1. All candidates Table 9 shows the adjustment we use in this proposed method. This 
table has been generated using trial-and-error experiments and has the optimal val-
ues. Table 10 shows sample results using experiment no. 1. The attribute distance is 
the result of subtracting the calculated values from the sensor reading values.

2. First Five KNN candidates except the first Table  11 shows sample data results of 
experiment no. 1, highlighting the distance before and after applying the enhance-
ments. This proposed enhancement achieved an accuracy of 29 out of 31, 93.5%. As 
shown in Fig. 10, most devices have less than a slight difference between the actual 
and calculated values. Such performance showed promising results regarding the 
overall accuracy of the corresponding experiment. In experiment no. 2, the accuracy 
was 23 out of 31, and it enhanced up to 26 out of 31, which is improved up to 83.9%. 
Regarding experiment no. 3, we did not apply the method to it because the sensor 
reading was less than 1000 watts. We mentioned in the flowchart of this method that 
if the current sensor reading was less than 1000, no changes were made. So, the accu-
racy will remain at 25 out of 31.

Table 9 Adjustment percentages for every 250 Watts

Range of watts Adjustment 
percentage

1000–1250 0.03

1251–1500 0.03

1501–1750 0.037275

1751–2000 0.0035

2000–2250 0.01366

2251–2500 0.025

2501–2750 0.01

2751–3000 0.0127

3000–3250 0.04

3251–3500 0.017

3501–3750 0.0005

3751–4000 0.026

4000–4250 0.035

4251–4500 0.028

4501–4750 0.052

4751–5000 0.052
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3. First 5-KNN candidates Table 12 shows the adjustment table we use in this proposed 
algorithm. This table has been generated using trial-and-error experiments and has 
the optimal values.

Table 10 Experiment no. 1 sample results of First 5-KNN candidates Ignoring the first candidate

Hitachi, microwave

Sensor reading Calculated value Distance

Kettle, Grill 3119.12 1626.21 −1492.91

Kettle, Microwave 3438.5 1626.21 −1812.29

Microwave, Grill 2513.3 1626.21 −887.09

Microwave, Grill, Kettle 4458.79 1626.21 −2832.58

LG, Hitachi 353.92 1626.21 1272.29

LG, Hitachi, Microwave 1796.5 1626.21 −170.29

LG, Hitachi, Kettle 2329.55 1626.21 −703.34

LG, Hitachi, Grill 1374.94 1626.21 251.27

LG, Hitachi, Microwave, Kettle 3752.65 1626.21 −2126.44

LG, Hitachi, Kettle, Grill 3324.4 1626.21 −1698.19

LG, Hitachi, Grill, Microwave 2868.25 1626.21 −1242.04

LG, Hitachi, Kettle, Grill, Microwave 4607.41 1626.21 −2981.2

LG, Microwave, Grill 2661.85 1626.21 −1035.64

LG, Microwave, Kettle 3633.75 1626.21 −2007.54

LG, Kettle, Grill 3135.65 1626.21 −1509.44

LG, Kettle 2161.4 1626.21 535.19

LG, Grill 1240.96 1626.21 385.25

LG, Microwave 1650.3 1626.21 −24.09

Hitachi, Microwave 1552.4 1626.21 73.81

Hitachi, Kettle 2132.3 1626.21 −506.09

Hitachi, Grill 1182.94 1626.21 443.27

Hitachi, Microwave, Kettle, Grill 4520.21 1626.21 −2894

Hitachi, Microwave, Gril 2605.78 1626.21 −979.57

Hitachi, Microwave, Kettle 3563.72 1626.21 −1937.51

Hitachi, Kettle, Grill 3223.03 1626.21 −1596.82

LG, Grill, Microwave, Kettle 4511.94 1626.21 −2885.73

Grill 1090.55 1626.21 535.66

Kettle 2040.11 1626.21 413.9

Microwave 1457.95 1626.21 168.26

Table 11 Distances before and after for First 5-KNN candidates except for the first candidate in 
Experiment no. 1. (K=1 is True)

Distance 
Before

KNN 5 values Sensor 
reading (1)

Adjustment% (2) (3) = (1) * (2) (4) = (1) + (3) Distance

73.81 Hitachi, Micro-
wave

1552.4 1552.4 73.81

168.26 Microwave 1457.95 0.03 43.7385 1501.6885 124.5215

251.27 LG, Hitachi, 
Grill

1374.94 0.03 41.2482 1416.1882 210.0218

385.25 LG, Grill 1240.96 0.03 37.2288 1278.1888 348.0212

443.27 Hitachi, Grill 1182.94 0.03 35.4882 1218.4282 407.7818
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Table 13 shows sample data results of experiment no. 1, highlighting the distance 
before and after applying the enhancements. This proposed enhancement achieved 31 
out of 31 correct matches with 100% accuracy. As shown in Fig. 11, most devices have 
less than a slight difference between the actual and calculated values. Such perfor-
mance showed promising results regarding the overall accuracy of the corresponding 
experiment.

In experiment no.  2, the proposed method enhanced to 29 out of 31 correct 
matches; the accuracy is 93.5%. Regarding experiment no. 3, we did not apply the pro-
cess because the current sensor reading was less than 1000 watts, so the accuracy will 
remain 25 out of 31.

Summary of all methods

In Table 14, we show the summary results of the accuracy of all proposed methods. The 
results of the first 5-KNN candidates’ method showed the best accuracy.

Proposed system limitations

The proposed system was implemented with certain restrictions and presumptions. The 
model was only tested on electrical connectors in homes with a maximum of four sub-
breakers and five devices per sub-breaker. Adding a new appliance also necessitates a 
learning curve for the system.

Fig. 10 First 5-KNN candidates except for first candidate power differences in Experiment no. 1
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Conclusion and remarks
In this paper, we propose a mentoring system that can detect the power consumption of 
legacy home appliances without requiring an infrastructure upgrade or a reading sensor 
on each appliance. The centralized design of our system reduces the complexity and cost 
of power monitoring systems and provides accurate power usage. The proposed system 

Table 12 Adjustment percentages of distanceś range

Range of distances Adjustment 
percentage

1–2.50 0.0006

2.51–10 0.003

10.01–15 0.00368

15.01–30 0.0099

30.01–37 0.0089

37.01–49 0.03

49.01–55 0.014

55.01–65 0.017

65.01–67 0.03

67.01–70 0.027

70.01–73 0.05

73.01–74 0.03

74.01–75 0.027

75.01–75.87 0.06

75.88–75.99 0.023

76–77 0.03

77.01–109 0.0264

109.01–119 0.04

119.01–160 0.028

160.01–165 0.0489

165.01–170 0.055

170.01–180 0.05

180.01–200 0.055

200.01–259 0.05

259.01–280 0.057

280.01<= 0.068

Table 13 Applying First 5-KNN candidates method on a sample data of experiment no. 1 (K=2 is 
True)

AI Artificial intelligence, ADC Analog-to-Digital Converters, CT Current Transformer, KNN K Nearest Neighbours, ML Machine 
Learning

Distance 
Before

KNN 5 values Sensor 
reading (1)

Adjustment 
% (2)

(3) = (1) * (2) (4) = (1) + (3)

46.97 LG, Kettle 2161.4 0.03 64.842 2226.24

76.07 Hitachi, Kettle 2132.3 0.03 63.969 2196.27

168.26 Kettle 2040.11 0.055 112.206 2152.32

411.87 LG, Hitachi, 
Microwave

1796.5 0.068 122.162 1918.66

558.07 LG, Micro-
wave

1650.3 0.068 112.22 1762.52
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comprises hardware and software layers and employs a predefined set of rules and K Near-
est Neighbors (KNN) AI algorithms. After investigating various calibration techniques and 
adjusting sensor readings based on Jordan’s electricity to be more efficient, the calibration 
process determined that using a 1.6 phase shift produces the best results. However, we dis-
covered that when devices A and B run simultaneously, they do not consume the combined 
total of their power consumption due to errors in reading power usage and other electri-
cal factors. We tested our proposed system using three experimental scenarios to address 
this issue. The Set of Rules achieved an accuracy of 16.1%, 16.1%, and 19.4% in the experi-
ments, while the KNN algorithm achieved 87.1%, 74.2%, and 80.6%. Finally, we found that 
the detection process can be automated using KNN techniques, but more experiments are 
needed to verify the proposed technique’s effectiveness. The proposed technology shows 
promise in measuring power usage from a single source, negating the need for sensors at 
each appliance endpoint and significantly reducing labor and expense. Such a technique 
can be helpful for older homes where installing wire would be challenging or impossible. 
This study can be used to improve detection algorithms for future development.

Fig. 11 Distances before and after for First 5-KNN candidates in Experiment no. 1

Table 14 Summary results of the accuracy of all proposed methods

RMS Root Mean Square

Method name Accuracy

All candidates Experiment 1 100% Experiment 2 77.4% Experiment 3 80.6%

First 5-KNN candidates except the first 
candidate

Experiment 1 93.5% Experiment 2 83.9% Experiment 3 80.6%

First 5-KNN candidates Experiment 1 100% Experiment 2 93.5% Experiment 3 80.6%
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In future work, we intend to employ user feedback to enhance the precision of our 
monitoring system, thus improving its overall effectiveness. In addition, a forthcoming 
application will be created to elucidate user engagement with recognized devices and 
optimize power consumption statistics. This application will guide consumers on effec-
tively utilizing each appliance and accurately assessing its energy usage by implement-
ing a recommender system. Furthermore, using data gathered from various sources, the 
application can offer a global understanding of power usage trends that could aid power 
plants in efficiently managing their resources.
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