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Introduction
With the rapid development of drone technology, the drone community, as an emerg-
ing technology, has been widely applied in various fields. However, with the complexity 
of tasks and the expansion of execution scope, higher requirements have been put for-
ward for the reliability, efficiency, and energy consumption of Unmanned Aerial Vehicle 
(UAV) communication networks (Zhong et al. 2023). Traditional wireless communica-
tion has limitations, so finding new communication methods has become the focus of 
current research (Kuyakhi and Tahmasebi-Boldaji 2021). Ultraviolet communication is 
considered a promising solution, but its application in the drone community still faces 
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challenges, especially in optimizing energy consumption (Ozdemir 2021). The study 
proposes an algorithm for an inter-aircraft ultraviolet communication network based 
on Energy Efficient Unequal Clustering (EEUC) to optimize the energy consumption 
of drones. The aim is to provide more comprehensive and practical energy efficiency 
optimization solutions by improving the EEUC algorithm. The study is divided into 
four main parts. The first part is a literature review, summarizing the research results 
on energy consumption and other aspects of Drone Swarms (DS). The second part is 
the research methodology, including Energy Consumption Optimization (ECO) of UAV 
swarms based on inter machine ultraviolet communication network algorithms and 
improvement of EEUC. The third part involves analyzing the results, primarily through 
simulation analysis of the research methods. The fourth part is the conclusion, summa-
rizing the research results and shortcomings.

ECO is crucial in reducing energy consumption and environmental impact in the 
industrial and transportation sectors. To solve the problem of inaccurate prediction of 
energy management strategies for fuel cell electric cars under changing driving condi-
tions, scholars such as Lin have designed an online correction prediction energy man-
agement strategy. Compared to the benchmark strategy, this strategy had significant 
advantages in improving economy and effectiveness, especially in real-time adjust-
ment of hydrogen consumption (Lin et al. 2021). Liu et al. proposed an optimized lay-
out method for virtual/synthetic inertial control energy storage systems based on swarm 
algorithms to solve the low inertia problem in renewable energy power systems. This 
method was superior to random arrangement in frequency response and was suitable 
for various unexpected events in different locations (Liu et  al. 2021). Chen et  al. pro-
posed an improved competitive group optimization algorithm for multi regional eco-
nomic scheduling problems in power systems. This algorithm improved the efficiency 
and accuracy of solving complex constraints like valve point effects, multiple fuels, and 
transmission losses by introducing sorting pairing learning strategies and differential 
evolution strategies (Chen and Tang 2022). Xiong and other researchers proposed an 
improved multi-objective PSO algorithm for the economic emission scheduling problem 
of co-generation. This method performed better in reducing power generation costs and 
pollution emissions, achieving higher quality scheduling solutions (Xiong et  al. 2022). 
Guo et al. constructed a wind solar storage hybrid power generation system based on 
charged heaters to address the issues of improving transmission channel utilization, reli-
ability, and economy of power generation systems. This system significantly improved 
the utilization of transmission channels and demonstrated better reliability and econ-
omy (Guo et al. 2020).

The development of UAVs technology has increased the demand for efficient and per-
sistent operations, making the ECO of UAVs a key research area for improving their 
operational efficiency and endurance time. Piciarelli et al. designed a deep reinforcement 
learning-based algorithm to solve the visual coverage optimization problem of multiple 
UAVs in monitoring, environmental monitoring and other applications. This method 
outperformed standard patrol algorithms in terms of performance (Piciarelli and For-
esti 2020). Dbouk et al. developed a high-resolution computational method to predict 
the aviation acoustic footprint of multi helicopter UAVs in response to the noise prob-
lem caused by DS. The V-shaped flight formation had lower noise emission than the 
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U-shaped or rectangular formation, and could reduce drag and save energy (Dbouk and 
Drikakis 2021). Miya et al. designed an autonomous gateway mobility control algorithm 
to address stable and low latency communication issues in heterogeneous DS. This algo-
rithm could improve connection stability and effectively reduce communication delay 
under different mobile models, approaching the theoretical upper limit of performance 
(Miya et al. 2022).

Zhang and other scholars have designed a joint optimization method for task time, 
drone trajectory, and communication base station correlation to solve the problems of 
energy-saving operation and reliable communication of cellular connected drones. This 
method minimized the energy consumption of drones and ensured satisfactory commu-
nication connection with ground cellular networks. Then, the path discretization tech-
niques were utilized and the convex optimization techniques and deep reinforcement 
learning algorithms were applied for simulation. The results showed that the design 
was significantly superior to the baseline scheme, revealing new insights into energy-
efficient drone flight with connection requirements, as well as information on the trade-
off between drone energy consumption and segment duration (Zhan and Zeng 2022). 
Researchers such as Ji designed a mathematical model to address the significant impact 
of changes in fuel cell area on aircraft endurance when using fuel cells as power sources 
for long-range UAVs. They validated the effect of fuel cell size on engine performance 
through experimental data. The experimental results indicated that an increase in the 
number of fuel cell stacks and equivalence ratio would increase the aircraft endurance 
increment ratio, with a maximum value of 0.152. Compared to turbojet engines, hybrid 
engines increases thrust by approximately 46%. The rated specific fuel consumption rate 
was 27.9 (g/s)/kN (Ji et al. 2021). The widespread application of 5G NR in recent times 
has promoted the development of drone system cluster networks and improved the effi-
ciency of collaboration between drone clusters. Wang J et  al. proposed an optimized 
cell wall paradigm method to increase the throughput of heterogeneous DS networks. 
Through weight adjustment and algorithm optimization, a fair scheduling improve-
ment of over 40% maximum minimum throughput has been achieved. This method was 
expected to improve the air maneuverability of UAV network, reduce multi beam events 
in communication, and provide important ideas for future development (Wang et  al. 
2022).

The above research indicates that energy efficiency and sustainability are crucial for 
the progress of modern society. According to the above research results, the ECO of DS 
operation is important in the rapid growth of UAVs technology. In exploring the inter-
section of drone technology and energy optimization, different scholars have adopted 
diverse methods to improve the efficiency and endurance of drone systems. These stud-
ies demonstrate the progress of drone technology in energy efficiency and sustainability. 
They also highlight the importance of interdisciplinary research in addressing the chal-
lenges of modern society. By critically analyzing the strengths and limitations of pre-
vious research, the current research direction has been further clarified. By improving 
communication network algorithms and energy management strategies, the energy utili-
zation of the drone population during task execution can be optimized, thereby enhanc-
ing the overall performance and efficiency of the system. In this context, this study 
proposes an Inter-machine Ultraviolet Light Communication (IM-UVLC) algorithm 
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based on EEUC for the ECO of DS. This algorithm aims to optimize the energy effi-
ciency of DS during task execution, and lift the energy consumption performance and 
operational efficiency of the entire UAVs system by improving communication protocols 
and algorithms.

ECO design scheme for drone swarm
The paper focuses on optimizing the energy consumption of DS by utilizing the EEUC-
based inter-aircraft ultraviolet communication network algorithm. This algorithm 
achieves ultraviolet communication between drones through the EEUC method, thereby 
reducing the total energy consumption of the system. The reason for choosing this 
method in this study is that it effectively reduces the Communication Energy Consump-
tion (CEC) of drones and improves system energy efficiency. However, it is important to 
note that this algorithm may be influenced by environmental conditions, communica-
tion distance, and fluctuations in communication quality. Additionally, it is sensitive to 
parameter changes and requires further field validation and parameter adjustment.

ECO of drone swarm based on IM‑UVLC algorithm

The ultraviolet communication network algorithm has the characteristics of high band-
width and security, which can effectively improve communication efficiency and ensure 
communication security. It can reduce energy consumption, improve energy efficiency, 
and optimize the success rate of task execution in UAV group operations. Therefore, it 
has become a promising solution for optimizing energy consumption in UAV groups. 
Due to the involvement of multiple flight units in DS operations, energy management 
has become particularly complex and has a direct impact on the endurance and mis-
sion efficiency of UAVs. Reducing energy consumption and improving energy efficiency 
are closely related to the successful execution of tasks when performing long-term 
tasks or avoiding frequent charging. DS energy consumption refers to the total amount 
of energy consumed by UAVs during flight and mission execution (Shu and Cao 2022; 
Charin et al. 2021). Figure 1 shows the energy consumption model of UAVs bee colony 
communication.

The model in Fig.  1 is a mathematical model used to calculate and optimize the 
energy consumption of DS in the communication process. In reconnaissance mis-
sions, UAVs encode and adjust the signal strength of the collected information 
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Fig. 1  Energy consumption model for DS communication
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through specific signal processing processes, and then use a light-emitting diode array 
to send ultraviolet light signals that have been compensated for atmospheric attenua-
tion (Li et al. 2021). In the formation of UAVs using UVLC, CEC mainly includes the 
energy consumption of data transmission and reception. Considering the path loss 
under non-line of sight transmission conditions, energy consumption can be calcu-
lated according to Eq. (1).

In Eq.  (1), ET  represents the energy required to send one unit of data. When the 
distance between two communication nodes is r , the required transmission ETx and 
reception energy ERx for transmitting k bits are estimated according to Eq. (2).

In Eq.  (2), ERx represents the energy consumption parameter that includes receiving 
a single bit of data. In practical operational scenarios, DS needs to automatically gather 
and maintain a predetermined flight formation to enter specific fields. During this pro-
cess, UAVs arrays not only need to overcome environmental limitations, but also ensure 
the efficiency and reliability of information transmission between machines. Therefore, 
this study develops a low visibility communication algorithm based on ultraviolet light, 
called Energy Balanced Routing Algorithm (EBRA), specifically designed to maintain the 
formation of DS and balance its CEC (Acosta et al. 2021).

During flight missions, a group of N  UAVs utilizes distributed control methods to 
maintain the shape of their formation and ensure safe separation between them. The 
dynamic network formed by this group during flight can be represented by Figure 
G = (V ,E,W ,Q) , where V  represents the set of UAV nodes. E represents the commu-
nication connection between nodes. W  is the connection weight. Q is used to describe 
the spatial location of each UAV i . During the aggregation process, each UAV will 
periodically send signals at maximum power Pmax through its equipped UV emitter 
to collect information on surrounding UAV nodes. For the network layout during the 
formation process of UAVs mentioned above, a specific dynamic equation can be used 
to describe the motion characteristics of each UAV i , as shown in Eq. (3).

In Eq. (3), the position vector q̇i points towards UAVi , the velocity vector pi depicts the 
motion trend of UAVi , and the control input ui affects the heading of UAVi . ṗi represents 
the updated velocity vector. The cluster control strategy is adopted by applying appropri-
ate control inputs ui . The UAV formation follows the three basic behavioral guidelines 
proposed by Reynolds, namely avoiding collisions, maintaining consistent speeds, and 
gathering groups to ensure the stability of the formation structure. The proposed EBRA 
mechanism involves three key steps, namely power optimization, link weight setting, 
and routing path selection. Figure 2 shows the specific process.

(1)EL = ET 1−
1

L

(2)
{

ETx(k) = k(ET + EL)

ERx(k) = kER

(3)
{

q̇i = pi

ṗi = ui
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In Fig.  2, to reduce the CEC and communication interference of data transmission 
between UAVs, UAVs adjust their transmission power to send neighbor detection infor-
mation within the coverage range of their own network nodes. These pieces of informa-
tion typically include the node’s ID, location qi , velocity pi , remaining energy Erest , and 
link weights wij calculated based on specific formulas (Mokayed et al. 2023). If node i 
sends data to node j , to evaluate this situation using Eq. (4).

In Eq. (4), w1 and w2 are coefficients that affect the link weight, and w1 + w2 = 1 . The 
path loss value Ploss determines the energy consumption during the communication pro-
cess, and the smaller the value, the lower the energy consumption. L is the average value 
of link loss in the network. E and Erest(j) are the mean remaining energy of the network 
and the remaining energy of node j . This function indicates that if Ploss is larger and 
Erest(j) is smaller, the link weight wij is higher. This means that the likelihood of node j 
being the next hop node is reduced. Each node selects the data transmission route based 
on the calculated link weights. The weight function in Eq. (4) calculates the link weight 
based on path loss and node residual energy, which affects the decision of the drone 
when selecting the next hop node. The smaller the path loss, the greater the remaining 
energy of the node, and the higher the link weight, indicating that the node is more likely 
to become the next hop node. Therefore, the weight function prioritizes selecting nodes 
with low path loss and sufficient energy as data transmission routes to optimize energy 
and maintain communication quality.

In the DS network, assuming that source node UAVi is responsible for initializing data 
transmission, this node will check whether the target node is within its communication 
range, as shown in Fig. 3.

In Fig. 3, if the target node is within the communication range, such as source node 
UAVi and another UAV, they can directly exchange information. On the contrary, if the 
target node is not within the direct communication range, such as source node UAVi and 
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further UAVs. The network will use a specific link weight algorithm combined with Dijk-
stra’s shortest path algorithm to determine the most effective data transmission route to 
achieve the optimal data transmission path from the source to the target nodes.

Drone swarm ECO based on improved EEUC

The IM-UVLC algorithm should focus on optimizing communication networks and 
controlling energy consumption. To further optimize the energy efficiency of DS and 
improve the performance of DS system, other algorithms will be introduced to com-
prehensively optimize the energy control strategy of DS and improve the efficiency of 
the system. The EEUC algorithm is an energy efficiency clustering algorithm in Wireless 
Sensor Networks (WSN), used to extend the lifespan of the network. The key implemen-
tation idea of the EEUC is to partition the UAVs network by creating circular clusters 
of different sizes. This algorithm effectively reduces energy consumption through inter 
cluster multi hop routing technology. Cluster heads are nodes responsible for data aggre-
gation, coordination, and forwarding tasks in sensor networks. In a DS, cluster heads are 
usually responsible for coordinating and managing their respective clusters, collecting 
and summarizing data, and communicating with other cluster heads or base stations. 
A Candidate Cluster Heads (CCHs) refers to a node that, under certain conditions, has 
the qualifications and potential to become a cluster head. Under certain mechanisms, 
nodes may voluntarily or be designated as CCHs, competing to become cluster heads 
under certain conditions. This improves the flexibility and efficiency of the network. A 
normal node refers to a node other than the cluster head and CCHs, responsible for data 
collection and transmission, relying on cluster heads for communication, and lacking the 
management and coordination functions of cluster heads. Each cluster head candidate 
broadcasts their ID, energy information, and specific non-uniform competition radius 
through the maximum competition radius R0 . This allows other CCHs to establish a set 
of adjacent cluster heads based on this. At the same time, other CCHs within this com-
petitive radius will automatically withdraw from this round of competition and be set as 
ordinary nodes (Shu et al. 2022), as shown in Eq. (5).

Path 1

Path 2

Path 3

Communic
ation
range

Fig. 3  Routing selection process of DS communication network
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In Eq. (5), dmin and dmax are the closest and farthest distances between UAVs nodes 
and long-distance machines in the network, respectively. d(si, sleader) means the dis-
tance from node i to the long machine. c is a parameter that controls the value of 
radius. The size of the radius Rcomp is dynamically adjusted built on the distance 
from UAVs to the host. The closer the node is to the host, the smaller its competition 
radius, resulting in smaller clusters. This way, the cluster head can save more energy 
for effective data forwarding (Eltamaly et al. 2020).

The EEUC algorithm optimizes the communication process through data trans-
mission mechanisms of single hop within clusters and multi hop between clusters. 
Compared to other similar algorithms, the EEUC exhibits better energy balance and 
network lifecycle management capabilities. However, the EEUC also has some limita-
tions, such as not treating the initial energy state of nodes differently, and all nodes 
are equally likely to be selected as cluster head candidates. This could result in an 
increase in the number of CCHs, leading to higher energy consumption for control-
ling information transmission. Additionally, nodes with lower energy may quickly 
deplete their energy after serving as cluster heads multiple times, which could nega-
tively impact network performance (Fan et al. 2022).

In the formation control system of UAVs formation, a special "Long-Wingman" mode 
is adopted to maintain the stability of the formation. In this mode, all UAVs nodes 
remain consistent in state and the network structure remains unchanged. This formation 
consists of three parts: a leader, a cluster leader, and a regular member. Each UAV owns 
a specific ID and the original energy is the same, as displayed in Fig. 4.

In this system, the long aircraft first broadcasts signals to the entire network through 
onboard ultraviolet devices. After receiving this signal, the wingman determines the 
distance from the long aircraft based on the signal strength, and calculates its non-
uniform competition radius Rcomp based on this. Using this radius, DS is segmented 
into circular areas of different sizes. The cluster size far from the long machine is 
larger, while the cluster near the long machine contains fewer member drones. For 
reducing energy consumption, the cluster head selects the best relay cluster head 
node and forwards information to the long machine through multi hop mode. Thus, 
an improved Unequal Clustering Energy-Balanced Routing Algorithm (UCEBRA) can 
be obtained. The implementation of UCEBRA consists of two parts: the establishment 
of protocol clusters and data transmission. The DS completes cluster head election 
during the establishment phase of the protocol cluster and implements node entry 
into the cluster according to certain rules. During the data transmission phase, the 
path weight function is used to select the optimal cluster head node to forward the 
remaining cluster head data to the long machine.

UCEBRA is an algorithm applied in fields such as WSN and UAVs networks, aim-
ing to optimize the energy utilization of nodes and improve the overall efficiency. The 
implementation of UCEBRA is divided into 2 stages: cluster establishment and data 
transmission. In the first stage, DS completes the election of cluster heads and divides 
nodes into clusters according to rules. In the second stage, the optimal cluster head 

(5)Rcomp =

(

1− c
dmax − d(si, sleader)

dmax − dmin

)

R0
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node is selected through a set path and weight function, and the data from others is 
efficiently forwarded to the host. Figure  5 shows the protocol cluster establishment 
process of the UCEBRA algorithm.

Leader

Inter cluster 
communication routing

Cluster head
wingman
Cluster 
Companion

Cluster communication 
routing

Fig. 4  Non-uniform clustering model for drones
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In Fig. 5, the UCEBRA algorithm first assumes that in the UAVs network, during the 
cluster establishment stage, each UAV node becomes a CCH with a certain probability 
T (n) . All nodes randomly generate a number t between 0 and 1. If t < probability T (n) , 
the node becomes a CCH. Otherwise, the node enters a sleep state. The EEUC protocol 
stipulates that the probability of all nodes becoming cluster head candidates is fixed. This 
may cause some problems, such as nodes with lower energy becoming cluster heads, 
accelerating their energy depletion and causing fluctuations in the number of cluster 
heads. To deal with these, this study proposes a priority function Ci based on the current 
state of the node, taking into account the remaining energy Erest(r) of the node and its 
distance d(si, sleader) from the host, thereby defining an improved probability threshold, 
as shown in Eq. (6).

In Eq. (6), p means the ratio of the expected quantity of CCHs to the total amounts of 
UAVs. r is the current round. G means the set of UAVs that did not become cluster heads 
in the first 1p rounds. The distance d(si, sleader) between the node and the host is also 
taken into account. Thus, the enhanced algorithm increases the likelihood of nodes with 
higher remaining energy and closer proximity to the host becoming CCHs. This is 
achieved by adjusting the election threshold, which effectively controls the number of 
cluster heads, reduces the energy consumption of control information, and prevents pre-
mature depletion of low-energy nodes. Equation (6) presents the probability threshold 
function that adjusts the election threshold based on factors such as the ratio of the 
number of CCHs to the total number of drones, the number of rounds, and the distance 
between the node and the host. This adjustment increases the probability of a node with 
high remaining energy and proximity to the host becoming the CCH. This can effectively 
control the number of cluster heads, reduce energy consumption, extend network lifes-
pan, and improve network performance.

Next is the second step, where the successful candidate cluster leader si will broad-
cast a message containing the node ID and related information. The final cluster head is 
the node with the highest energy among the neighboring cluster heads, and the CCHs 
within the competition radius of the cluster head no longer participate in this round of 
elections and become ordinary nodes. The third step is to wake up the dormant nodes in 
the network after the successful cluster head election. The cluster head broadcast con-
tains messages containing the remaining energy Esi of si , and non CCH nodes, namely 
ordinary node si , are added to the cluster with the smallest weight using an improved 
inbound weight V

(

i, j
)

 based on this information. The expression is Eq. (7).

In Eq. (7), when si chooses to join a specific cluster, UAVs nodes tend to join cluster 
heads that have higher residual energy and are closer to themselves. This can reduce 
energy consumption during the communication process and achieve balanced energy 
consumption between cluster heads. d2

(

si, sj
)

 represents the distance from node j 

(6)T (n) =

{ pCi

1−p
(

r mod 1
p

) , n ∈ G

0, othersize

(7)V
(

i, j
)

=
d2

(

si, sj
)

Esi · Esj
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to cluster head i , and V
(

i, j
)

 represents the weight of ordinary node j joining cluster 
head i . Esj and Esi represent the remaining energy of ordinary node B and cluster 
head C, respectively. Figure 6 is a specific diagram of the establishment of the UCE-
BRA protocol cluster.

In the initial execution stage of UCEBRA, a total of N × T  nodes compete to 
become CCHs through broadcasting N × T  messages. Each CCH further broad-
casts winning or losing messages. The number of successfully elected cluster heads 
in the network is set to k , which broadcasts k competitive winning information, and 
the remaining N − k ordinary nodes publish cluster entry requests. The total message 
volume of the network can be calculated according to Eq. (8).

This indicates that during the cluster establishment phase, the message interac-
tion complexity of UCEBRA is O(N ) , reflecting the linear growth characteristic of 
the algorithm in communication overhead. The energy required to fuse k-bit data 
is related to the number of UAVs within the cluster, and is calculated in units of bit 
fusion energy, as expressed in Eq. (9).

In Eq. (9), EDA represents the energy used to fuse unit bit data, and M is the drone 
numbers in the cluster. When selecting the next hop node, factors such as inter node 
distance and remaining energy are considered, and the optimal relay cluster head is 
determined through the path weight function. UCEBRA focuses on efficiency and 
energy balance during data transmission, ensuring optimal energy allocation during 
information transmission through intelligent algorithms, and achieving energy bal-
ance between cluster heads in UAVs networks.

(8)N × T + N × T + k + N − k = (2T + 1)N

(9)Ec(M,K ) = (M + 1)kEDA
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Fig. 6  The specific establishment process of the UCEBRA algorithm protocol cluster
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Application analysis of IM‑UVLC algorithm based on EEUC in done swarm ECO
To analyze and compare the application effects of EEUC algorithm in DS ECO, this study 
explores the performance of three different algorithms, EBRA, EEUC, and UCEBRA, in 
DS ECO through simulation experiments. As a research focus, UCEBRA has demon-
strated significant advantages in improving energy efficiency and balancing energy con-
sumption. Subsequent researchers can evaluate the performance of UVLC, visible light 
communication, and radio frequency communication in different environments through 
experiments and simulations. They can also propose a scheme for integrating multiple 
communication technologies to expand their applicability and robustness. By combining 
research on UVLC communication algorithms, incorporating energy harvesting tech-
nology, and implementing intelligent charging strategies, researchers can design a more 
comprehensive UAV cluster energy management system. This will improve service life 
and optimize operational energy management strategies.

Comparative analysis of algorithms

The study is based on the EEUC algorithm and conducts simulation comparative analy-
sis in ECO of DSs, covering three algorithms: EBRA, EEUC, and UCEBRA. A simula-
tion experiment scenario is designed to simulate different communication distances, 
communication quality, and energy consumption to simulate a real DS environment. 
The selection of parameters considers the stability and reliability of communication, 
and evaluation indicators include energy efficiency and energy balance. Through such 
scenario design and parameter selection, it is ensured that the performance of different 
algorithms is comprehensively evaluated in practical DS applications.

The collected and generated flight data of DS includes flight trajectory, energy con-
sumption, communication data, etc. To build a dataset and ensure that it covers dif-
ferent types of flight environments and conditions. 80% of the dataset is taken as the 
training set, and 20% is the testing set. The training set is utilized to train EBRA, EEUC, 
and UCEBRA algorithms, adjusting model parameters to achieve optimal performance. 
The performance of three algorithms under the same conditions is compared, and their 
respective advantages and limitations are identified. Five important nodes are selected to 
compare the average CEC of UAVs under three algorithms, as shown in Fig. 7.

Among the EBRA, EEUC, and UCEBRA algorithms in Fig. 7, UCEBRA has the low-
est average communication consumption among the 5 nodes. Compared to EBRA and 
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EEUC, UCEBRA exhibits a more balanced CEC. The next step is to analyze the remain-
ing energy of nodes under three algorithms, as shown in Fig. 8.

Figure 8a–c respectively represent the remaining energy of nodes under the action of 
three different routing algorithms: EBRA, EEUC, and UCEBRA. Compared to EBRA 
and EEUC algorithms, UCEBRA extends the time to failure of the first node by 15.4% 
and 7.1%, respectively, in both cases. The result of comparing the variance curves of 
energy consumption of UAV network nodes at different times is Fig. 9.

Figure 9a and b represent the variance of node energy consumption for the three algo-
rithms and the selection of weight coefficients for the UCEBRA algorithm. When both 
w1 and w2 are set to 0.5, the impact of path loss and node residual energy on the weight 
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is balanced, and the Energy Consumption Variance (ECV) of the UAVs network reaches 
its minimum. As the number of transmitted data packets T increases, the energy con-
sumption of relay nodes accelerates, and the energy consumption gap with other nodes 
increases. The ECV curves of the three algorithms show an upward trend, but the curve 
under UCEBRA is always lower than that of EBRA and EEUC, indicating that UCEBRA 
performs greater than others in terms of balancing node energy consumption. Next, the 
trend of changes in the number of UAV nodes, packets sent by the UAV network when 
the first node fails, and the Average Remaining Energy (ARE) of nodes under three rout-
ing algorithms are analyzed, as shown in Fig. 10.

Figures  10a and b respectively represent the number of data packets sent and the 
ARE of UAVs nodes under various nodes. As the nodes increase, the distance required 
for UAVs to move to the formation position decreases, resulting in a decrease in ini-
tial energy consumption, making more energy available for subsequent IMCs. Therefore, 
among all three algorithms, the packets sent is on the rise. Under the UCEBRA algo-
rithm, the number of packets sent when the first node fails is greater than that of EBRA 
and EEUC, indicating that UCEBRA effectively prolongs the network’s survival time. 
However, in UCEBRA, due to the algorithm’s goal of balancing the load on each node to 
extend the survival time of the entire network, the ARE is lower than that of EBRA and 
EEUC when the network life ends. This reflects the advantage of the UCEBRA algorithm 
in maintaining energy consumption balance.

Simulation analysis of UCEBRA algorithm in drone group ECO

The study uses MATLAB for simulation and assumes that the communication between 
drones in the system has a certain degree of stability and reliability. The simulation 
model has been specifically set based on communication distance, communication qual-
ity, and energy consumption data in actual scenarios to ensure that the results can reflect 
the situation in the real world. In a network consisting of 100 UAVs, each UAV main-
tains a consistent flight direction and speed, and their operational objectives are syn-
chronized, keeping the network structure unchanged. Figure  11 shows the simulation 
analysis of the UAVs network performance of the UCEBRA algorithm at different node 
densities.
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Figures 11a and b show the ARE and number of dead nodes at different node densities, 
respectively. The simulated area sizes are 200 × 200 m2, 400 × 400 m2, and 600 × 600 m2, 
respectively. Figure 11 shows that as the density of UAVs nodes grows, the ARE of each 
node increases, and the lifespan of nodes is correspondingly extended. The network life-
time under different node densities is Fig. 12.

In Fig.  12, compared to the regions of 400 × 400  m2 and 600 × 600  m2, the time 
required for 1%, 50%, and all node failures in 200 × 200  m2 is extended by 11%, 2.6%, 
1.4%, and 12.2%, 4.5%, and 4.8%, respectively. The reason is that within a fixed area, as 
the density of UAV nodes decreases, the IMC distance increases. The energy loss of 
using UVLC increases with distance, leading to an accelerated energy consumption rate 
of the entire network.

To further confirm the practicality of the research method, its performance and 
practical applications in dynamic environments of DS scenes are compared with other 
advanced methods in the field. The comparison methods are Collaborative Communi-
cation Optimization Algorithm based on Multi hop Networks (CCOA) and Adaptive 
Scheduling Algorithm (ASA). CCOA is an advanced method for optimizing energy 
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consumption in UAV swarms. In the communication between UAV swarms, multi 
hop network technology is used to optimize energy consumption through collabora-
tive communication. This method can reduce CEC, improve communication coverage 
and reliability, and optimize the energy consumption of the entire drone fleet by relay 
and collaborative forwarding data between drones. ASA dynamically adjusts task allo-
cation and communication routing by monitoring the workload and environmental 
conditions of DSs in real-time. This ensures the reliability and efficiency of communi-
cation networks while minimizing energy consumption. These advanced methods have 
unique advantages in ECO, energy management, and communication efficiency, provid-
ing important support for the performance improvement and sustainable operation of 
UAVs. Therefore, comparing the research method with CCOA and ASA can better dem-
onstrate its practical applicability in optimizing the energy consumption of DSs.

The drone device model used is DJI Phantom 4 Pro, with a built-in dual band com-
munication module that supports the 2.4 GHz and 5.8 GHz frequency bands. It has a 
GPS, an Inertial Measurement Unit (IMU), and visual sensors. The receiver of the 
ground control center is the Skydroid T10, with an Intel Core i7 processor and a 15 inch 
high-definition display screen. The communication between the drone and the ground 
control center adopts WiFi wireless communication technology based on the 802.11 
protocol. Using TCP/IP protocol for data transmission, the drone is connected to the 
ground control center through a standard USB interface for data transmission and con-
trol command sending. A DS consisting of 10 drones needs to perform collaborative 
search and surveillance tasks in a large open area. To set a virtual task area, including 
different types of terrain and possible obstacles to simulate a real task scene. Data trans-
mission and collaborative search tasks of drones are simulated within the mission area in 
the experiment. Each drone needs to regularly transmit the collected data to the ground 
control center and collaborate with other drones to search for targets. The energy con-
sumption and other data for each drone, including CEC and flight energy consumption, 
are monitored and recorded in real-time. The data is then uploaded to the data center 
for analysis. The actual applicability comparison results of the three methods in DSs are 
shown in Fig. 13.

Figures 13a–c represent the throughput, fault recovery ability, reliable communication 
maintenance, and energy efficiency of the three algorithms in the dynamic environment 
of DSs. From Fig. 13, as the experiment progresses, the throughput and fault recovery 
ability of the UCEBRA, CCOA, and ASA all increase. Compared to CCOA and ASA, 
the research method has higher throughput and higher ability to recover from faults and 
reliable communication maintenance and energy efficiency. In practical applications and 
dynamic scenarios, UAV communication networks can transmit data quickly and reli-
ably, recover communication connections efficiently when encountering faults, and uti-
lize energy efficiently due to the high throughput and superior fault recovery capability 
of research methods. Next, the performance of the three methods in dynamic environ-
ments are analyzed, as shown in Fig. 14.

Figures  14a and b respectively represent the time complexity and spatial com-
plexity of the three algorithms in dynamic environments. From Fig.  14, the com-
putational complexity of the three methods is relatively close, and the overall 
complexity is less than 40%, proving the superiority of the three methods in dynamic 
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environments. However, upon careful analysis, the time and spatial complexity of the 
research method are significantly lower than those of CCOA and ASA. In dynamic 
scenes, research methods with low time and spatial complexity allow for faster adap-
tation to changes, higher flexibility, real-time performance, and superior stability for 
collaborative tasks of DSs in complex environments.
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Discussion
The study examined the contributions of other scholars in optimizing energy use for 
drone technology and related fields. It was found that the drones communicate through 
ultraviolet communication networks, which improves communication efficiency and 
system security. Studying and reviewing the contributions of other scholars highlights 
the significance of energy informatics in addressing the challenges of energy efficiency 
and sustainability faced by modern society. Whether in drone technology, electric vehi-
cles, renewable energy systems, or other fields, interdisciplinary research and techno-
logical innovation can effectively optimize energy use, reduce environmental impact, 
and promote society towards more efficient and sustainable development. This study 
explores this direction and provides a practical case of improving energy efficiency by 
optimizing the communication network of UAVs, further demonstrating the potential 
and important value of energy informatics in addressing contemporary challenges.

Conclusion
In modern UAV applications, ensuring the reliability and efficiency of communication 
networks is crucial, especially when performing complex tasks or operating in extreme 
environments. Traditional wireless communication methods face spectrum congestion 
and security issues, while ultraviolet communication has become a promising alterna-
tive due to its high bandwidth and security characteristics. However, ECO of ultraviolet 
communication in UAV applications remains an important and challenging issue. The 
EEUC-based inter machine ultraviolet communication network provides a possible solu-
tion. To further reduce energy consumption, the cluster head selected the optimal relay 
cluster head node and forwarded information to the long machine through multi hop 
mode, thereby improving the UCEBRA algorithm. The research results indicated that 
the improved EEUC-based inter machine ultraviolet communication network algorithm 
was an effective energy optimization solution for UAV swarms, which could significantly 
reduce energy consumption and extend the lifespan of nodes. This had important prac-
tical significance for improving the energy efficiency and communication performance 
of drone networks. As the density of drone nodes increased, the ARE of each node in 
the network increased, and the lifespan of nodes was correspondingly extended. In the 
simulation area of 200 × 200  m2, the time required for 1% node failure, 50% node fail-
ure, and all node failures was extended by 11%, 2.6%, 1.4%, and 12.2%, 4.5%, and 4.8%, 
respectively, compared to the areas of 400 × 400  m2 and 600 × 600  m2. In summary, 
this study provided powerful practical cases and potential research directions for pro-
moting the development of drone technology, improving its performance, and provid-
ing research in the field of energy informatics. However, this study only considered the 
impact of CEC on network performance. Future research directions can include com-
bining the dynamic behavior characteristics of drones to further explore and optimize 
the energy balance routing algorithm of wireless ultraviolet communication technology 
in collaborative DSs.
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