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Abstract 

As traditional energy reserves continue to decline, the importance of new energy 
sources increases. However, the current traditional power system often fails to con-
sider new energy sources, particularly in power supply systems that integrate multiple 
new energy sources. The cost, efficiency, and environmental factors seriously affect 
the energy system’s efficiency. Therefore, this proposal presents a multi-objective 
optimization discrete assignment pathfinder algorithm. The algorithm can handle 
multi-objective optimization problems and adapt to various constraints, providing 
a more precise optimization scheme for new energy systems. The experimental results 
indicated that the proposed research method exhibits better performance compared 
to other algorithms of the same type. Compared with the multi-objective multivariate 
universe optimization algorithm and the multi-objective sparrow search algorithm, 
the research method was ahead in terms of fitness value by 9.54% and 14.67%, respec-
tively. Meanwhile, in the grid simulation, the research method achieved an average 
efficiency of 96.16%, which is better than the comparative algorithms by 6.57–14.02%. 
The study not only improves the optimization efficiency of new energy consumption, 
but also provides a powerful decision support tool for the planning and operation 
of wind farms. It is of great significance for the improvement of power system effi-
ciency and decarbonization, and helps to promote the large-scale integration and sus-
tainable development of new energy.

Keywords: Multi-objective optimization, New energy consumption, Discrete 
assignment coding, Pathfinder algorithm

Introduction
In the tide of global energy transition, the efficient consumption of new energy has 
become a key link to promote sustainable development (Gong and Wang 2022). Spe-
cifically, the efficiency and economy of energy use are closely related to the effective 
acceptance and consumption of clean energy sources like solar, wind, and tidal energy 
in the power grid (Wu et al. 2023; Wang et al. 2023). Traditional energy consumption 
optimization models are often difficult to take into account the complexity of multi-
objective decision-making, especially in the specific problem of wind farm layout, which 
needs to be solved to find a balance between maximizing energy output and minimizing 
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environmental impact (Tian et al. 2021). The Pathfinder algorithm is a traditional opti-
mization algorithm inspired by the migration behavior of organisms in nature. It aims to 
solve complex multi-objective optimization (MOO) problems. In this context, the path-
finder algorithm (PA) provides an excellent solution to this problem: the principle of PA 
is to simulate the migration behavior in nature, and it has a good global search capabil-
ity for MOO problems (Tang et al. 2021a). But when it comes to discretized issues, like 
the optimization problem of wind farm layout, the typical PA proves to be inadequate. 
When dealing with this type of discrete data, there are several challenges to consider. 
These include limited adaptability, difficulty in adapting to dynamic environments, com-
plex MOO, and limited model generalization ability. Therefore, in this study, MOO and 
discrete assignment coding (DAC) are applied to PA, and the model’s ability to handle 
discrete problems is improved, while its search capability and solution diversity in the 
multivariate search space are optimized. The innovation of the research lies in the com-
bination of PA and DAC techniques, which not only optimizes the performance of the 
original algorithm, but also expands its application scope in new energy consumption 
(NEC). By combining the PA with discrete complex coding technology, it enhances its 
ability to deal with discrete problems, improves the adaptability of dynamic environ-
ments, and the complexity of MOO. Additionally, it improves the generalization ability 
of the model and provides an effective solution for optimizing NEC. The discrete com-
plex coding technique enables the algorithm to effectively search for the optimal solu-
tion in the discrete solution space, thereby improving search efficiency and accuracy. By 
introducing more complex weight allocation and priority determination mechanisms, 
the algorithm can achieve a more reasonable balance between maximizing energy out-
put and minimizing environmental impact. Through this study, it is expected to provide 
more efficient guidance for solving optimization problems in NEC. The study is broken 
up into four sections. The first section provides a synopsis of the fields of research that 
are connected to PA and energy consumption optimization. The process of putting the 
study’s suggested methodology into practice is covered in the second section. The third 
part is the validation and testing of the proposed methodology. The fourth part is a sum-
mary overview of the study as a whole.

Research background
PA, is a heuristic algorithm whose main idea is to solve optimization problems by mim-
icking the path-finding behavior of organisms in nature. This algorithm is commonly 
used to solve search and optimization problems, and is inspired by the behavior of ani-
mals to find a goal in complex environments by continuously trying and adjusting their 
directions. The core of PA is to simulate the process of explorers finding the optimal path 
in an unknown domain. The objective is to identify the best solution or path inside the 
specified search space. The path is chosen and modified based on environmental data 
or self-reported input. A hybrid approach combining quantum PA and Elman neural 
network was presented by Jia et al. for the identification of solid oxide fuel cell models. 
The approach can increase computing efficiency and recognition accuracy, according to 
experimental data (Jia and Taheri 2021). For the robot’s movement path planning prob-
lem, Liu et al. proposed to optimize it using PA combined with triangular dissection. The 
experimental results demonstrated that the model possesses excellent performance, as 
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well as significant advantages in path optimization and navigation efficiency (Liu et al. 
2021). Zhou et al. proposed a convolutional sparse coding method using PA-optimized 
orthogonal matched tracking combined with an asymmetric Gaussian Chirplet model 
in the field of bearing fault detection. Experimental results indicated that the method 
was able to achieve excellent accuracy for fault detection of bearings while maintaining 
better performance (Zhou et al. 2021). Huang et al. faced with climate change and pro-
posed the use of PA combined with representative concentration paths for hydropower 
generation prediction. The experimental results proved the future trend of increasing 
temperature and predicted the future energy demand which showed an increase year by 
year (Huang et al. 2021). Saudi et al. proposed a method using PA’s combined with accel-
erated ultra-relaxation techniques to address the problem of excessive computational 
load in autonomous robot pathfinding. Experimental results indicated that this method 
effectively improves the efficiency of path generation as well as the quality of generation 
in the simulation of static indoor environments (Saudi 2022).

Energy consumption optimization refers to ensuring that the energy produced can 
be effectively utilized through efficient technology and management methods. In the 
realm of new energy utilization, one of the biggest challenges now facing us is how to 
manage the volatility and uncertainty of renewable energy sources like solar and wind 
while maintaining the steady operation of the power grid. Energy consumption opti-
mization aims to enhance the capacity of renewable energy consumption in the power 
system through a series of measures and technologies. For the challenge of the best pos-
sible integration of dispersed generation and power distribution network reconfigura-
tion, Shaheen et  al. presented an enhanced equilibrium optimization technique that 
incorporates recovery strategies. According to experimental results, the technique can 
successfully lower the load on the electrical grid (Shaheen et al. 2021). A decision sup-
port approach for the elastic fluctuation problem in renewable power systems based on 
numerical simulation and optimization was put out by Tapia et  al. The technique can 
successfully increase the system’s robustness and stability, according to the experimental 
data (Tapia et al. 2021). Butt et al. addressed the current new energyization of the power 
grid and discussed the future development potential of smart technologies in the power 
grid. Their findings provided a reference for the future development of grid intelligence 
(Butt et al. 2021). Tang et al. proposed a power architecture foundation for converged 
computing as well as networking in response to the current 6G network requirements 
on the way to communication network development. Further findings revealed the role 
of this architecture in promoting and facilitating the development of future communica-
tion technologies (Tang et al. 2021b). To address the performance optimization of the 
base station network system, Li et al. proposed the use of an intelligent reflective surface 
framework combined with semidefinite relaxation, Gaussian randomization, and contin-
uous convex approximation algorithms for optimization. Experimental results showed 
that the algorithm optimized at least 51.13% of the power (Li et al. 2021a).

In summary, PA solves optimization problems by simulating biological pathfinding 
behavior and has shown superiority in many fields, particularly in the optimization of 
NEC. However, the algorithm’s adaptability and efficiency still need improvement in 
the face of the volatility and uncertainty of new energy sources such as wind and solar 
energy, as well as the complexity of the actual power grid system. Currently, the research 
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focuses solely on the fundamental application of the algorithm, with inadequate inte-
gration and innovation with other intelligent technologies, and a lack of unified perfor-
mance evaluation standards. To fully realize the potential of PA in optimizing NEC, a 
NEC optimization model based on the improved PA is proposed. MOO and DAC of PA 
can improve the consumption efficiency of renewable energy and the stable operation of 
the power grid.

Construction of improved pathfinder model for new energy consumption
Facing the challenge of the rapid popularization of new energy, the improved PA pro-
vides an efficient solution path for the construction of the NEC optimization model. The 
problem of new energy is first modeled, and then targeted optimization is performed for 
PA. The applicability of PA in MOO problems is extended, and the algorithm’s ability in 
dealing with new energy optimization problems is enhanced by DAC processing.

New energy optimization problem model construction

The widespread availability and cost-effectiveness of wind resources make wind power 
generation the new energy component of choice. The primary idea behind the produc-
tion of wind power is the transformation of wind energy into kinetic energy and then 
electrical energy. A wind turbine (WT)’s blades revolve as a result of the kinetic energy 
of the airflow passing over them, transforming mechanical energy into electrical energy. 
The rotor inside the generator rotates in a fixed coil, generating alternating current 
through electromagnetic induction, which is the conversion of kinetic energy into elec-
trical energy. An environmentally friendly, renewable energy source that doesn’t emit 
greenhouse gases or other pollutants is wind power. Since the layout of existing wind 
farms is closely related to their overall output power, the study starts by simulating the 
layout optimization problem for wind farms. It is assumed that a wind farm has a square 
layout and that the turbine blades are always facing and perpendicular to the direction 
of the wind. To properly increase the wind farm’s output power, the WTs’ locations 
must be carefully chosen in order to prevent the WTs’ tail flows from interfering with 
one another. For the tail current problem of the WT, the Jensen tail current attenuation 
model is used for analysis, and its model is specifically shown in Fig. 1 (Keane 2021).

Fig. 1 Schematic diagram of wind farm wake effect model
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Assuming that the radius of the wind blowing through the i th turbine is R1 , the 
wake with radius R from the region of linear expansion of the i th turbine can be 
expressed as shown in Eq. (1).

The model can be represented as shown in Fig. 1. Where Rwake denotes the radius 
of the wake region, Rwake denotes the distance between turbines, and ω denotes a 
constant which can be calculated from the hub height of the wind farm, as shown in 
Eq. (2).

In Eq. (2), h denotes the WT height and Ra denotes the WT surface roughness. For 
the wind speed of the downstream turbine, it can be derived using the law of conser-
vation of momentum, as shown in Eq. (3).

In Eq. (3), Vw denotes the distance of turbine j from turbine i as the wind speed at 
Dij . R1 denotes the rotor radius of turbine i generator. Rwake,ij denotes the radius of the 
wake area within turbine j generated by turbine i . Since the wake flow between the 
two turbines may be partially obscured in practical situations, it is shown in Fig. 2.

Then, in the case of partial shading, the calculation of the overlap area of its partial 
shading is specified as shown in Eq. (4).

(1)Rwake = ω · Dx + R1

(2)ω =
0.5

ln h
Ra

(3)1−
Vw

V0
= 2a ·

(

R2
1

Rwake,ij

)

Fig. 2 Diagram of partial occlusion of wake flow
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The distance between the centers of turbines i and j is represented by the dij in Eq. (4). 
Rij represents the wake’s radius from turbine i at turbine j in the same plane. Rj stands 
for the turbine j ’s radius, and Sj for the downstream region of turbine j ’s swept area. A 
WT’s wake loss is superimposed when it is within the wake loss area of many upstream 
WTs. At this time, the specific calculation of WT speed is shown in Eq. (5).

The speed to be computed for WT j in the lower wake region is indicated by Vj in 
Eq.  (5). WT i ’s downstream wake impact speed is indicated by V(i) , while the number 
of turbines is indicated by N  . For turbine j , its output power is calculated as shown in 
Eq. (6).

In Eq.  (6), ρ denotes the air constant and R denotes the rotor radius. Vj denotes the 
wind speed it receives, and Ct denotes the rotor efficiency. Equation  (7) demonstrates 
how the wind farm’s building costs are determined.

In Eq. (7), N  denotes the WTs constructed. The goal of the study’s optimization is to 
get both high efficiency and low cost. Equation (8) clearly illustrates this goal.

Considering the universal availability and environmental friendliness of solar energy, 
solar power generation is chosen as an integral element. The main principle of solar 
power is the photovoltaic effect. When sunlight strikes a solar panel, the light energy is 
converted into electricity by the panel, which is usually made of semiconductor mate-
rial. During the conversion process, photons from the sun interact with the semiconduc-
tor material, exciting the release of electrons and ultimately forming an electric current. 
The electrons flow through an electric field inside the panel and eventually generate 
direct current. Solar energy is a clean, sustainable energy source that does not consume 
resources or produce pollution, but its power generation efficiency is greatly affected by 
light intensity. For solar power generation equipment, its output power is usually related 
to the intensity of solar irradiation, and its calculation is specifically shown in Eq. (9) (Li 
et al. 2021b).
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In Eq. (9), S denotes solar irradiation intensity and Ps denotes solar panel output. Psr 
denotes the rated output power of the solar panel unit, and Sstd denotes the solar irradia-
tion intensity under standard environment. Rc denotes the irradiance point value. Con-
sidering the stability and predictability of tidal energy sources, tidal power generation is 
chosen as a component. Tidal energy generation, on the other hand, utilizes the gravita-
tional interactions between the Earth, the Moon, and the Sun, as well as the periodic rise 
and fall of ocean water levels caused by the rotation of the Earth, i.e., the phenomenon 
of tides, and converts the tidal kinetic energy contained therein into electrical energy. 
This process is usually achieved by constructing tidal power stations, which include tidal 
weirs and tidal turbines, in suitable coastal areas. As the tide rises or falls, water flows 
through the tidal turbine, driving it to rotate, similar to how a water turbine works. The 
turbine is connected to a generator, so the mechanical rotational energy of the turbine 
is converted into electrical energy. Although the method of generating power from tidal 
energy is sustainable and does not release greenhouse gases into the atmosphere, the 
amount of power produced varies depending on the tidal cycle (Chowdhury et al. 2021). 
As shown in Fig. 3, a schematic diagram of the principle of tidal energy generation is 
shown.

For the generating capacity of the tidal energy plant unit, the calculation is specifically 
shown in Eq. (10).

In Eq. (10), ρ is the density of water, g is the acceleration of gravity, and Q is the flow 
rate through the turbine unit. ε denotes the turbine efficiency, and H denotes the height 
difference between the reservoir and the sea surface. By modeling the three new types 

(9)Ps(S) =
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, 0 < S < Rc
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, S ≥ Rc

(10)Pt(Q) = ρgQHε

Fig. 3 Schematic diagram of tidal power generation principle
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of energy generation systems, namely, wind, solar and tidal energy, the operation mech-
anism and influencing factors of the new energy sources can be understood in detail. 
Thus, the characteristics and constraints of various energy generation are clarified and 
provide the basis for the subsequent MOO problems. After clearly defining these opti-
mization problems, the PA is then targeted to better adapt to the characteristics of these 
problems in order to solve the NEC problem more efficiently.

Discrete assignment coding and multi‑objective optimization of models

PA is a heuristic search algorithm designed to find the optimal solution of a problem. The 
algorithm simulates the path-finding behavior of organisms in nature, and approaches 
the optimal solution of the problem by continuously adjusting the search direction and 
step size during the iteration process. It can be mainly divided into three steps, which 
are population initialization, pathfinding, and following phases. As shown in Fig. 4, it is 
the flow schematic of PA.

The algorithm begins by generating a set of random solutions to serve as a starting 
point for the search. It then calculates the fitness of each solution, which refers to its 
performance with respect to the objective function. During the iteration process, the 
algorithm selects the better-performing solutions based on their fitness and uses them 
to guide the remaining solutions in updating their positions, moving them closer to the 
better-performing solutions. The solution population eventually converges to the opti-
mal or nearly optimal solution after this process, which is done repeatedly, drives it 
gradually toward the area with greater fitness (Priyadarshani et al. 2021). In the popula-
tion initialization stage, the model is mainly initialized by optimizing the spatial rand-
omization of the population individuals to complete the model. Its specific as shown in 
Eq. (11).

In Eq. (11), N  denotes the individuals in the population, D is the dimension, and Xn,d 
denotes the initialized population. For the initialization of individuals of its population, 
it is mainly generated by randomly distributing each dimension of the vector in the 
search space, which is shown in Eq. (12).

(11)Xn,d = [xn,1, xn,2, · · · , xn,D]; n = 1, 2, · · · ,N ; d = 1, 2, · · · ,D

Fig. 4 Schematic diagram of the flow of the pathfinder algorithm
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The bounds of the choice variables in the optimization space are represented by Xmax 
and Xmin in Eq. (12), while rand(0, 1) stands for a random number with a range of [0, 1] . 
The optimization space is then updated to the optimal individual in each generation. 
Subsequently, it enters the pathfinder stage, in which the optimal individual in each 
generation of population individuals is selected as the pathfinder, and its update rule is 
shown in Eq. (13).

The pathfinder of the i + 1 th generation is indicated by the xi+1
p  in Eq. (13). The path-

finder belonging to the i − 1 th generation is indicated by xi−1
p  , while the pathfinder 

belonging to the i th generation is indicated by xip . The variables i and r3 represent the 
current number of iterations and a random number created with values in the range 
[0, 1] , respectively, based on a uniform distribution. Where A denotes the random search 
perturbation added to an individual, the calculation of which is specifically shown in 
Eq. (14).

In Eq.  (14), imax denotes the maximum iterations and u2 denotes a random number 
uniformly distributed in the range of [−1, 1] . By controlling A , local optimal solutions 
can be avoided. Finally, there is the follower phase. In this phase, all individuals except 
the pathfinder are selected as followers. Its update rule is specifically shown in Eq. (15).

In Eq. (15), xi+1
n  denotes the n th follower position in the i + 1 generation after the i th 

iteration. xin denotes the n th follower position at the i iteration. xin−1 denotes the posi-
tion next to the n th follower in the i iteration. xip denotes the position of the pathfinder 
at the i iteration. ϑ denotes the oscillation vector. W1 and W2 denote two random vectors 
whose values are specified as shown in Eq. (16).

In Eq.  (16), r1 and r2 denote two random numbers respectively, whose values range 
from [0, 1] . α denotes the communication coefficient of neighboring members in the 
population, and β denotes the attraction coefficient between each individual in the 
population and the pathfinder. For the oscillation vector ϑ , its calculation is specifically 
shown in Eq. (17).

In Eq.  (17), D denotes the distance between two individuals in the population and 
imax denotes the maximum number of iterations. Given the limitations of PA for MOO 

(12)Xn = Xmin + rand(0, 1)× (Xmax − Xmin)

(13)xi+1
p = xip + 2r3 ×

(
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(16)
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problems, the introduction of a Pareto optimal solution set enables PA to solve MOO 
problems. This is based on the Pareto optimal concept, which provides a method for 
evaluating the relative advantages and disadvantages of solutions in multi-objective 
problems. In MOO, a solution is Pareto optimal if no other solution is better than it on 
all objectives, while being strictly better than it on at least one objective. This means that 
every solution in the Pareto optimal solution set cannot be dominated by other solu-
tions on all targets simultaneously. The optimized multi-objective PA process is shown 
in Fig. 5.

The core idea of Pareto optimal solution is to find the optimal equilibrium in the MOO 
problem by setting up an algorithm that first determines the number of objectives, the 
population size, and the set of archives (Chen et al. 2021). Then iterations are performed 
to evaluate and update the current solution to obtain the optimal set of solutions, thus 
solving the complexity of the multi-objective problem. In each iteration, the termination 
is first checked to see if the termination condition is satisfied, and if not, the population 
update is performed. The population update should include fitness evaluation. Based on 
the fitness obtained from the evaluation, a global search strategy is used for further indi-
vidual selection. The algorithm gradually approaches the Pareto frontier in this process 
and stops when the maximum iterations are reached, providing the optimal state solu-
tion. To deal with the WT layout optimization problem, DAC is introduced in PA. The 
purpose of introducing DAC to the PA is to adapt to discrete problems, such as WT lay-
out optimization, and improve the accuracy and efficiency of the solution. This improve-
ment allows the algorithm to handle discrete layout decisions of wind farms directly. It 
also increases the ability to consider geographical, environmental, and economic con-
straints. As a result, the algorithm is not only suitable for solving complex wind power 
layout problems, but also generates more practical and accurate optimization results 

Fig. 5 Multi-objective pathfinder algorithm flow diagram
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to effectively support complex decision-making. DAC needs to convert the continuous 
value representation to discrete values to match the problem characteristics. For each 
population individual, coded transformations are needed to compute fitness values. It 
is necessary to convert the complex solution’s real and imaginary components to real 
values while working with real optimization problems. When dealing with discrete prob-
lems, it is necessary to convert the complex variables to integer variables and the real 
variables to binary variables. Such processing can better solve the WT layout optimiza-
tion problem. the PA process after DAC is specifically shown in Fig. 6.

As shown in Fig.  6 for the PA where DAC has been performed. the solution of the 
algorithm is encoded as discrete complex values, where the real and imaginary parts 
of each solution represent different dimensions or aspects of the problem, respectively. 
This encoding provides the algorithm with the ability to handle discrete data and allows 
for more fine-grained exploration of the multidimensional search space. In each itera-
tion of the algorithm, the quality of the current solution is first evaluated to determine 
the quality of the solution through an appropriate fitness function. The fitness function 
must be tailored to discrete data and accurately reflect the performance of each solution. 
Based on the fitness score, a percentage of good solutions are selected as ‘pathfinders’ in 

Fig. 6 Discrete complex coded pathfinder algorithm flow diagram
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the population, while the remaining solutions are updated. Discrete mathematical oper-
ations are used to update the real part. Finally, after several iterations, the search range is 
gradually narrowed down to locate the optimal or near-optimal solution set in the multi-
objective solution space. The PA of DAC can effectively solve those MOO problems that 
are difficult to be handled by traditional optimization algorithms. Through this improve-
ment, not only the applicability of PA can be improved, but also the effectiveness and 
efficiency of this algorithm in NEC optimization problems can be strengthened.

Testing of MODASCPA algorithm for new energy consumption optimization
To ensure the accuracy of the test and avoid the error due to hardware limitation, con-
sidering the cost limitation as well as the cost-effectiveness, the researcher choose to 
rent the cloud server platform for the experiment. The IEEE 30 bus model is used to 
simulate the consumption of new energy grid power. In order to further demonstrate 
the performance of multi-objective discrete assignment coding pathfinder algorithm 
(MODASCPA) proposed by the study, the study selects the same type of multi-objec-
tive sparrow search algorithm (MOSSA) and multi-objective multi-verse optimizer 
(MOMVO) are compared with MODASCPA algorithm. The aim of this comparison is 
to assess the strengths and potential limitations of MODASCPA from multiple perspec-
tives. MOSSA is selected for its efficiency and robustness in solving MOO problems, 
while MOMVO demonstrates excellence in MOO problems due to its unique cosmo-
logical heuristic mechanism. The details of hardware and software and model parameter 
settings used in the study are shown in Table 1.

The average convergence performance of the algorithm is evaluated with the target 
value of the average fitness value of the model in order to assess the training perfor-
mance of the model. And Fig.  7 displays the test results. In Fig.  7, the MODASCPA 
model proposed by the Institute has a better convergence speed, while its average fitness 
value performs well, with the best average fitness value of 1.519 ×  10−3, which is 8.41% 
and 14.62% ahead compared to MOSSA as well as MOMVO, respectively.

Table 1 Details about software and hardware configuration and parameter settings

Hardware Software

Name Details Category Name Version

Supplier Amazon Programming languages Python 3.8.10

Instance type c5.9xlarge Mathematical library Intel Math 
Kernel Library

2020.0.4

CPU Intel Xeon Platinum 8000 Parallel computing OpenMPI 4.0.3

RAM 144 GiB Data storage MySQL 8.0.20

Operating system Ubuntu Server 20.04 LTS Version control Git 2.25.1

Parameter setting

Parameter Details Parameter Details

Population size 100 Max velocity 15%

Max iterations 175 Topology structure Global

Cognitive coefficient 2 Termination condition Maximum iteration

Social coefficient 2 Population initialization Random

Inertia weight 0.7 Velocity initialization [− 10, 10]
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A wind farm with dimensions of 2000  m in length and width and a 10 × 10 WT 
layout is used to examine the model’s optimization performance for wind farm lay-
out. The model’s optimization results are produced and visualized, and the output 
results are displayed in Fig. 8. In Fig.  8, the MODASCPA proposed by the Institute 
can accurately output effective wind farm optimization layout scheme, while the lay-
out scheme output by MOMVO and MOSSA is congested and overlapped, and can-
not be applied to the actual wind farm layout optimization.

To evaluate the practical application efficiency of the model, the fitness and error 
rate of the model are tested, and the test results are shown in Fig. 9. Figure 9a shows 
the fitness value test of the three models. The fitness value of the MODASCPA model 
proposed by the research has the best performance, and its fluctuation range is 
smaller. Figure 9b shows the error rate test of the three models, from which it can be 
seen that the MODASCPA model proposed in this study has a lower error rate per-
formance than the comparison model.

The model’s MOO performance is evaluated, and Fig.  10 displays the findings. In 
Fig. 10, the proposed method of the study has the best performance in terms of solu-
tion set, which has higher diversity and more solutions at the same time. It shows 
that MODASCPA possesses better performance in MOO problem and can better 

Fig. 7 Average convergence performance test results of three models

Fig. 8 Visual output results of wind farm layout optimization for three models
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optimize the NEC problem to improve the energy output efficiency as well as utiliza-
tion efficiency.

The real output power of the optimized grid is used to test the model’s actual optimi-
zation effect. And Table 2 displays the test results. In Table 2, the proposed MODAS-
CPA has the best average efficiency performance with 96.16%, which is 6.57% and 
14.02% ahead compared to MOMVO and MOSSA, respectively. In summary, the pro-
posed MODASCPA has the best performance in NEC optimization problems, the model 
has better convergence performance as well as training performance, and also has bet-
ter performance in practical applications. In addition to producing a wind farm opti-
mization layout scheme that is actually workable, MODASCPA also exhibits superior 
efficiency performance in simulation, which can effectively increase the rate of energy 
utilization and encourage the reform and innovation of new energy optimization.

Test the adaptability and robustness of the model by comparing the particle swarm 
multi-objective optimization algorithm (PSMOOA). The genetic multi-objective optimi-
zation algorithm (GMOOA). PSMOOA is chosen due to its extensive application and 

Fig. 9 The running test results of three models

Fig. 10 Multi-objective optimization performance test of three models
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validation in the field of MOO. PSMOOA represents population-based search strategies, 
while GMOOA represents evolution-based search strategies. This provides a rich per-
spective for comparing the efficiency and effectiveness of different algorithms in finding 
and maintaining Pareto optimal solution sets. The proposed algorithm’s applicability is 
tested using the Zitzler-Deb-Thiele (ZDT) dataset, Pareto front repository (PFR) dataset, 
and renewable energy generation and load demand dataset (REGLD). Test results are 
presented in Table 3, which shows that the algorithm maintains better accuracy across 
various datasets, demonstrating its superior adaptability. At the same time, the research 
method remains robust, indicating its superior stability.

Discussion
The intensifying energy crisis presents a key challenge to ensuring energy security, par-
ticularly in terms of effective access to new energy. To address this challenge, the pro-
posed multi-objective optimization discrete assignment coding pathfinder algorithm 
(MODASCPA) improves the absorption efficiency of new energy systems, optimizes 
power grid stability, enhances wind power distribution efficiency, and provides techni-
cal support for large-scale grid-connection of new energy. This algorithm assists grid 
operators in developing more accurate and efficient energy distribution strategies by 

Table 2 Test results of actual output efficiency of three models

Models Experiment No Output power 
(kW)

Efficiency (%) Average 
efficiency (%)

Objective 
function (Cost/
kW)

MODASCPA 1 15,678 95.89 96.16 0.0014678

2 16,261 96.78 0.0015004

3 16,189 95.82 0.0014972

MOMVO 1 10,117 89.43 89.59 0.0015892

2 10,045 90.61 0.0015534

3 9987 88.72 0.0015484

MOSSA 1 9146 81.42 82.14 0.0016231

2 9251 82.13 0.0016062

3 9274 82.89 0.0016525

Table 3 The adaptability and robustness test results of the five-part model

Models Test index Dateset Average

ZDT PFR REGLD

MODASCPA Accuracy (%) 95.2 96.7 95.4 95.8

Relative robustness (%) 96.2 96.4 95.7 96.1

MOMVO Accuracy (%) 90.2 90.7 89.7 90.2

Relative robustness (%) 85.4 86.2 87.4 86.3

MOSSA Accuracy (%) 88.2 81.7 86.4 85.4

Relative robustness (%) 79.4 77.2 76.4 77.6

PSMOOA Accuracy (%) 82.1 83.4 86.1 83.8

Relative robustness (%) 75.2 71.7 76.4 74.4

GMOOA Accuracy (%) 77.2 71.4 68.2 72.2

Relative robustness (%) 62.7 68.0 65.9 65.5
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providing optimal solutions in multiple dimensions. It also promotes the transition 
from traditional energy systems to cleaner and more sustainable energy sources. How-
ever, while MODASCPA has shown excellent performance in experiments, further ver-
ification is needed to assess its versatility and scalability in practical applications. The 
algorithm’s performance may be impacted by larger problem sizes, and real-world appli-
cations on a large scale may expose limitations in response time and resource utiliza-
tion. Additionally, it is important to note that the complexity of the energy system in the 
real world often surpasses the assumptions made in the model. Therefore, the algorithm 
must be able to handle uncertainty and dynamic changes in order to adapt to the con-
stant changes of the actual grid. To address these limitations and improve the practical 
application of the algorithm, future research should focus on exploring its universality 
and validating and optimizing its performance through larger scale experiments and 
real grid data. Additionally, research should prioritize improving the algorithm’s real-
time response and resource efficiency to ensure quick response times and efficient use 
of computing resources during practical operation. MODASCPA and its derived algo-
rithms are expected to provide technical support for achieving sustainable and efficient 
energy systems with further improvements and adjustments.

Conclusion
With the worsening of the energy crisis, the transformation of the traditional energy 
system has become an inevitable trend, and the efficient access of new energy sources 
to the power grid is the key to realize a sustainable energy system. In this study, in 
order to effectively improve the efficiency of new energy system consumption and 
optimize the stability of the grid system, the study proposes the DACPA of MOO to 
obtain the best optimization scheme of new energy system consumption. The experi-
mental results indicated that MODASCPA has a significant advantage over MOMVO 
and MOSSA in terms of fitness value performance, with an improvement of 9.54% 
and 14.67%, respectively, which suggests that it has higher efficiency and better global 
search capability in solving complex optimization problems. Meanwhile, MODAS-
CPA performed the best in terms of diversity of solution sets and was able to pro-
vide a wider range of optimization solutions, with an average efficiency as high as 
96.16%, which is significantly better than MOMVO’s 89.59% and MOSSA’s 82.14%. At 
the same time, the research method is highly adaptable and robust. Compared to the 
traditional method, this approach considers multiple optimization objectives compre-
hensively. It uses DAC technology to meet the actual operation requirements of the 
power grid. It avoids falling into local optima through efficient global search capabil-
ity and optimizes the diversity of solution sets. Therefore, it provides a more com-
prehensive and flexible solution strategy for new energy grid-connection problems 
than the traditional method. The proposed research is of great significance to both 
the algorithm optimization and NEC fields, which not only improves the efficiency of 
the optimized layout of wind power, but also provides effective technical support for 
the large-scale grid connection of new energy sources, and can effectively promote 
the optimization of the traditional energy system for the new era of reform. How-
ever, further exploration is needed to determine the scalability and universality of this 
technology in practical applications, particularly in large-scale complex power grid 
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systems. Additionally, the algorithm may encounter issues with long response times 
and low resource utilization during actual operation. In the future research, the appli-
cability of the algorithm should be further verified and optimized, and its response 
time and resource consumption should be further explored and improved.
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