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Abstract 

Objective:  Energy usage in has been increased due to the rising demand of cloud 
infrastructure. The government policy has been focused on building the green IT data 
center. The energy data need to be collected in order to monitor the energy usage. 
However, in an old typical data center, the building has been built with no support 
of such data collection. In this research, we aim to design the energy data collection 
system for our existing data center, a case study of data center in Thailand at the uni-
versity. Based on the collected data, an energy usage monitoring system and predic-
tion can be developed.

Methods:  In the case study of Kasetsart University data center, the building and elec-
tric layouts were predetermined. The building layout and existing IT hardware were 
investigated. We designed the meter types and the number of meters to be installed 
for the building the energy data collection system. The corresponding database system 
was also designed for data logging, data visualization and analysis purpose.

Results:  As a result, 25 installed meters along with the add-on network system were 
installed for logging data. A data usage example was demonstrated by building 
the data visualization and analysis. The presented 1 year dataset collected showed 
the changes of energy usages which can be used to compare with real activities 
happening in the campus. This encourages the integration of other related environ-
ment data such as outside temperature which may affect the electric billing cost. The 
dataset can be used for prediction of the electric usage; thus, the policy for reducing 
the electric billing cost could be established. In this paper, as a data note, we focus 
on the methodology of data collection required for data center.

Keywords:  Energy consumption, Data center, Energy dataset

Introduction
Data center is one of the top organizations that consume energy. From Sverdlik (2016), 
data centers in the United States consume upto 70 billion kWh which is about 2% of the 
country’s energy usage and equivalent to total 6.4 million household energy usage. This 
consumption rate has increased from 2010 to about 4%.

Recent previous works reported that most energy consumed are from servers 
and cooling systems (Hemsoth 2016; Jennings 2016; Office of Energy Efficiency and 
Renewable Energy 2016). The expense is directly related to the server about 60% and 
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the cooling system about 40%. Also, from UN report, the cooling and heating systems 
are sources of energy usage upto 70% of the city (Zorba 2024).

In a typical data center, there are various sources of power consumption including 
IT and non-IT data components. Efficient power usage in a data center tends to spend 
most of the power in IT equipment. However, this is hardly possible in the tropical 
country like Thailand. Several servers running computing-intensive services tend to 
consume lots of energy and yield lots of heat dissipation. Proper cooling equipment 
known as CRAC (Computer Room Air Condition) are usually required to cool down 
the servers so that they can run services normally. However, the size of CRAC system 
and the operational policy in a data center is varied depending on many design fac-
tors, e.g, vendor setup, floor plan layout etc.

In this research, we aim to develop an energy usage monitoring system and pre-
diction, a case study of data center in Thailand at the university. The building was 
constructed several years ago. The physical layout as well as the rack locations were 
fixed. The servers needed to run 24/7 and there were no programs for resource usage 
profiling. To achieve our goal, we study existing layouts and IT facilities and attempt 
to design the appropriate meter installation solutions under the current situation for 
collecting energy usage data under the reasonable budget. The network wiring and 
component connection were designed for data logging. At last, the obtained data 
were analyzed and the prediction system were developed. The energy usages were col-
lected as an open data collection (Chantrapornchai and Chatlatanakulchai 2023).

This presented data note demonstrates the contributions in the following aspects.

•	 Experience sharing in designing the system for energy data collection in the fixed 
floor plan data center.

•	 Dataset and example visualization aided in finding the factors that affect the 
power usage in the data center.

•	 Demonstration of an application of machine learning to create the prediction 
models.

Several datasets have been proposed about energy consumption. For example, in data.​
gov (as of 28 January 2024), we found 9 datasets related to energy consumption. They 
included resident energy consumption, monthly and annual energy consumption, 
building synthetic dataset, etc. Some of them were the table reports and presented 
APIs for data visualization. From data.​world, there are 81 related datasets by searched 
keywords “data center energy consumption” (as of 22 March 2024). Only a few of 
them related to electricity power consumptions. In the following, we give some exam-
ples of detailed datasets that are available for data scientists for in-depth analysis. 

1.	 Dua and Taniskidou (2017) presented the energy consumption in households divided 
into room types and three submeters. It consists of watt-hr energy consumption val-
ues. The total period is 47 months. The collected data contain 9 fields including date-
time, voltage, and global reactive power. The dataset was also published in Kaggle 
(https://​www.​kaggle.​com/​datas​ets/​uciml/​elect​ric-​power-​consu​mption-​data-​set).

http://data.gov
http://data.gov
http://data.world
https://www.kaggle.com/datasets/uciml/electric-power-consumption-data-set
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2.	 Candanedo et al. (2017) collected energy usage in a household. The sampling time is 
10 seconds and the total period is 4.5 months. The temperature and humidity data 
were also collected every 3.3 min. The dataset includes the weather data collected 
from the base station at Chievres Airport, Belgium.

3.	 Makonin et al. (2016) presented the dataset of households during 2012-2014 in Can-
ada. The meters were installed for each room in the house. The hourly weather data 
were also collected. The dataset contains CSV file of electric meter data, weather 
data, historic electric, water, gas billing and usage.

4.	 Chavat et  al. (2022) presented the energy consumption of households in Uruguay. 
The dataset was collected by Uruguayan Electricity Company (UTE) and was studied 
by Universidad de la República. There are four subsets: total household consump-
tion, total electric water heater, electric appliance, and customer information.

5.	 Bazurto et al. (nd) presented the dataset from the facilities of the Information Tech-
nology Center (CTI) of the Escuela Superior Politécnica del Litoral (ESPOL). The 
data were collected from an HP Z440 workstation for 245 days (35 weeks). The 
sampling interval was one value per second. The dataset contains attributes for the 
power consumption of CPU, GPU, along with the memory usage, as well as the CPU 
temperature etc.

6.	 Sheppy et.al. Michael et  al. (2011) collected the dataset for NREL building. NREL 
building was a research facility building. The dataset contains hourly data for: Total 
Cooling (kW)-Total Heating (kW)- Total Mechanical (kW)-Total Lighting (kW)-
Total Plug Loads (kW)-Total Data Center (kW)-Total Building (kW)-PV (kW)-Build-
ing Net (kW).

After achieving the dataset, machine learning or AI is often utilized for predicting the 
energy consumption usage (Gao 2018; Li et  al. 2017; Shoukourian et  al. 2017). Some 
famous current data center has utilized AI in some form for managing facilities (Dono-
van 2018; DeepMind 2018).

From previous work, two aspects of the energy datasets were demonstrated. First, in 
the aspect of using meters, datasets were proposed in the context of household build-
ing since the meter installation logistics was not too complex. Second, in the context of 
server loads, CPU/GPU workload along with the power consumption on the computer 
server were gathered. Most datasets report only based on a specific computer since since 
this approach needs some middleware programs to do profiling which cannot be done 
easily in a real data center due to several reasons. For example, the data logging may 
degrade server performance and the server could not be stopped to install the program, 
etc.

This data note mainly differs from previous datasets in the aspect of the organiza-
tion context. We rely on the data center context, rather than the household. The data 
center is divided into rooms containing servers and IT equipment. In achieving the 
data, challenges were relevant to data logger installation in the building that there 
had a fixed layout and the operations that run continuously. Due to the management 
policy, we cannot stop the operations and installed the profiling software. We, then, 
had to focus on the design of data logger installation which needs to solve the solu-
tions such as some meters exist; however, data cannot be logged. Or some portion 
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of the floor plan where the servers are located did not have separate meters while 
considering the budget. As a results, it enables us to collect power usage for servers 
as well as estimate the power usage for other IT components in the data center. The 
design experience along with the datasets will be benefits to the readers in the fields.

In the next section, methodology of acquiring data is presented. Section  Results 
presents the data results and section  Data processing and analysis demonstrates 
the usage of data. Section  Discussion and implications discusses the results and 
implications.

Methodology
Organization context

Our university, Kasetsart University, is a large-size university, serving around 38,000 
students. The data center is under Office of Computing Service (OCS) which serves 
the core functions of the university such as the registration, payroll, e-mail, cloud ser-
vice, etc. The data center occupies one floor of the OCS building. The building also 
includes offices, lecture rooms, computer laboratory rooms, conference rooms, etc. 
According to the university billing, the monthly billing cost for the data center is 
around 40% of the whole building.

From the previous record, e.g. January, 2017, the total electricity cost of the build-
ing was 500,000 THB Off-Peak Power was 370 kW and On-Peak Power was 357 kW 
which is about 37% is the total cost. The expense is higher around 10–15% during 
March, April, May for the summer time in Thailand.

For a typical university in Thailand, the data center is medium size. It is divided into 
several rooms. Each room contains servers of the university and colocated servers. The 
main servers of the university have the workload of registration, personnel, payroll, etc. 
Our university was issued the funding to the university to develop the energy monitor-
ing use case in a data center of the university under the theme of big data analytics for 
energy, by Energy Policy and Planning Office (EPPO), Ministry of Energy, Thailand, in 
2017. To the best of our knowledge, we were the first university granted by EPPO to 
develop the power consumption monitoring for data center context.

In order to proceed, power usage must be logged. Proper meters and data loggers 
must be properly installed. Challenges in our context are the following:

•	 The layout of the server and CRAC locations which cannot be changed and the 
servers cannot stop running.

•	 There are many IT and non-IT equipment which may directly or indirectly be 
connected to the meters.

•	 Fixed amount of budget e.g. 500,000 THB was for the hardware cost.
•	 Some equipment are modern; i.e. there are power usage display on them.

The following subsections describe our process to tackle these challenges. We have to 
analyze the floor plan, electric wiring, and study of existing meters. Then, within the 
budget and criteria, meter installation plan is designed. At last, the data integration is 
presented.
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Floor plan analysis

The whole building serves many functions including office administration, computer 
training rooms, lecturer rooms, etc. It has the power meter installed by the Metropolitan 
Electricity Authority on the 1st floor. Figure 1 shows the floor plan of the data center on 
the 6th floor. The MDB room is the controlled electricity room connected to the 1st floor 
main electricity room. There are 5 rooms divided to store servers, networks, equipment: 
server room 1, server room 2, co-location room (servers not own by the university), 
NOC room and network room. Each room is connected with ULC channels for power 
meters.

The server room1 and server room 2 shown in Fig. 1 are used for the servers of uni-
versity. For example, server room 1 shown in Fig. 1 is where the main servers of the uni-
versity are located. This room is connected to CRAC3 and CRAC4. CRAC3 and CRAC4 
were alternately used daily. The temperature setting is 21 centigrade. The ULC5 and 
ULC6 control boxes are connected for both server racks for the server room 1. ULC9 
and ULC10 are in the colocation rooms. ULC1 and ULC2 are in the spare room which 
connects to the reserved racks. ULC3 and ULC4 are in the network room. All CRAC1-
CRAC6 are central cooling systems where each two are connected to blow the cool air 
through the underground of the aligned server rack in the room and the hot air is blown 
out from each room in the pipes hidden in the ceiling.

As shown in the previous work, reducing the energy usage can be related to the air 
flow management and other IT equipment. The effective cooling and airflow in a data 
center is necessary to eliminate the heat (Phelps 2018). The main concept is that cool 
air from CRAC should go through the server intakes and hot air from the server release 
goes through CRAC returns. The CRAC setup should be perpendicular to the rack rows. 
In our case, due to the fixed infrastructure in our data center, it is not possible to move 
the server racks. However, our CRAC was already setup according to this manner. We 
have surveyed the number of servers used and IT equipment in the data center room. 
The main energy consumption in the room were from the servers and CRACs. The 
running servers already connected to ULC channels which can later be connected to 
the meters while other equipment like network switches, UPS, storage, etc. cannot be 

Fig. 1  The whole data center room layout
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monitored directly. Since the cost of hardware installation is high if more meters and 
sensors were used. The power consumption of these IT equipment may be inferred from 
other meters.

From the layout, the sources of energy inefficiency may be from the following. (1) the 
CRAC temperature setting was fixed. There are temperature sensors in the ceiling of the 
room but the temperature values in the room do not use to control the CRAC setting 
(Phelps 2018). (2) there were some equipment that was not in use but not turn off, such 
as UPS, network storage, etc. (3) the CRAC temperature setting can be varied depending 
on the server racks (Fukumoto et al. 2010). (4) the server racks were out-dated; the mod-
ern server racks that can monitor server load, resource management, may be utilized 
(Strom 2016). etc.

Main power consumption sources are from mostly servers, and CRACs, in the data 
center. We need to log the power consumptions for all these devices are much as pos-
sible. Since CRACs blow the heat from servers, induced by server workloads, CRACs’ 
setting can be readjusted dynamically, making it suitable for the servers’ heat dissipa-
tion. We need to measure the power usage of server loads which can imply the server 
workload. In order to achieve this, let us consider the electricity room shown Fig.  2a 
(called MDB room). The MDB room is the controlled electricity room. In this room, 
there are three main electric controls: IUDB, ADB, NDB. The electric connections are 
wired through UDB1 and UDB2 channels which is under OUDB and IUDB as in Fig. 2b. 
IUDB connects the two main UPS’s (UPS1,UPS2) of the university servers which are 
both connected to OUDB. Then, it is split to UDB1 and UDB2 which are electric con-
trols for server racks. UDB1 controls ULC1, ULC3, ULC5, ULC7, ULC9 and ULC11 
while UDB2 controls ULC2, ULC4, ULC6, ULC8, ULC10, and ULC12 respectively. On 
the other hands, ADB connects directly to all CRACs. NDB connects to NLC1 to NLC4 
for other devices such as networking. The IUDB, OUDB, UDB1, UDB2, ADB, NDB con-
tained meters previously installed from the outsource vendors which can view the power 
usages for three-phase electric but cannot log data.

Meter installation

In the data center, there are several types of equipment, IT and non-IT equipment. Chal-
lenges in this phase related to the existing floor plan/layout, equipment used, and data 
integration. Due to the budgeting, we have to design the way to install the meters with a 
reasonable cost. Since CRACs and servers are the major cost of power usage, we should 
log the power usage from these equipment as a first priority.

After analyzing the electric layout in 2(b), we installed the logger for all the above 
UDB’s. We can log the power usage for server racks, and for corresponding CRACs. The 
data from IUDB allows us to monitor the power consumption on UPS while the data 
from NDB allows us to log power consumption for the network room. The data from the 
logger for MDB shows the power consumption for the whole building where we can use 
to find the power consumption from other sources (not data center).

We explored the existing equipment and found that some have meters with data log-
ger outputs and some does not. The typical output is RJ-485. The existing ones that have 
meters with data logger outputs are Schindler meters. The others require the new meter 
installations.
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Fig. 2  a Floor plan of the main electricity room (MDB) b Meter connection layout
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We selected the vendors for meter installation. They proposed the choices of meters 
as well as the specifications. Main criteria for choosing meters are data logger sup-
port, and price. The two candidates the vendors proposed that fit our budget were 
meters from Panasonic and Circutor. Panasonic Eco Power meters have its own pro-
grams for data logging and visualization. Thus, we preferred the second one, Circutor 
(modeled CVM-C10), which was also less expensive and we can write our program 
to connected to RS-485 and Modbus RTU. The two are common protocol which are 
supported by most hardware drivers. As a result, we installed the Circutor meters. 
The meter installation must be done carefully, not to disconnect the running opera-
tion. A Labview program was written to read meter data at low-level, and save the 
data to the database.

We installed the meters on server room 1, which the main server room of the uni-
versity containing all mail servers and the registration system. The metered were 
installed for ULC5, ULC6 for both servers’ racks and for CRAC3, CRAC4 corre-
spondingly (in Fig. 1). Three months later, all remaining meters were installed

The power meters from Circutor were installed as in Fig.  3a. for every CRAC’s and 
ULC’s in the MDB room. The electric cabinets were built for these meters as shown in 
Fig. 3b. The meter output port is RS-485 and was converted using a serial device server 
by Advantech, modeled EKI-1522. The LAN cable from EKI was wired to the NOC room 
where the university network switches are located. The fixed IP was given to the device.

Inside the data center, the Schneider electric control cabinets were installed for 
IUDB, NDB, ADB, UDB. These meters already have the RJ485 interfaces as shown in 
Fig. 3a. However, they had no data logger connected to them. Thus, we connected the 
RS-485 cables to the EKI for a data logger. All the DB meters were used for monitor-
ing the aggregate power consumption to estimate the power consumption of other 
equipment such as networking and UPS.

After each installation, we measured the error from the meter reading and from the 
manual clamp. As shown in Fig. 4, the current readings were 39.23A, 36.24A, 39.51A 
while the reading from the clamps were 39.7A, 36.2A, and 40.6A in 1), 2), 3) respec-
tively. It was found that the errors were about 1A which was acceptable.

As a result, totally 25 m were installed and connected to EKI data logger for collect-
ing all energy usages (according to the color boxes in Fig. 2b).

Data aggregation

Figure 5 presents the overall system for data integration. On the left side, the meter 
data were collected using the equipment as described above. The data logger in the 
data center was connected to the data logger server using the TCP/IP. The fixed 
IP was given to the data logger with the courtesy of OCS. The server was installed 
MS-SQL 2017 as a database for storing the meter data. Labview 2018 program was 
implemented to connect the data logger, transform the lower-level data format to the 
numerical values, and store them in the database. In this paper, the focused portion 
is shown in the dashed box. The logged data can be further used for visualization and 
open data purposes. One meter data were kept separately in each database table as in 
Fig. 6. There are 25 tables for all 25 m.
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Results
The presented dataset is divided based on three types of installed meters. The first type 
is the meters for CRAC which measures the air condition units. The second one is the 
meters for ULC which measure the rack server units. At last, the DB meters measure the 
aggregate power consumption indicated in the MDB room in the floor plan.

The collection date began on 2 June 2018. At the time of writing the article, the sub-
mitted collection has an end date of 18 April 2022. The exact starting dates vary due to 
the phases of meter installation. There were some periods in the year 2019 and year 2020 
when the data logging stopped due to the power outage and downtime of the logging 
computer. The sampling period is set to 1 min for each meter. This can be set in the data 
logger program. The total data size is around 21 GB in MS-SQL (2017) backup format. 
The data was also exported into 25 CSV files, each of which has the varying number of 
rows and starting dates as shown in Table 1.

Fig. 3  a Previously installed Schneider meters. b Circutor meters. c Wiring for the meters
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Each meter data contains 56 fields described in Table 2. In this table, all attributes 
from the meters were read. The example values are also shown in the table. Figure 7 
shows the data rows in the CSV format.

Figures  8a and 9a show example scatter plots for the active three phase for all 
CRACs and ULCs in our dataset while Fig. 8b and 9b show the box plots of the data. 

Fig. 4  Comparison of installed meter values and clamp reading

Fig. 5  System and data integration
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The average values for CRAC3-CRAC4 are 10,959.92 and 6,665.48 while the average 
values for ULC5-ULC6, are 6108.42, and 6531.58 respectively.

Data processing and analysis
Data cleansing

In this section, we demonstrate the usage of the dataset. As an example, the first 
3-month data from CRAC3, CRAC4 and ULC5, ULC6 were extracted as CSV files. 
Jupyter Notebook, python language and relevant libraries such as pandas, numpy, 
sklearn, matplotlib, pmdarima, joblib were used to preprocess and visualize the data. 
The data received may be temporarily disconnected due to network connection. The 
sensor values may be outliners. 

1.	 removing extreme values: to remove outliners by inspecting the negative values and 
non increasing values.

2.	 filling missing data: missing data due to network connections needs to be filled.
3.	 removing unneeded columns: columns that do not need for model creation.

Fig. 6  Logged data tables in the database
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The first two steps were required since there were always some error data due to 
some bad reading sensors. The missing data were due to some power outage periods 
and the intermittent disconnection of the logging server. The extreme values must 
be observed for each attribute to find out the maximum and minimum limits. The 
scheme for filling in missing values may be using mean, summation, and filling with 
zero, depending on the attributes. Different methods can affect the correctness of the 
models. Since it is time-series data, history data is used for model construction. Fill-
ing with zero or filling with mean can lead to different prediction model. This also 
depends on how many missing values are continuously. Imputing more values can 
lead to noises in data. Thus, it should be done with care (Hyndman and Athanasopou-
los 2018).

Depending on the goal and the method, the third step may remove some columns. 
For a demonstration, we are interested in the power consumption attribute. The 

Table 1  Total data sizes and date ranges for the dataset

Dataset Total rows Sampling period Starting date Enddate

CRAC1 1570231 1 min 2018-08-09 2022-04-12

CRAC2 1578407 1 min 2018-08-09 2022-04-18

CRAC3 1685982 1 min 2018-07-10 2022-04-12

CRAC4 1685982 1 min 2018-07-10 2022-04-12

CRAC5 1578401 1 min 2018-08-09 2022-04-12

CRAC6 1578402 1 min 2018-08-09 2022-04-12

ULC1 1578403 1 min 2018-08-09 2022-04-12

ULC2 1578398 1 min 2018-08-09 2022-04-12

ULC3 1578406 1 min 2018-08-09 2022-04-12

ULC4 1578398 1 min 2018-08-09 2022-04-12

ULC5 1686001 1 min 2018-08-09 2022-04-12

ULC6 1686009 1 min 2018-08-09 2022-04-12

ULC7 1578414 1 min 2018-08-09 2022-04-12

ULC8 1578408 1 min 2018-08-09 2022-04-12

ULC9 1578413 1 min 2018-08-09 2022-04-12

ULC10 1578409 1 min 2018-08-09 2022-04-12

ULC11 1589936 1 min 2018-08-09 2022-04-26

ULC12 1578409 1 min 2018-08-09 2022-04-12

ADB 1570252 1 min 2018-08-09 2022-04-12

NDB 570242 1 min 2018-08-09 2022-04-12

IUDB 1570221 1 min 2018-08-09 2022-04-12

UDB1 1578444 1 min 2018-08-09 2022-04-12

UDB2 1578442 1 min 2018-08-09 2022-04-12

UDB3 1578455 1 min 2018-08-09 2022-04-12

Fig. 7  Example data rows in CSV
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Table 2  Sample fields for meter data collection

Field name Example value

timeval 10/7/2018 08:01

L1 Phase voltage 2285

L1 Current 33160

L1 Active Power (W) 6960

L1 Inductive Power 2800

L1 Capacitive Power 0

L1 Apparent Power 7560

L1 Power Factor (×100) 91

Cos φ L1 (×100) 92

L2 Phase voltage 2310

L2 Current 28240

L2 Active Power (W) 6160

L2 Inductive Power 1960

L2 Capacitive Power 0

L2 Apparent Power 6520

L2 Power Factor (×100) 94

Cos φ L2 (×100) 95

L3 Phase voltage 2305

L3 Current 27560

L3 Active Power (W) 5840

L3 Inductive Power 2360

L3 Capacitive Power 0

L3 Apparent Power 6320

L3Power Factor (×100) 91

Cos φ L3(x100) 92

Active Three-phase Power 19000

Inductive Three-phase power 7160

Capacitive Three-phase Power 0

Apparent three-phase power 20400

Three-phase Power Factor 93

Three-phase Cos φ 93

L1 Frequency (x100) 5007

L1-L2 Voltage 3971

L2-L3 Voltage 4000

L3-L1 Voltage 3978

Neutral Current N(mA) 7720

Inductive Three-phase power 6880

Capacitive Three-phase power 0

Apparent three-phase power 20160

Three-phase Power Factor 93

Three-phase Cos φ 93

L1 Frequency (x100) 5004

L1-L2 Voltage 3934

L2-L3 Voltage 3963

L3-L1 Voltage 3945

Neutral Current N(mA) 7640

L1 voltage % THD 20

L2 voltage % THD 16

L3 voltage % THD 19



Page 14 of 34Chatlatanagulchai and Chantrapornchai ﻿Energy Informatics            (2024) 7:26 

column “Consumed active energy kW” was chosen as a target column. This column is 
an accumulated value computed from “Active three phase kW”.

Figure 10 shows the example data for 3 months of such values for CRAC3, CRAC4 and 
ULC5,ULC6 in Fig. 10a and b respectively. It can be seen that there are some missing 
values and some error values. Therefore, data cleansing can be done. From the visualiza-
tion, we set the maximum value for the y-axis as 30,000 and the minimum value for y as 
0. We checked the non-increasing values for the y-axis. When we found the values over 
the maximum values and the values that were not non-increasing ones, the associated 
rows were dropped. In Fig. 11, the plotted of data after dropping values are shown in 
Fig. 11a, b for CRAC3, CRAC4 and ULC5, ULC6 respectively.

The total number of wrong values found is displayed in Table 3 Column “less” contains 
the number of values less than equal to zero, Column “exceed” contains the number of 
values more than 30,000, and Column “non-decrease” are the number of values that are 
non-decreasing. Figure  12 presents the resulting data after using filling with different 
approaches for CRAC3 and CRAC4. In Fig. 12a, b, means and bfill (backward fill) (Pan-
das 2024) approaches were used to fill the dropped rows respectively. Figure 13 shows 
the resulting data for ULC5, ULC6 with the same filling approaches, i.e., Fig. 13a, b, for 
means and bfill approaches respectively.

Data analysis

After performing, the data cleansing as in the previous section, the data can be used to 
construct the prediction models. Since it is time-series data, we consider three types of 
models are presented: regression, autoregression, and ARIMA. In each type of model, 
specific parameters are explored. In regression models, one have to decide the attrib-
utes used. The correlations of attributes have to be studied. For autoregression, the lag 
window size must be chosen. Finally, ARIMA combines autoregression, moving average 

Table 2  (continued)

Field name Example value

L1 current % THD 125

L2 current % THD 127

L3 current % THD 133

Maximum demand kW III 20160

Maximum demand kVA III 21360

Maximum demand I AVG 31080

Maximum demand I L1 33440

Maximum demand I L2 30240

Maximum demand I L3 29560

Consumed active energy kW) 622

Consumed active energy (W) 962

Consumed inductive reactive energy (kvarhL) 188

Consumed inductive reactive energy (varhL) 279

Consumed capacitive reactive energy (kvarhC) 0

Consumed capacitive reactive energy (varhC) 11

Consumed apparent energy (kVAh) 654

Consumed apparent energy (VAh) 43

Consumed CO2 emissions 0
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Fig. 8  Active three phase power for all CRACs in the dataset a scatter plot b box plot
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Fig. 9  Active three phase power for all ULC in the dataset a scatter plot b box plot
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Table 3  Total missing values and wrong values

Data Total rows Less Exceed Non-decrease Cleaned line

CRAC3 393,108 54 4 1887 96,461

CRAC4 393,108 39 59 1511 96,791

ULC5 393,108 1226 246 2067 95,755

ULC6 393,108 1185 54 1906 96,363

Fig. 10  Consumed active power a CRAC3 and CRAC4 b ULC5 and ULC6
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windows, and degree difference. The model is more complicated. More parameters need 
to be explored. In the following, we demonstrate the use of these models against our 
dataset.

Multivariable regression

Using the multivariable regression approach (sklearn 2024), several variables were con-
sidered whether there are relationship to the target variable. Since there were many 

Fig. 11  Consumed active power (drop values) a CRAC3 and CRAC4 b ULC5 and ULC6
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Fig. 12  CRAC3 and CRAC4 consumed active power a mean b bfill
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Fig. 13  ULC5 and ULC6 consumed active power a mean b bfill
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attributes, we explored important variables using co-relations. We use corr() function in 
pandas to calculate. In this function, there are 3 types of co-relations: Pearson, Kendall, 
and Spearman (Pandas 2024).

Example correlation plots between Consumed active energy (kW) and consumed 
apparent energy(kVAh), consumed inductive reactive energy (kvarhL), consumed capac-
itive reactive energy (kvarhC) of CRAC3 are shown in Fig. 14. After calculating the co-
relations, the ranking of the co-relations between “Consumed active energy” and other 
fields. Assume we picked the top 3 attributes with the highest co-relation values.

Using the linear regression model, the prediction for each CRAC3 and CRAC4 is 
shown in Fig. 15. Root means square error (RMSE) values are 0.95 and 0.94 respectively. 
In Fig. 16, RMSE values are 0.98 and 0.99 for ULC5 and ULC6 respectively. Figure 15 
shows some noises in prediction values since the attribute values do not get cleaned 
except consumed active energy (kW) values.

Auto‑regression

Auto-regression is a persistent model which predicts the point at t + 1 from the previ-
ous time point t after that the new data point is appended and the process continues. If 
it is based on one previous point, lag = 1. Since this model only requires previous time 
points, only one field was used to create model, “consumed active energy”. The other 
fields were removed. Figure 17 presents RMSE values for CRAC3, CRAC4, ULC5, and 
ULC6 for the same data used in the previous subsection. We shifted the data by one 
point time unit in order to create training data for lag = 1. The total data points were 
45,339 with the mean value 8175 kW. We set 67% of them to be trained data and the 
remaining was test data. This resulted in 48,887 training rows and 24,080 testing rows. 
The reported RMSE is based on the test data. The RMSE is small compared to using the 
linear regression approach.

We implemented the auto-regression model using statsmodel in the python library 
(statsmodels 2024). The method automatically finds proper lag values during fitting. We 
used the same portion of training and testing. The library finds the number of lags and 
coefficients. The RMSE results are shown in Fig. 18. All of the shown cases have lag = 
50 after finishing training. The RMSE values were higher compared to Fig. 17 for all the 
four meters.

Fig. 14  CRAC3 Spearman correlation
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Fig. 15  Consumed active power regression a CRAC3 b CRAC4
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Fig. 16  Consumed active power regression a ULC5 b ULC6
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Fig. 17  Auto-regression (I) a CRAC3 b CRAC4 c ULC5 d ULC6



Page 25 of 34Chatlatanagulchai and Chantrapornchai ﻿Energy Informatics            (2024) 7:26 	

Fig. 18  Auto-regression (II) a CRAC3 b CRAC4 c ULC5 d ULC6
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ARIMA

Auto-Regressive Integrated Moving Averages (ARIMA) (Hyndman and Athana-
sopoulos 2020) can be used with stationary data. ARIMA has 3 important param-
eters p,  d,   and q. p is the lag time, q is the number of moving average terms 
which is a lagged value forecasting error. For example, if q = 5 , for y(t), we have 
e(t − 1), e(t − 2), . . . e(t − 5) , where e(i) represents the difference between the moving 
average at ith instance and at the moving average at t. At last, d is the order of differ-
ence, e.g., d = 1 is the first order difference. For constructing the ARIMA model, p 
and q values need to be estimated. The auto-correlation function (ACF) and partial 
auto-correlation function (PACF) were measured (Hyndman and Athanasopoulos 
2020). Varying p, q,   and d incurs different RMSE values. Figure  19 shows the case 
when using p = 2, d = 1, q = 2 and p = 3, d = 1, q = 3 for CRAC3. When performing 
the grid search, the best p, d,   and q were found. Figure 20a presents the parameter 
spaces in the grid search for CRAC3 while Fig.  20c presents the RMSE when using 
the best parameter p = 4, d = 1, and q = 4 with the training set. For the purpose of 
demonstration only, the number of trained data rows is 30,409 and the number of test 
data rows is 14,979. The trained data achieves RMSE, 21.06. The test data has a larger 

Fig. 19  ARIMA (CRAC3) a p = 2, d = 1, q = 2 b p = 3, d = 1, q = 3



Page 27 of 34Chatlatanagulchai and Chantrapornchai ﻿Energy Informatics            (2024) 7:26 	

Fig. 20  ARIMA (CRAC3) a Grid search result p = 4, d = 1, q = 4 b train c test
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RMSE, 999.91. The testing score is worse than the training score since the training set 
may not be generalized enough.

Discussion and implications

Table 4 summarizes accuracy for all methods for the sample dataset. It is seen that the 
simple method, multivariate linear regression, is simplest and effective. Multivariate 
regression considers more than one variable which have correlations. The linear regres-
sion is suitable for this type of data as we can see later in the visualization section. For 
autoregression, suitable lag time must be selected. Lag time shows a dependency win-
dow for the current time value. One might utilize grid search to find suitable lag time. 
In this example, few lags are better. When combining with multivariable, it would be 
more complex to explore both lag time and co-related variables. Similarly, with ARIMA, 
proper parameters, values of p, d, q must be explored. More data are needed since they 
can exhibit seasonal nature. In the above example, only 3-month data cannot demon-
strate seasonal cycle very well. Longer time period data may be needed.

However, this test dataset is only for 3 months. It is opened that the methods can be 
trialed against the whole dataset, i.e., for other meters and longer period. The other 
attributes can also be considered along with other prediction models such as LSTM.

 Visualization example

We constructed the sample visualization using GrafanaLab (2024) which shows system 
statistics, as well as CRAC, and ULC meter values in the same dashboard. The live con-
nection to MS-SQL database was used.

Figure 21b presents the values from MS-SQL database CRAC3, CRAC4, ULC5, ULC6, 
to show the three phase active power, consumed energy, L1,L2, and L3 active power, etc. 
during that period. Figure 23 focuses on the three phase active power widgets showing 
max,min, average values of the four meters.

When consider the integration of the server workload data, Fig. 21a shows the exam-
ple of logging of power consumption, memory usage, network, GPU, etc. These logging 
were done using the scripts running as background processes on a Linux system which 
recorded data to InfluxDB influxdata (2024). Grafana, then, connected to influxDB for 
the time-series data display.

For future analysis, the dashboard in Fig. 22 shows the year plots of accumulated 
powers for all the meters in Fig. 2b where the trend line is shown. We analyze the 
activities on the period with high power usage values, for example during the end of 

Table 4  Prediction score of various methods (RMSE)

Data Multivar AutoR AutoR ARIMA ARIMA
Linear Lag = 1 Lag = 50 p = 3, d = 1, q = 3 p = 4, d = 1, q = 4

CRAC3 0.94 0.40 249.18 1,236.18 999.95

CRAC4 0.95 0.42 41.19 1,617.19 1,633.50

ULC5 0.98 0.32 6.80 770.15 770.24

ULC6 0.99 0.32 7.29 793.61 793.14
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Fig. 21  Grafana visualization. a Computer loads b Energy monitoring

Fig. 22  Overall power consumption analysis and trend
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semester period and during the summer period. The trend line suggests the incre-
ment of the power usage.

From the visualization, the recommendations for energy saving can be reducing 
the workloads during the summer period. This may not be directly possible dur-
ing the seasonal activity in the university. Based on the billing policy PEA (2024) in 
Thailand, the power cost is differed based on weekdays and weekends, varying day 
and night. Other saving strategies may be the transfer of high workload to weekends 
or overnights, etc.

Based on the three-phase active power and the billing policy, we construct the 
estimation of the billing cost as in Fig. 24a. Figure 24b expresses the moving aver-
age of three-phase active power showing the peak consumption day. The visualiza-
tion can be used for future investigation of the peak consumption and to analyze the 
causes. In other way, the prediction trend can suggest the billing cost which help 
future budget planning.

From Loeffler (2016), the 10 most popular way to minimize energy in a data center 
is to (1) turn off idle equipment or idle server (low utilization : below 15%) (2) use 
virtualization (3) use blade servers and gather storage (4) turn on power manage-
ment feature of CPU to change frequency properly according to the utilization (5) 
use IT equipment with efficient power supply, and chain the IT equipment from 
electric sources (6) use efficient UPS and PDU (7) use power distribution 208V/230V 
(8) use good cooling system, use hot aisle and cold aisle (9) measure the energy usage 
in the data center from output of UPS and calculate PUE (10) prioritize the optimi-
zation of energy usage and look for the equipment that is not used.

In our scenario, we cannot move the rack nor upgrade the hardware. The possible 
strategy is workload management. For example, to delay running workload during 
the night can save the power cost. Or adjusting the temperature setting for CRAC to 
save power consumption.

Fig. 23  Grafana visualization. Zoomed three phase active power
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Comparison to other datasets

Table 5 compares the dataset presented in this paper with related ones. Most measured 
power consumption in the context of households in several aspects. For example, in the 
aspect of appliance usage, and room usage (Chavat et al. 2022; Dua and Taniskidou 2017; 
Candanedo et al. 2017). Some integrates the other context and environment data such as 
temperature, humidity, billing, etc. (Makonin et al. 2016; Candanedo et al. 2017). In the 
household context, all used meters data as a main data source while data from sensors 
were supplementary. In the data center context, CPU/GPU, memory, network power 

Fig. 24  Labview program UI a Calculation of billing cost based on active power b Moving average of active 
power
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usage were considered Bazurto et al. (nd) while our dataset considered the power usage 
of data center based on area containing servers and IT equipment.

Future research
The future research can investigate along with the data and related directions. 

1.	 One may consider integrating with other data sources such as a renewable energy 
to monitor the data generation. Or to integrate with a temperature dataset, using 
Weather Data API (OpenWeatherMap 2024; TMD 2024). The visualization can show 
the linkage these new data sources.

2.	 In the area of exploring the impact of IT workload management on energy consump-
tion, one can install the profiling tools for various workload collection. Since in our 
real operating environment, the servers cannot be stopped and inserting the logging 
scripting. We have preliminary tried the tools to the server and peripherals usage and 
power consumption logging, eg. using RAPHL [34], to collect power consumption 
of CPU, memory usage, etc, using NVIDIA-SMI (NVIDIA 2024) to collect power 
consumption of GPU, GPU memory usage, etc. These data may be combined with 
the aggregate energy data for further analysis. Based on these server load data, the 
implementation of server provisioning such as the work in Hübotter (2021), Thein 
et al. (2020) is also possible.

3.	 The dataset collected can lead to the other research areas with various methods such 
as optimizing cooling systems based on predictive models (Afroz et al. 2022; Lei and 
Shao 2023; Bamdad et al. 2023).

Table 5  Comparison of existing data sets for data centers

Data set Domain Duration #attr Detailed description

 Dua and Taniskidou (2017) Household 47 months 9 The dataset was collected from three room types 
and three submeters

 Candanedo et al. (2017) Household 4.5 months 5 There are 15 rooms in the house. There were main 
5 variables: power meters, humidity, wind speed, 
date time, temperature

 Makonin et al. (2016) Household 24 months 6 The meters were installed for each room in the 
house. The hourly weather data were also col-
lected. The dataset contains CSV file of electric 
meter data, weather data, historic electric, water, 
gas billing and usage

 Chavat et al. (2022) Household 539.2days 9 The dataset contains power usage for 8 appli-
ances. Each appliance was measured with differ-
ent meters. The total power consumption meter 
was measured with nine attributes

Bazurto et al (nd) Server 245 days 15 The dataset contains power consumptions of 
GPU, CPU, RAM, CPU temperature, etc. for one 
machine

Ours Chantrapornchai and 
Chatlatanakulchai (2023)

Data center 20 months 56 The dataset contains the power consumption of 
each meter divided by area. Each area contains 
servers and related IT devices
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