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Introduction
Electric vehicles play a crucial role in the global eco-friendly market, emerging as the 
preferred mode of sustainable and environmentally friendly transportation. During oper-
ation, the remaining electric charge in the lithium batteries of electric vehicles, known as 
the State of Charge (SOC), significantly influences the performance and user experience 
(Venkitaraman and Kosuru 2022; Mastoi et al. 2022; Anwar et al. 2022). Accurately and 
rapidly estimating the SOC of electric vehicle lithium batteries is pivotal for promot-
ing the use and adoption of electric vehicles. However, due to complex nonlinear fac-
tors such as discharge properties, processes, and lifespan under different environmental 
and load conditions, existing efficient models face limitations (Cui et  al. 2022a, b; Xu 
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This research addresses the issue of State of Charge (SOC) prediction for electric vehicle 
batteries by employing a dynamic Kalman neural network model. The model is opti-
mized using a Genetic algorithm to adjust the neural network weights. Additionally, 
a strategy involving support vector machines for model optimization is proposed. 
This strategy involves preprocessing the data, selecting appropriate kernel functions 
for training, and merging prediction results to enhance the stability of the model. 
Results indicated that the Dynamic Genetic Kalman Neural Network (DGKNN) model 
achieved the minimum prediction error percentage of only 0.1529% when the cor-
rection coefficient was set to 0.7. The DGKNN model consistently exhibited the lowest 
error percentage, average absolute error, mean square error, and root mean square 
error when handling small, medium, and large datasets. For instance, in the small 
dataset, the error percentage was only 0.1518, and the root mean square error 
was only 0.0604. The research findings demonstrated that the proposed model exhib-
ited high real-time accuracy in predicting battery SOC, enabling real-time monitoring 
of battery operating parameters. The method proposed in this study can accurately 
predict the state of battery charge, extend the life of battery packs, and improve 
the performance of electric vehicles. It has important significance for promoting 
the development of the electric vehicle industry.
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et al. 2022a). Current SOC estimation methods include voltage-based, resistance-based, 
model-based, and machine learning-based approaches. Yet, these methods have their 
respective constraints and inadequacies due to the nonlinearity, complexity, and envi-
ronmental impact of batteries. Therefore, addressing how to comprehensively consider 
internal battery states, temperature, charge–discharge status, and other influencing fac-
tors by integrating various estimation methods is a crucial topic in the field (Dou et al. 
2022; Wu et al. 2023a; Mokayed et  al. 2023). This study aims to research and develop 
such an integrated model, exploring a novel approach to constructing a SOC estima-
tion model. The first section introduces the research objectives, the second section 
constructs an intelligent SOC prediction model, the third section validates the model’s 
effectiveness, and the fourth section presents the research conclusions.

In this paper, a Dynamic Genetic Kalman Neural Network (DGKNN) algorithm based 
on genetic optimization is proposed by combining the Kalman filter method and neural 
network method in traditional SOC prediction methods. Compared with the existing 
methods, the contribution of this study is to combine the advantages of the neural net-
work method and Kalman filter method, and use the neural network method to fit the 
battery parameters. It simplifies the parameter identification process of the Kalman fil-
ter. The model is updated with Kalman filtering to provide noise removal capability and 
robustness to the model. At the same time, the Genetic Algorithm (GA) optimization 
also greatly reduces the initial error, helps the battery management system monitor the 
remaining power of the battery, extends the life of the battery, and improves the safety 
and stability of the battery.

Research backgrounds
In recent years, research in the field of SOC has gradually deepened. To prevent the bat-
tery from overcharging and discharging, the unscented transform and multiple innova-
tions are applied to the particle filter, optimizing the particle distribution and updating 
the state values according to historical information. The scented particle filter is formed 
to estimate the charging state of the battery, and the impact of parameter changes on 
SOC estimation is considered and verified. The algorithm can accurately estimate the 
real-time SOC changes, and the average error of SOC is less than 0.5%, which has a high 
precision (Chen et  al. 2024). In order to better learn and estimate the state of battery 
charge, Chen et al. used a multi-core correlation vector machine and whale optimiza-
tion algorithm to estimate the SOC of lithium-ion battery under different working con-
ditions, and established the SOC estimation model of lithium-ion battery. The weights 
and kernel parameters of multi-kernel correlation vector machine were automatically 
adjusted and optimized by whale optimization algorithm, and the estimation accuracy 
was improved. Compared with other optimization algorithms, this algorithm had a bet-
ter optimization effect and could estimate SOC more accurately (Chen et al. 2023). Liang 
and the team presented a rule-based approach that achieved rapid SOC balance while 
respecting power constraints. The results showed that compared to existing methods, 
the proposed algorithm exhibited superior performance (Liang et  al. 2022). The team 
led by Xu proposed a novel SOC estimation method, emphasizing the importance of 
accurate SOC not only for user experience but also for preventing overcharging, over-
discharging, and ensuring safe usage. Due to numerous issues with neural networks in 
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SOC estimation, they introduced an individual migration dynamic step-size Drosophila 
algorithm, combining it with neural networks for SOC estimation to enhance accuracy. 
Experimental results demonstrated that, compared to other algorithms, the proposed 
algorithm exhibited excellent estimation accuracy, with an average absolute error below 
0.8% and a root Mean Square Error (RMSE) below 1.4% (Xu et al. 2022b).

Deep learning algorithms have also been widely applied. Feng and colleagues devel-
oped a novel bandwidth selection method by extracting features from multiple domains 
to comprehensively describe target harmonic responses. This method was employed 
for Vold-Kalman filtering to choose reasonable bandwidth. Experimental results dem-
onstrated the effectiveness and superiority of this adaptive Vold-Kalman filtering in 
the diagnosis of wind turbine planetary gearbox (Feng et al. 2023). Revach G and team 
designed a Kalman filter that integrated a structural state-space model and a dedicated 
recurrent neural network module, capable of learning complex dynamic behaviors from 
data. The results showed that KalmanNet efficiently addressed nonlinear and model 
matching problems (Revach et al. 2022). Esenogho and collaborators proposed a neural 
network ensemble algorithm based on feature extraction to enhance efficiency in credit 
card fraud detection. The findings revealed that their proposed Long Short-Term Mem-
ory (LSTM) network ensemble outperformed all other algorithms in classifier perfor-
mance, achieving high levels of sensitivity and specificity (Esenogho et al. 2022). As’ad 
and his team introduced a mechanistic artificial neural network approach, preserving 
the advantages of form invariance learned from data-driven regression, while incorpo-
rating the physical rationality of mechanistic models. By reinforcing certain good math-
ematical properties in the network architecture, the authors ensured that the learning 
process adhered to physical constraints, enhancing the success rate of numerical simula-
tions. The advantages of this learning method were prominently demonstrated in mul-
tiple finite element analysis instances, and the new approach was validated for ensuring 
the computational feasibility of multiscale applications (As’ad et al. 2022).

In the development of societal intelligence, embedded SOC technology played a 
crucial role and underwent extensive research. Within this domain, a series of studies 
focused on state prediction to enhance efficiency and safety. The outcomes of these stud-
ies reflected the in-depth development and diversification trends in the field. Building 
upon previous research, the current study incorporated new insights and improvements. 
The innovation of the research primarily manifested in the construction of an integrated 
model that fully considered the physical characteristics of lithium batteries and the chal-
lenges encountered in practical applications. By combining deep learning methods and 
integrating various outstanding algorithms, the model aimed to enhance prediction 
accuracy and stability, positively contributing to the development of electric vehicles.

Multimedia quantum representation model design
Research has focused on the design of a dynamic Kalman neural network that combines 
the advantages of Kalman filtering and neural networks for predicting the SOC of bat-
teries. However, the model faces challenges related to the extensive data requirements 
and hardware expenses. To address these issues, a GA is introduced for optimizing the 
weights of the neural network.
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DGKNN model design

The predictive SOC estimation process in this study is based on an Reserve Capacity 
(RC) battery and system. The model treats a set of batteries, combined through parallel 
and series connections, as equivalent to a single battery to enhance efficiency, as illus-
trated in Fig. 1.

To tackle SOC prediction challenges, the study introduces the DGKNN. Kalman fil-
tering demands precise parameter identification and high accuracy, while neural net-
works require a large amount of sample data, leading to increased hardware costs. To 
overcome these issues, a novel structure is proposed, which is the Dynamic Neural Net-
work. This structure integrates Kalman filtering and neural networks. Kalman filtering 
excels in handling dynamic changes but requires an accurate model for useful predic-
tions. Traditional Kalman filters often handle problems of linear dynamic systems only. 
To overcome this limitation, neural networks are introduced, leveraging their powerful 
nonlinear approximation capabilities in Kalman filtering to enhance prediction accuracy, 
as depicted in Fig. 2.

A critical concern in the structure of the dynamic neural network is determining the 
initial weight values, which directly impact stability and prediction effectiveness. Tra-
ditional weight selection methods involve random allocation based on training data 
or initial assignment according to certain rules. However, these methods do not guar-
antee model accuracy. To address this, the research explores the use of GA to adjust 
the initial weights of the neural network. GA provides a globally optimal solution, 
drawing inspiration from natural selection and genetic principles. GA is a random 
search algorithm based on natural selection and genetic mechanisms. Its core idea 
is to inherit excellent individuals to the next generation through heredity, variation 

Battery monomer Parallel module

Fig. 1 Schematic diagram of parallel connection before series connection

u x

Fig. 2 Artificial neural network structure
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and other operations. Its advantage is that it does not require any knowledge related 
to the question to search. The search uses the evaluation function and the process 
is simple. It is scalable and easy to combine with other algorithms. Applying GA to 
weight selection enhances the predictive performance of the model. The nonlinear 
SOC model is represented by Formula (1).

In Formula (1), x represents the SOC, and u represents the input. Firstly, it is neces-
sary to construct a dynamic neural network model, which consists of an input layer, 
hidden layers, and an output layer. In the input parameters, multiple factors influ-
encing SOC are considered, including current, temperature, and battery aging. In the 
hidden layers, specific transformations (such as nonlinear activation functions) are 
applied to convert the input parameters into new state parameters. Subsequently, the 
Kalman filtering theory is employed to train the neural network model. S(xi) is the 
activation function whose expression is shown in Formula (2).

When constructing the error model, the weight set is first established as shown in 
Formula (3).

And the input value set is defined by Formula (4).

The error model can then be described by Formula (5).

In Formula (5), ME represents the error model, and A represents the correction 
constant. After discretization, it becomes Formula (6).

Finally, the error model is obtained as shown in Formula (7).

In Formula (7), g(u) represents the mapping relationship. The basic assumption of 
the model is that the system’s state is determined by a known state transition model 
and an observation model. In the research scenario, the state transition model is 
the studied neural network model, and the observation model is the actual meas-
ured value of SOC. During the model training process, the study needs to update the 
weights in the neural network model based on the observed SOC values to obtain the 
best prediction results. The observation model is given by Formula (8).

(1)ẋ = f (x)+

n

i=1

g(ui).

(2)S(xi) =
1

1+ e−xi
.

(3)V = [V1,V2, . . . ,V3].

(4)u = [u1.u2, . . . ,un]
T .

(5)ẋ = Ax +W · S(xi)+ V · u+ME.

(6)x(k + 1) = Ax(k)+W · S(xi(k))+ V · u+ME(k).

(7)ME = f (x)+ g(u)− (Ax +W · S(x)+ V · u).
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In Formula (8), w(k) represents the weight vector, and H(k) represents the mapping of 
w(k) to y(k) . The system update Formula is given by Formula (9).

In Formula (9), ζ (k) represents the process noise. The weight error covariance predic-
tion matrix is given by Formula (10).

In Formula (10), �(k) represents the Jacobian matrix, Qw represents the variance of the 
error. The Kalman filtering gain of the model is given by Formula (11).

In Formula (11), P−(k) represents the error covariance interface matrix, H(k) repre-
sents the transpose of the Jacobian matrix, Rk represents the noise covariance matrix. 
However, since Kalman filtering requires an accurate model, it is often challenging to 
find the optimal solution quickly during training. Therefore, the study introduces GA 
for improvement. The GA is responsible for finding initial weights in the training of the 
neural network model, effectively enhancing the model’s predictive performance. By 
designing appropriate adaptive functions and selection strategies, the efficiency and con-
vergence of GAs are ensured. This leads to a dynamic Kalman neural network model 
based on genetic optimization for SOC prediction. The genetic optimization process is 
illustrated in Fig. 3.

For the optimization of initial weights in this paper, it is assumed that N  DGKNN 
weight vectors w(0) = {w1(0),w2(0), ... ,wN (0)} are the initial population. The algorithm 
set the number of terminating iteration steps s , and compare the initial value x(0) of x 
with the initial population w(0) = {w1(0),w2(0), ... ,wN (0)} plugged into formula (5) to 
get the value of the next state x(1) = {x1(1), x2(1), ... xN (1)} . Let the true SOC value at 
this time be r(1) , Formula (12) represent the fitness function fi(k).

(8)y(k) = x(k + 1)− Ax(k) = H(k)w(k)+ME(k).

(9)ŵ(k + 1) = w(k)+ ζ (k).

(10)P−(k) = �(k)P−(k − 1)�T (k)+ Qw .

(11)K (k) = P−(k)HT (k)
(

H(k)P−(k)HT (k)+ Rk

)−1

.

Start

Generate initial population

Calculate the SOC at the next time 
point based on the initial population

Calculate the fitness function based on 
the calculated and actual SOC values

k> Terminate Iteration StepsSet k=0
Y

N

Select Action

Mutation Operation

Cross operation

End

k=k+1

Fig. 3 Genetic optimization process
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In Formula (12), r(k) represents the true value, and xi(k) represents the state value. 
The selection operation is performed on the population, and the new generation popula-
tion will be selected from the previous generation population according to probability. 
The selection probability of each individual is calculated according to the fitness func-
tion. The probability of being selected is expressed as Formula (13).

In Formula (13), i and j represent different individuals. Then randomly select a num-
ber R from [0,1], if R < pi(k), i = 1, 2, · · · ,N  , then the i th individual is selected. If 
R < pi+1(k) , then the i + 1 individual is selected, and so on, until all individuals have 
been traversed. Cross-operation is conducted to the population. It is assumed that the 
crossover probability is ωc , then a real number R is randomly generated between the 
interval [0,1]. If R < ωc . Then two individuals 

{

wm(k),wn(k)
}

 are randomly selected 
from the population and then crossed according to Formula (14).

In Formula (14), α represents a random number in the range [0,1], and wm(k) and 
wn(k) represent different individuals. To mutate the population, it is assumed that the 
mutation probability is ωm . A real number R is randomly generated between the interval 
[0,1], if R < ωm , then randomly select an individual wi(k) from the population, and then 
mutate according to the following Formula (15).

In Formula (15), η follows a normal distribution. wik represents a random individual. 
The specific configuration of the genetic neural network layer is: the total number of 
iterations is 100, the crossover probability is 0.3, the mutation probability is 0.1, and 
the population size is 150. In this paper, the structure of the neural network is set as 
14-10-1, with a total of 150 weights and 11 thresholds, so the individual coding length of 
the GA is 161, which is the sum of the number of weights and thresholds. By repeating 
these steps, the process is like the population evolving continuously, and each iteration’s 
chromosome is more adapted to the environment than the previous one. When the pre-
set evolutionary steps are reached, the chromosome with the highest fitness among the 
remaining chromosomes is the sought-after optimal solution, representing the best net-
work weight configuration.

Improvement design for SVM stability in DGKNN model

After optimizing the initial weights of the DGKNN model through GA, significant 
progress has indeed been achieved. However, this method still has certain limitations, 
particularly in terms of prediction stability. Therefore, incorporating the principles of 

(12)fi(k) = 1/
∣

∣xi(k)− r(k)
∣

∣, i = 1, 2, . . . ,N .

(13)pi(k) = fi(k)/

N
∑

j=1

fj(k), i = 1, 2, . . . ,N .

(14)
{

w̃m(k) = αwm(k)+ (1− α)wn(k)
w̃n(k) = αwn(k)+ (1− α)wm(k)

.

(15)w̃i(k) = wi(k)+ η, η ∼ N
(

0,
∑

)

.
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Support Vector Machine (SVM), the research plan involves a series of enhancements 
to the studied model to improve prediction stability. Firstly, the data needs preproc-
essing before proceeding with SVM training. During this stage, an appropriate kernel 
function must be selected. If the data can be completely separated by a straight line in a 
two-dimensional plane, a linear kernel is the best choice. On the other hand, if the data 
exhibits a circular distribution in a two-dimensional plane, the radial basis function is a 
better choice. The research employs cross-validation and grid search to select the opti-
mal model and parameters, as depicted in the model fusion architecture shown in Fig. 4.

After obtaining preprocessed data and training the SVM model, the next step involves 
merging the prediction results. Specifically, the SVM prediction results and DGKNN 
model prediction results are integrated to form the final prediction. Different weights 
can be assigned to the predictions of the two models, and the two results are then com-
bined to obtain the final result. The prediction result fusion is illustrated in Formula (16).

In Formula (16), α represents the weight in the range [0,1], SVM_predict represents 
the SVM prediction result, and DGKNN_predict represents the DGKNN model pre-
diction result. This approach maximizes the predictive capabilities of both SVM and 
DGKNN models while improving prediction stability through rational weight allocation. 
The SVM optimization strategy diagram is shown in Fig. 5.

By incorporating SVM into the research model, the study aims to achieve more robust 
prediction results. Throughout this process, the research first preprocesses the data, 
then trains the SVM, generates prediction results, and finally merges these results with 
the predictions of the DGKNN model. Subsequently, the study continuously optimizes 
and adjusts the research model in practical use, making it better suited for real-world 
environments and providing more accurate and robust SOC predictions.

The life of the battery is limited, and the use of the battery for a long time will reduce 
the battery capacity and cause the attenuation of the battery life. In real electric vehicle 
operation, the discharge rate of the battery will change with the increase of the driv-
ing speed. Therefore, the connection between the discharge rate and the capacity of the 
battery must be studied in order to better meet the needs of the car. The relationship 
between capacity and different discharge rates was studied by conducting discharge 

(16)SOC_final = α ∗ SVM_predict + (1− α) ∗ DGKNN_predict.

Divider

Regular class

Negative class

Sample set

DNN

DGKNN

Genetic Optimization 
Model

Optimize 
prediction 

results

Out
put

Fig. 4 Model fusion architecture
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experiments under high performance battery testing equipment. It is found that the 
terminal voltage of the battery drops rapidly at the beginning, and the voltage changes 
caused by different discharge rates are different. The rate of voltage drop is positively 
correlated with the rate of charge and discharge. The smaller the rate of discharge, the 
slower the voltage drop. After the voltage drops rapidly, it enters the voltage plateau, the 
terminal voltage changes slowly in this stage. The smaller the discharge rate, the longer 
the duration of this stage, and the battery is suitable for working in this stage. Finally, 
when the battery is about to run out of power, the discharge rate will become lower, and 
the performance of the power battery will be improved. When the voltage at both ends 
of the battery drops sharply to its set minimum current, the battery is not suitable for 
work at this stage.

Performance evaluation of SOC prediction models
The study conducted an in-depth examination of the performance of SOC prediction 
models. The study evaluated the DGKNN model based on genetic optimization and 
four other predictive models under The U.S. Environmental Protection Agency (EPA) 
scenario. EPA working conditions are relatively complex, including urban working con-
ditions, high-speed working conditions, high temperature working conditions, low tem-
perature working conditions and intense driving conditions. The final EPA results are 
obtained by weighting after the completion of the five working conditions. A compari-
son of the performance of these models in handling small, medium, and large datasets 
was carried out.

DGKNN model evaluation

With the increase of electric vehicles, users’ driving habits have changed, and the 
acceleration section of actual user conditions was slightly stronger than EPA. The rea-
son was that electric vehicles had stronger performance and greater acceleration. EPA 
was a product of many years ago, and the main collection of vehicle data was also 
different from the latest. It may have some differences from the actual test. However, 
EPA was still used by automobile companies, indicating that the error was within 
the acceptable range. In designing the experimental validation for the model, the 

Start

Data in Standardization

SVM 
Training

DGKNN
Training

Denoising

Result fusion

Forecast results

NormalizationPretreatment

End

Fig. 5 SVM optimization strategy
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experiments utilized multiple cycles of the NEDC structure. The vehicle’s maximum 
operating speed was set at 120  km/h, with an average speed of 36.01  km per hour. 
The entire experimental process took 3074 s, with sampling occurring every 0.1 s, as 
detailed in Table 1.

As shown in Table 1, the initial SOC value of the battery was set to 0.44. The experi-
ment used a genetic optimization based DGKNN for prediction. The input variables of 
the model included battery voltage (Vn − 1), battery current, and battery temperature. 
The output variable of the model was x(it). In terms of genetic optimization algorithms, 
the population size was set to 50 and the number of termination iteration steps was 50. 
And a correction constant MI was set, with a value less than 1.

The training environment of this experiment: CPU was Intel(R) Core(TM)i9-10920X, 
memory was 16G. The GPU was GeForce RTX 2080 Ti and the video memory was 11G. 
The operating system was Windows 64-bit, and the CUDA11.2 library file was installed. 
The development language was Python, Pytorch1.7.1 framework. Figure 6 showed the 
CPU usage of the proposed model. During the operation of DGKNN model, the CPU 
usage did not exceed 50%, and the average was 38.21%, which had low requirements for 
system hardware configuration. The optimization effect analysis was shown in Fig. 7.

Table 1 Experimental settings

Project Content

Experimental conditions Multiple cycles of NEDC

Maximum operating speed of the vehicle 120 km/h

Average speed 36.01 km/h

The entire process takes time 3074 s

Sampling interval 0.1 s

SOC initial value 0.44

Prediction model DGKNN based on genetic optimization

Model input variables Battery voltage (Vn − 1), battery cur-
rent, battery temperature

Model output variables x(it)

Number of population in genetic optimization algorithm N = 50

Terminate iteration steps F50

Correction constant MI < 1

0 2 4 6 8 10 12

10%

20%

0

40%

50%

30%

Time (h)

C
PU

 u
sa

ge
(%

)

Fig. 6 Computational complexity analysis
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Figure 7 illustrated that without the application of GA optimization, DGKNN’s initial 
prediction error was significant. Conversely, when the GA was applied, this error signifi-
cantly diminished. This observation strongly suggested that GA optimization was crucial 
in the application of DGKNN. Furthermore, with the optimization of weights through 
the GA, a substantial improvement was observed. The algorithm significantly reduced 
the error in the initial predictions, alleviating the stiffness observed in the DGKNN 
model without optimization. This enhancement boosted model performance, further 
enhancing the precision and practicality of prediction results. DGKNN prediction effec-
tiveness was detailed in Fig. 8.

Figure 8 showed a significant reduction in prediction error when DGKNN was used 
based on genetic optimization compared to Deep Neural Network (DNN) and Genetic 
models. This finding provided crucial reference information for research and design. 
Detailed analysis of prediction errors revealed the superiority of DGKNN after genetic 
optimization. Genetic optimization not only improved prediction accuracy within stages 
but also optimized accuracy in multi-stage predictions, reducing error fluctuations. In 
contrast, DNN and Genetic models exhibited lower fitting to the true value curve, with 
larger prediction error fluctuations. Genetic optimization-based DGKNN outperformed 
DNN and Genetic models in prediction errors, emphasizing the importance of genetic 
optimization in controlling prediction system errors. Prediction errors under different 
correction coefficients were outlined in Table 2.

In Table 2, considering the percentage error, the percentage error ranged from 0.1529 
to 0.3307. At a correction coefficient of 0.9, the percentage error reached its maximum 
value of 0.3307, indicating the maximum deviation of predicted results from actual 
values. Conversely, when the correction coefficient was 0.7, the percentage error was 
minimal, only 0.1529, indicating the highest accuracy of the model’s predictions at 
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this correction coefficient. Moving on to the mean absolute error (MAE), this metric 
fluctuated between 0.0324 and 0.068. At a correction coefficient of 0.9, the MAE was 
maximum at 0.068, signifying the largest average absolute error between predicted 
and actual values. However, at a correction coefficient of 0.7, the MAE was minimal at 
0.0324, indicating the smallest average gap between predicted and true values. Regard-
ing the Mean Square Error (MSE), a similar trend was observed, with the range fluctu-
ating from 0.0154 to 0.0607. The maximum value occurred at a correction coefficient 
of 0.9, while the minimum value was attained at a correction coefficient of 0.7, con-
sistent with the patterns observed in the previous two metrics. Finally, considering the 
RMSE, a standard measure of prediction error, its values varied from 0.1243 to 0.2464. 
The maximum RMSE was observed at a correction coefficient of 0.9, indicating larger 
fluctuations in predicted values. On the other hand, the minimum RMSE occurred at a 
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Fig.8 Analysis of DGKNN prediction effect

Table 2 Prediction error under different correction coefficients

Correction factor Error percentage Mean absolute error MSE RMSE

0.1 0.2078 0.0435 0.0236 0.1536

0.2 0.2289 0.0462 0.0314 0.1773

0.3 0.2614 0.0527 0.0381 0.1952

0.4 0.1733 0.0363 0.0172 0.1311

0.5 0.1789 0.0350 0.0156 0.125

0.6 0.1987 0.0405 0.0205 0.1432

0.7 0.1529 0.0324 0.0154 0.1243

0.8 0.2875 0.0572 0.0432 0.2079

0.9 0.3307 0.068 0.0607 0.2464
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correction coefficient of 0.7, suggesting relatively accurate prediction results. It is evi-
dent that, under a correction coefficient of 0.7, all four error metrics were minimized, 
indicating the highest accuracy of the model. The reason of the high prediction accuracy 
of DGKNN was that it took into account the influence of measurement noise and time. 
In addition, because the internal resistance, capacitance and other parameters of the bat-
tery were not easy to measure, it was very difficult to identify the parameters of other 
models. However, DGKNN adopted a neural network method to fit the parameter rela-
tionship inside the battery, which greatly simplified the process of parameter identifica-
tion and thus reduced the difficulty of modeling. Table 3 showed the difference between 
the MAE, MSE and RMSE of the DGKNN algorithm, AGA-UKF-EKF algorithm (Wu 
et al. 2023b) and ACHF algorithm (Serat et al. 2023).

From the RMSE data in the table, the DGKNN algorithm could effectively filter noise 
and better fit the actual working conditions of the battery. The smaller the ratio of the 
three pairs, the better the outcomes. The smaller the ratio indicated that the experimen-
tal model had better accuracy and could better predict the data. The average absolute 
error of the DGKNN algorithm was 0.32%, and the maximum error was 0.84%. Com-
pared with the errors of the other two algorithms, the error of the DGKNN algorithm 
in estimating the SOC of lithium battery was smaller, indicating that the improved algo-
rithm can estimate the battery capacity in real time and reduce the influence of capacity 
on the estimated SOC of the battery. Compared with other algorithms, the improved 
algorithm had higher precision and its results were more reliable.

Comprehensive model validation

The study compared the predictive effectiveness of four models for estimating the 
remaining capacity of lithium-ion batteries. These models included the research design 
model, Support Vector Regression Model (SVR), Genetic Algorithm-Backpropagation 
Model (GA-BP), and Particle Swarm Optimization-Adaboost Model (PSO-adaboost). 
The predictive results were illustrated in Fig. 9.

As shown in Fig.  9, four different models were compared in SOC prediction: the 
Research Design model, GA-BP model, PSO-adaboast model, and SVR model. Firstly, 
the Research Design model exhibited outstanding performance in SOC prediction. It 
achieved high accuracy, a well-fitting prediction curve, and minimal errors. This model 
accurately estimated battery states with high stability. Following that, the GA-BP model 
ranked second in prediction performance, closely following the Research Design model. 
Despite its slightly higher complexity, the GA-BP model demonstrated robustness and 
accuracy. Thirdly, the PSO-adaboast model ranked third in prediction performance, 
while the SVR model performed the least effectively. The main reason for this phenom-
enon was that the initial weights in DGKNN were random numbers. Although the GA 

Table 3 Comparison of estimated errors

Algorithm DGKNN AGA-UKF-EKF ACHF

MAE 0.0032 0.0042 0.0067

MSE 1.6105 ×  10−5 2.00773 ×  10−5 4.8521 ×  10−5

RMSE 0.00040 0.0046 0.0070
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has been optimized, the results of the GA itself had randomness, while the parameters 
of SVR had no random numbers. At the same time, compared with neural networks, 
FCDE-SVR had fewer requirements on the amount of data. Therefore, although the 
FCDE-SVR algorithm required a period of training, the algorithm was more complex, 
but stable with high precision. Error analysis was presented in Table 4.

As shown in Table 4, across all three data set levels, DNN exhibited the highest error 
percentages, MSE, and RMSE values. For example, in the large data set, its error per-
centage was 0.271, MSE was 0.111, and RMSE was 0.3334. This may indicate that DNN’s 
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Fig. 9 Comparison of prediction effect of different models

Table 4 Comparison of prediction errors of different models

Modeling methods Dataset level Error percentage MAE MSE RMSE

DNN Minor level 0.2654 0.1011 0.1085 0.3279

Middle level 0.2689 0.1025 0.1099 0.3315

Grand level 0.271 0.1032 0.111 0.3334

SVR Minor level 0.2035 0.0668 0.0068 0.0802

Middle level 0.2058 0.0702 0.0072 0.0846

Grand level 0.2093 0.0724 0.0075 0.0866

GA-BP Minor level 0.1901 0.0605 0.0053 0.0719

Middle level 0.1932 0.0631 0.0056 0.0746

Grand level 0.195 0.0648 0.0059 0.0768

PSO-adaboast Minor level 0.1913 0.0632 0.0058 0.0761

Middle level 0.1939 0.0654 0.0061 0.0782

Grand level 0.196 0.0665 0.0063 0.0793

Research model Minor level 0.1518 0.0503 0.0039 0.0604

Middle level 0.1542 0.0517 0.0041 0.064

Grand level 0.1561 0.0525 0.0042 0.0648
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predictive performance for these data sets was inferior to other models. In contrast, 
the Research model consistently showed the lowest error percentages, MAE, MSE, and 
RMSE across all three data set levels. For instance, the error percentage for the small 
data set was only 0.1518, and the RMSE was only 0.0604, highlighting the Research mod-
el’s superior predictive accuracy. As for the other three models (SVR, GA-BP, and PSO-
adaboast), their error metrics exhibited similar trends across small, medium, and large 
data sets. Generally, as the data level increased, the error metrics also increased, possibly 
due to a decrease in predictive accuracy with increased data complexity. For instance, 
in the small data set, GA-BP and PSO-adaboast had similar RMSEs, both around 0.07. 
However, in the large data set, GA-BP’s MSE increased to 0.0768, while PSO-adaboast’s 
increased to 0.0793. Considering these factors, the Research model outperformed the 
other models, indicating that its structure or parameter settings were more suitable for 
predicting this type of data. Table 5 showed the comparison of errors of different models 
at 6 different temperatures.

As can be seen from the table, the errors of all algorithms increased significantly at 
0  °C, because the battery activity decreased at a lower temperature, and the battery 
internal resistance increased, resulting in a cumulative increase in errors during the 
estimation process. Compared with other methods, the proposed model had obvious 
advantages. Especially at low temperatures, the accuracy of the model fluctuated the 
least compared with that at normal temperatures, which indicated that the algorithm 
proposed in this paper had better robustness at different temperatures. Battery state 
analysis is depicted in Fig. 10.

In Fig. 10, the Research Design model demonstrated real-time capabilities along with 
precise analysis and processing of battery operating parameters. These parameters 
include current, terminal voltage, temperature, vehicle speed, and battery power. Real-
time monitoring of these parameters not only aids in anticipating and preventing poten-
tial faults but also allows users to understand the battery’s usage conditions and take 
measures to improve battery performance and extend its lifespan. This helps users gain 
better insights into the status of electric vehicles and their batteries, ensuring the safe 
and efficient use of electric vehicles.

Results and discussion
In this paper, a DGKNN based on genetic optimization is proposed, which combines 
the advantages of both the neural network method and Kalman filter method. It uses 
the neural network method to fit battery parameters to simplify the parameter iden-
tification process of Kalman filter. The model is updated with Kalman filter to provide 
noise removal capability and robustness. At the same time, the initial error is greatly 

Table 5 Comparison of errors of different models at 6 different temperatures

RMSE − 10 °C 0 °C 10 °C 25 °C 35 °C 45 °C

EKF (Liu et al. 2023) 1.27 1.21 1.13 1.07 1.10 1.33

CKF (Cao et al. 2023) 1.35 1.19 1.16 1.04 1.11 1.38

UKF (Ly and El-Sayegh 2023) 1.36 1.24 1.09 1.08 1.15 1.29

Research model 1.22 1.15 1.05 1.02 1.09 1.27
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reduced by GA optimization. The results of this paper show that DGKNN’s predic-
tion effect is significantly better than that of the initial neural network, and DGKNN 
does not need to undergo long-term and large data training like the initial neural net-
work, which means that if the battery is replaced, the initial neural network will have 
to undergo long-term training, which will have a great blow to the practicality of its 
algorithm. This also means that DGKNN has an advantage over initial neural net-
works in real-time SOC prediction. Therefore, DGKNN based on genetic optimiza-
tion is a very suitable algorithm for SOC prediction.

In the selection of the correction coefficient, the research is obtained by compar-
ing and analyzing the known standard values and the measured results. When the 
deviation of the measured result is relatively large, the correction coefficient can be 
used to correct the measured data to make it closer to the real value. When the error 
of the measurement result is relatively large, the correction coefficient can be used to 
adjust the measurement data, reduce the error, and improve the accuracy and reliabil-
ity of the measurement. However, since the initial weights of DGKNN are obtained 
by the method of random generation before genetic optimization, both steps will lead 
to randomness of the weights, resulting in the generated weights being not fixed, and 
the results of each prediction will be different, which will make the algorithm unsta-
ble and the prediction effect will be good or bad. At the same time, the prediction 
effect of both charge and discharge data is not ideal.

In order to solve the problem of the DGKNN model, the FCDE-SVR algorithm is 
proposed. The algorithm forms clusters with different features through feature clus-
tering and data screening, which effectively reduces the amount of data and the 
extracted data features are more obvious, which is suitable for modeling. Using SVR 
as the sublearning machine of ensemble learning, each cluster is trained by SVR, 
and then each sublearning machine is integrated to get the final result. The method 

Fig. 10 Real-time change curve of each battery parameter
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obtains the feature relationship between data by combining density and distance, and 
updates the weights in the process of ensemble learning based on this, and realizes 
the selection of sub-data sets and the integration of the final prediction model.

Conclusion
In addressing the real-time prediction of the remaining battery capacity in electric vehi-
cles, this study aimed to design a SOC prediction model with high accuracy and stability. 
Combining the advantages of Dynamic Kalman Neural Network with GA and SVM, the 
research employed a fusion strategy to tackle the substantial demand for sample data 
and device hardware overhead. The results revealed that, with a correction coefficient of 
0.7, the predictive error percentage of the designed model in the study was minimized to 
only 0.1529%. The average absolute error reduced to 0.0324, while the RMSE decreased 
to 0.0604. When handling datasets of different scales, the designed model in the study 
consistently maintained an advantage in predictive accuracy. In the case of large-scale 
datasets, the error percentage was 0.1518, and the RMSE was 0.0604. Meanwhile, other 
models such as DNN, SVR, GA-BP, and PSO-adaboast exhibited relatively poorer per-
formance across various dataset levels, especially in the scenario of large-scale datasets. 
In summary, the SOC prediction model proposed in this study, based on DGKNN com-
bined with GA and SVM, demonstrates a significant advantage in accuracy and real-time 
performance. SOC estimation is not only affected by temperature, but also its accuracy 
is affected by the current remaining capacity. In SOC estimation, the default capacity is 
unchanged, while in the actual situation, the battery capacity is constantly changing with 
the temperature and the number of cycles, and the relative capacity of the battery can be 
calibrated in the future.
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