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Abstract 

Electric vehicles (EVs) are expected to be vital in transitioning to a low-carbon energy 
system. However, integrating EVs into the power grid poses significant challenges 
for grid operators and energy suppliers, especially regarding the uncertainty and vari-
ability of EV charging demand. Accurate forecasting of EV charging demand is essential 
for optimal power system integration, yet previous studies have often only consid-
ered point predictions that are inadequate for risk assessment. Therefore, this paper 
compares different probabilistic forecasting models for the short-term prediction 
of EV charging demand at various aggregation levels, using a large and novel data-
set of over 350,000 charging processes at more than 500 locations across Germany. 
The performance of both machine learning and deep learning methods is evaluated 
against a naïve benchmark model, and the impact of data availability on the forecast-
ing models is investigated. Further, the paper examines the effects of forecast accuracy 
on energy procurement, which has so far received minor attention in the literature. 
The results show that machine learning methods such as Ada Boosting and Random 
Forest yield robust results with a normalized root mean square error of 0.42 and 0.41 
and a mean absolute scaled error of 0.36 and 0.34 at the highest aggregation level. 
Furthermore, the results show the influence of different site compositions on the fore-
cast quality and how many charging points are likely to yield a robust forecast. Energy 
and fleet managers can use the described method to reliably predict the required 
energy quantities for fleets of sufficient size and procure them at low risk.

Keywords: Electric vehicles, Charging demand, Forecasting, Probabilistic, Machine 
learning, Deep learning, Aggregation level, Energy procurement

Introduction
Electromobility is in the fast lane. Significant obstacles to electromobility, such as range 
anxiety, battery life, and sustainability concerns, have been overcome, or work is under-
way to remove them (ev.energy 2023; Recurrent Auto 2024; Regett 2020; Wohlschlager 
et al. 2022). Global sales of electric vehicles amounted to around 10 million in 2022, with 
expected growth of over 30%, corresponding to about 14 million vehicles in 2023 (OECD 
2023). Ultimately, electromobility, in combination with smart charging, is helping us to 
integrate renewable energies into the system and thus reduce transport emissions vital 
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to meeting the EU’s climate neutrality objectives (Duscha et al. 2019). As a result, more 
electric consumers, such as electric vehicles (EVs) and heat pumps, will be added to the 
distribution grids. However, grid integration presents the energy sector with significant 
challenges (Gemassmer et al. 2021; Müller 2023). In contrast to electromobility’s needed 
grid capacity and regulatory challenges, the flexible storage capacity in electric vehicles 
offers considerable potential for the system and the users (Müller 2023; Kern 2023). 
Today, electric vehicles can contribute their charging flexibility by integrating renewa-
bles through smart charging, reducing costs and  CO2 emissions. In the future, bidirec-
tional electric vehicles can offer more flexibility by charging and discharging the battery. 
From an energy system perspective, this will happen in a cost-optimal way, with end cus-
tomers, in turn, earning money or reducing their charging costs through the flexibility 
they provide (Kern 2023).

The following work is therefore dedicated to comparing different forecasting models 
for the short-term prediction of the charging energy demand of electric vehicles and the 
effects of forecast accuracy on energy procurement.

Since time series forecasting has been a significant study area, numerous prediction 
approaches have been created. It is common to refer to forecasting techniques as statisti-
cal or machine learning-based. Nonetheless, because most machine learning algorithms 
rely on maximum likelihood estimators, they are also statistical. Barker (2020) defines 
structured and unstructured and notes that both categories still require clarification. 
Prior knowledge of the forecast’s target attributes is necessary for stochastic approaches. 
On the other hand, regression techniques are more data-driven and do not rely on prior 
information on the time series (Athiyarath et al. 2020). In the field of electric vehicles, 
many studies focus on predicting the energy demand of the battery, such as Shen et al. 
(2022), Mediouni et al. (2022), Chen et al. (2020), on the prediction of charging station 
occupancy, such as Ostermann et al. (2022), Aghsaee et al. (2023), Hecht et al. (2021), or 
the prediction of the charging load, using different methods and approaches.

For example, Xydas et al. (2013) proposed a support vector machines (SVM) model to 
forecast the EV charging demand using travel and driving patterns. They evaluate the 
accuracy of their method through a Monte Carlo forecasting technique and show that 
their SVM model has a mean absolute percentage error of 3.69% compared to 8.99% of 
the Monte Carlo model. Yi et al. (2022) use a long short-term memory (LSTM) model 
and a deep learning sequence-to-sequence (seq2seq) approach to forecast the monthly 
commercial EV charging demand. They use real-world datasets from the State of Utah 
and the City of Los Angeles to validate their models, showing that the seq2seq signifi-
cantly outperforms other models performing multi-step prediction (Yi et al. 2022). Zhu 
et  al. (2019) compare different deep-learning approaches to forecast the super-short-
term charging load of plug-in EVs. Their results of twelve examples on several time 
steps demonstrate that deep learning methods, primarily LSTM, obtain high accuracy 
in super-short-term plug-in EV load forecasting (Zhu et  al. 2019). As power suppli-
ers do not have information about factors affecting a single car, such as car type, SOC, 
drive behavior, and destination, Kim and Kim (2021) focused on forecasting daily energy 
consumption using historical charging data, weather, and day effects. They use statisti-
cal methods such as auto-regressive-moving-average (ARMA) and autoregressive inte-
grated moving average (ARIMA) and deep learning methods like the LSTM model using 
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past values and exogenous variables. Kim and Kim (2021) studied the importance of fea-
tures on three different geographic scales. At the same time, the discrepancies between 
the statistical and machine learning approaches were not distinct in the case of micro-
scale data with high variability (Kim and Kim 2021). Xie et al. (2011) use neural networks 
to forecast daily EV charging station load by training the model using similar historical 
data days. Majidpour et  al. (2016) compare forecasting of the EV charging load based 
on customer profiles and charging station measurements and show that both datasets 
yield comparable forecasting errors. The Customer profile-based prediction is faster due 
to less preprocessing. However, this data is prone to privacy invasion (Majidpour et al. 
2016). Their modified pattern sequence-based forecasting model has a symmetric mean 
absolute percentage error of 6.28% for the charging record and 7.85% for the station 
record. Besides models such as ARIMA and LSTM, Koohfar et  al. (2023) use a trans-
formers-based deep learning model to predict EV charging demand. However, they only 
forecast on a daily resolution. Van Kriekinge et al. (2021) apply a deep neural network 
to forecast the day-ahead charging demand of EVs in 15 15-min resolution. Additional 
features such as calendar and weather information reduce the root mean square error 
(RMSE) and mean absolute error (MAE) by 19.22% and 28.8%, respectively. Their final 
model has MAE lower than 1 kW for the day ahead horizon. While most studies focus 
on point forecasts, Buzna et al. (2021) explore a hierarchical probabilistic electric vehi-
cle load forecasting approach at low-level and high-level resolutions. Using real charg-
ing data, they demonstrate that their approach outperforms non-hierarchical methods 
in hour-ahead and day-ahead forecasting EV energy consumption and increases the 
skill of probabilistic forecasting up to 9.5%. Rathore et  al. (2023) use various machine 
learning models such as Random Forest, XGBoost, and neuronal network models to pre-
dict energy consumption by using the historical charging data of the EVs. Their RF and 
XGBoost models yield the best predictive results.

Energy and fleet managers are faced with the challenge of predicting the quantities of 
energy required to charge electric vehicles and subsequently procure them as cheaply 
as possible. However, previous studies have often only considered point forecasts, 
which need to be revised for a risk assessment. For energy and fleet managers and grid 
operators, for example, probabilistic forecasts can be advantageous as they show how 
confident the model is in its prediction. This information can be incorporated into the 
risk assessment. More than simply predicting the energy quantities probabilistically is 
required, as they also have to procure them as economically as possible on spot mar-
kets. The following paper, therefore, examines different procurement options based on 
the forecasts and considers the effects of forecast inaccuracies, which still need to be suf-
ficiently addressed in the literature to date. The basis for this work is a new data set with 
over 350,000 charging processes at more than 500 locations across Germany. So far, the 
literature has mostly only considered models for small or large fleets and the prediction 
of point forecasts. This paper compares models based on different charging point num-
bers and geographical aggregation levels and evaluates the prediction quality based on 
point and quantile forecasts. To ensure the comparability of the models, we use a naive 
benchmark model and relate our metrics to its results. In addition, to evaluate the prob-
abilistic predictive quality of the models, we give the pinball score (PS) and the interval 
score (IS). The forecast is done for the next 24-h horizon with a resolution of 15 min. In 
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addition, we use walk-forward validation to build robust models that come close to a 
real-world application. Furthermore, the influence of a shortened data set on the models 
is examined. In addition, a random composition of the sites is analyzed to provide infor-
mation on when a group composition yields better prediction results. A detailed analysis 
of the characteristics of these group compositions is performed. Therefore, we examine 
the effects of forecast inaccuracies on energy procurement and different procurement 
strategies in detail.

The paper is structured in the following way: in “Materials and methods” section, we 
describe the data set and the features used. Further, we explain the methodology of how 
we developed our models and which metrics we used to evaluate their performance 
on the task of predicting the charging load. Subsequently, the methodology for analyz-
ing the effects of forecast inaccuracies on energy procurement is presented. “Results” 
section details the model performance results for various aggregation levels, differ-
ent training lengths, the effects of random site aggregation, and energy procurement. 
Finally, “Discussion and conclusion” section presents the discussion of the results and 
the conclusion.

Materials and methods
We use data for our analysis from the charging and energy management system Charge-
Pilot, developed by The Mobility House. The data consists of over 350,000 charging ses-
sions from over 500 locations or sites. The data begins on 01.06.2022 and covers almost 
1 year of charging sessions until 06.05.2023. However, not all sites contain a year’s data, 
as they have only been added over time. Figure 1 shows the methodology for the first 
part of the paper.

The raw data consists of the attributes listed in Table 1. Not all obtained attributes are 
listed, only the ones essential for the analysis.

First, we check for errors in the data, such as the plug-out time before the plug-in time, 
unplausible charging powers, or missing values. However, the data did not show any 
of those errors. Next, we transform the charging sessions into a time series format of 
15-min resolution per charger while we round the plug-in and out time to the nearest 
quarterly hour. We assume that the electric vehicle is charged at its maximum charg-
ing power upon being plugged in, and the charging power is then reduced to zero once 
the targeted energy consumption is reached. Adding up the time series of every charger 
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from one site yields the 15-min resolution charging power time series per site, which 
serves as our target variable. We use the following features for each of these as input for 
the models described in Table 2.

The first two added features facilitate identifying trends and patterns in the data over 
a weekly or daily time frame while accounting for the specified lag. The third and fourth 
features help capture trends and patterns in the data over specified time intervals. We 
initially included several lag features. However, correlation analysis has shown that the 
ones in Table 2 had the highest correlation regarding the target variable. If the corre-
sponding date is a public holiday in Germany, the feature is assigned 1; otherwise, it is 
0. Furthermore, we extracted the days of the week from the timestamps (Mon–Sun) and 
used one-hot encoding to convert the categorical variables into numerical ones. Jump 
discontinuities are a problem for machine learning algorithms using cyclical data. There-
fore, we took cyclic feature encoding into account for periodic patterns in the time of 
year and time of day features in the final step of data preparation. A simple method is 
dividing the features into sine and cosine parts. Since we use a rolling 1-week feature, 
the input data for the models starts on 08.06.2022. We used German weather data as 

Table 1 Data fields of the raw charging session data

Attribute Description

Timestamp Timestamp in UTC 

Plugin time The time when the EV is connected

Plug out time The time when the EV is disconnected

Duration Plugin duration in h

Site ID Site identification

Number of chargers The number of chargers for the site

Number of charging points The number of charging points for the site

Site fuse limit The fuse limit of the site in W

Postal Code The first two digits of the postal code

TSO zone Transmission grid operator zone

Charge power max Maximal charge power of the session in W

Energy consumed Charged energy during the session in Wh

Table 2 Included features

Attribute Description

Power rolling week mean Rolling mean considering a lag of 1 week, using a rolling window size of 1 week

Power rolling day mean Rolling mean considering a lag of 1 day using a rolling window size of 1 day

Power week lag 3 h mean Rolling means considering a 1-week lag, using a rolling window size of 3 h

Power day lag 3 h mean Rolling mean considering a lag of 1 day, using a rolling window size of 3 h

Site fuse limit The fuse limit of the site in W

Number of charging points The number of charging points for the site

Holiday Categorical encoded; 1 if German holiday, 0 if not

Weekday Categorical encoded weekdays

Sine time of year Encoded cyclical continuous feature time of year with sine

Cosine time of year Encoded cyclical continuous feature time of year with cosine

Sine time of day Encoded cyclical continuous feature time of day with sine

Cosine time of day Encoded cyclical continuous feature time of day with cosine
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an input feature on a subsample of the data. However, this did add additional value nor 
showed forecast accuracy improvement. Other studies suggest using weather data as an 
input feature. Therefore, using regional weather data might further improve the forecast.

To compare the effect of various fleet sizes and aggregation levels on the prediction quality, 
we aggregate the time series per (A) site on (B) postal code, (C) TSO zone, and (D) portfo-
lio, meaning all combined levels. For (A) and (B), we chose five different sites and five postal 
codes. The five sites have 3, 4, 8, 14, and 145 charging points. Further, for (E), we randomly 
sample from all sites to investigate the effect of random group compositions and different fleet 
sizes further. This is done for various group sizes in the range 10, 15, 20, 25, 30, 40, 50, 75, and 
100. The random sampling is done 100 times per group size.

Next, we split the data into training, validation, and test sets in the following ratios: 
75%, 15%, and 10%. To investigate the effect of less available data, we limit the length of 
the data set to the following starting dates: 01.09.2022, 01.12.2022, and 01.02.2023. By 
manually setting the start of the test set to 04.04.2023, we ensure that the models trained 
with a shortened data set are compared on the same test set. However, this analysis is 
limited to the aggregation levels (A)–(D) due to computational restrictions. Classical 
tree-based machine learning models could be better at extrapolating unseen data. To 
account for this, we normalize the charging power per charge point by dividing it by the 
number of charge points to accommodate the trend or increase in the energy charged 
by additional charge points and sites. In addition, this allows us to visualize the charging 
power, as otherwise, there would be concerns about commercial confidentiality.

As a benchmark model, we use a naïve model (Naïve WD Mean), which takes the 
average of the weekday in the according quarterly hour. We use the following machine 
and deep learning models for our analysis: Linear Regression (LinR), Bagging, Gra-
dient Boosting (GradientB), Ada Boosting (Ada), Random Forest (RF), convolutional 
neural network (CNN), neural network (NN), and long short-term memory (LSTM). 
The underlying concepts of the models are described in detail in Breiman (2001), Fre-
und and Schapire (1996), Friedman (2002), Hatalis et al. (2017), Wang and Raj (2017), 
Sharkawy (2020). The models were selected to encompass various machine learning 
and deep algorithms. While LinR represents a relatively simple linear model, RF and 
Bagging are non-linear tree-based ensemble learning techniques. Further, we include 
the non-linear tree-based models Ada and GradientB, which use boosting. The NN 
architecture represents one of the simpler deep learning models. CNNs were first 
developed to analyze pictures; they can also be used to predict time series. Due to 
their particular architecture, LSTMs know when to memorise and when to ignore 
past information and therefore, are widely used in time series forecasting. We used 
the Python sci-kit learn implementations for the machine learning models and imple-
mented the deep learning models in PyTorch (Pedregosa et  al. 2012; Paszke et  al. 
2019). Deep learning models have the innate capacity to recognize and retain pat-
terns over a wide range of time scales, unlike typical machine learning models that 
could depend on manually designed lag characteristics to account for temporal pat-
terns. Because of several attributes, deep learning models can independently manage 
temporal dependencies and create additional features. The basic NN model comprises 
three linear layers with dropout applied after the initial layer. ReLU functions are 
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activation functions between the layers, a pattern retained in subsequent models. The 
LSTM model features an LSTM layer with dropout, succeeded by two linear layers. In 
the CNN model, two convolutional layers with a kernel size of four are followed by a 
max-pooling layer, concluding with two linear layers.

Due to the temporal structure of the data, hyperparameter tuning—a critical step in 
maximizing the performance of machine learning models—becomes more difficult in 
the context of time series forecasting. In time series forecasting, the walk-forward val-
idation technique is frequently employed to mimic real-world situations in which the 
model is trained on past data and subsequently evaluated on future data points. First, 
the model is trained using historical data. As our prediction horizon is 24  h, we pre-
dict the first day of the validation set and compare the predicted value with the actual 
value for the current time step using the performance metric mean squared error. Next, 
we move the time window to 24 h and update the training set with the actual values. 
For the subsequent time step, we repeat the training and prediction procedure and fol-
low this step-by-step procedure, updating the model iteratively and assessing its effec-
tiveness at every turn. This procedure is also used for the testing. We apply different 
combinations of hyperparameters using a grid search by validating each set of hyperpa-
rameters through the walk-forward validation process, calculating the average perfor-
mance across all time steps. The combination of hyperparameters that produces the best 
overall performance is then selected. We test our final model on the test set not used 
for hyperparameter optimization to assess the model’s generalization performance. The 
hyperparameters used for the grid search are listed in Table  5. Due to computational 
limitations, we apply this procedure only to aggregation levels (A)–(D). Furthermore, 
the deep learning models are not subjected to hyperparameter tuning due to computa-
tional costs, limiting their full potential. We use the 5 and 95% quantiles to calculate the 
quantiles. In boosting models that optimize individual estimators, quantile predictions 
were derived by extracting quantiles from the estimators. This approach is also suitable 
for Ada, where the quantiles need to consider the weights of the estimators. However, 
this quantile estimation method is not feasible for models optimizing the entire ensem-
ble based on a specified loss function, such as Gradient Boosting. In these instances, the 
model must be trained with a different loss function, and the pinball loss was chosen for 
making quantile predictions. This is true for deep learning models as well.

We evaluate the models based on the following evaluation metrics: root mean 
squared error (RMSE), normalized RMSE (nRMSE), mean absolute error (MAE), 
mean fundamental scaled error (MASE),  R2, pinball score (PS), and interval score.

The Mean Absolute Error (MAE), is one of the most used error measurements and 
is referred to as (Hyndman and Athanasopoulos 2021):

where n is the number of observations and  yi defines the actual value, and ŷi is the mod-
el’s prediction. Another frequently used metric is the RMSE, which is defined as (Hynd-
man and Athanasopoulos 2021):

(1)MAE =
1

n

n

i=0

|yi − yi|,
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The nRMSE is a frequent statistic for assessing a predictive model’s accuracy, espe-
cially in regression analysis or forecasting. It offers a relative measurement of the error 
between expected and actual values and is a normalized form of RMSE. The MASE is 
often used to evaluate a forecasting model’s accuracy and is the normalized form of the 
mean absolute error. We normalize based on our Naïve WD Mean model, meaning that 
values above 1 are worse than the benchmark model and below one are better than the 
benchmark model. This makes it easier to compare our model’s performances. The  R2 
is frequently employed to measure the regression model’s goodness of fit since it shows 
how well the model’s predictions correspond with the actual data, where one is a perfect 
fit. Zero indicates that the model does not explain any of the variability in the target vari-
able. According to James et al. (2021), R2 is defined as:

where ȳ is the mean of the target. Let τ be the target quantile and q̂i,τ , the quantile fore-
cast, then the PSτ, which evaluates the upper and lower quantile separately, and accord-
ing to Koenker and Machado (1999), can be defined as:

The PS is a metric that quantifies the difference between the actual and anticipated 
quantile value, weighted according to the quantile level. It evaluates the prediction inter-
val’s accuracy, with various quantiles generating distinct values. Better model perfor-
mance is indicated by a lower PS, which penalizes deviations from actual values within 
the predicted quantile range less severely. Another metric to assess probability fore-
casts is the Interval Score (IS), which considers the width of the prediction interval, also 
known as sharpness (Hatalis et al. 2017). The IS is typically used with the PS to assess the 
prediction model’s total predictive uncertainty because it cannot adequately characterize 
the dependability of the prediction interval (Hatalis et al. 2017). The narrower the inter-
val and closer to the actual observations, the smaller the interval score.

Figure 2 shows the methodology for the second part of this work, in which we examine 
the effects of forecast inaccuracies and different trading strategies on energy procure-
ment based on the German energy market. For the analysis, we use the German hourly 
day-ahead energy price, and for the intraday prices, we use the ID1 and ID3 prices from 
the ENTSO-E Transparency Platform (2024).

Based on the time series for the entire portfolio, we create a model for day-ahead (DA) 
procurement and two models for intraday procurement. The models differ in terms of 
their input features, the starting point of the forecast, the forecast horizon, and the res-
olution. In Germany, the day-ahead auction closes at noon for the next day, whereby 
hourly products can be traded. In continuous intraday day trading, 15-min products can 
be traded up to 5 min before the start of delivery. The DA model has an offset of 12 h to 

(2)RMSE =

√√√√1

n

n∑

i=0

(
ŷi − yi

)2
.

(3)R
2 = 1−

∑n
i=0

(
ŷi − yi

)2
∑n

i=0

(
y− yi

)2

(4)PSτ (yi, q̂i,τ ) =

{ (
yi − q̂i,τ

)
τ , if yi ≥ q̂i,τ(

q̂i,τ − yi
)
(1− τ ), if q̂i,τ ≥ yi
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the start of the forecast, a forecast horizon of 24 h, and an hourly resolution. The day-
ahead model is designed so that it does not contain any lag features that provide the 
model with information from future observations, thereby preventing data leakage. The 
12 h offset results from the gate closure of the day-ahead market, where we assume that 
the forecast and actual trading are instantaneous. The hourly resolution results from the 
hourly traded products. Thus, the day ahead model represents the best possible forecast 
to buy the hourly products for the next 24 h on the day ahead market. The intraday mod-
els have (a) a lag of 1 h, a forecast horizon of 1 h, and (b) a lag of 15 min and a forecast 
horizon of 15 min. Both intraday models have an additional 1-h lag feature as input and 
a resolution of 15 min. The intraday model b was chosen because it represents the best 
possible model with a resolution of 15 min. Since our time series is based on a 15-min 
resolution, it makes no difference whether we assume a 5-min or 15-min lag, as the last 
point in time or the last actual value is available to the model as information. The intra-
day model a was chosen to match the day ahead’s hourly products with the hourly fore-
cast horizon and to have a worse comparison model than b. Since the model has a lag 
of 1 h, it has less information available than the b model. The energy procurement pro-
cess is as follows. We buy the energy amount forecasted from the DA model for various 
quantiles for the respective hours for the next day to the given day-ahead price. Next, we 
buy or sell (a) 1 h or (b) 15 min before delivery, depending on the intraday model a or b 
the difference from the predicted intraday value compared to the DA forecast to balance 
the energy according to the ID1 and ID3 intraday-price. The ID1 index is the weighted 
average price of all continuous trades completed within the last trading hour, and for 
the ID3, the previous 3 h are taken into account. Thus, we get the total energy procure-
ment costs on the spot market for the energy per charge point in the portfolio during the 
test set. Afterward, we compare the actual values with the predicted ones to assess how 
much balancing energy would be needed to cover the difference. The balancing group 
managers in Germany are obliged to minimize their balancing group deviation. They 
must refrain from strategically exploiting the balancing energy; otherwise, there is a risk 
of high penalties. Therefore, we only examine the effects on the amount of energy that 

1155 mmiinn ttiimmee sseerriieess
ddaattaa ppeerr ppoorrttffoolliioo

Day ahead model:
• Lag features excluded
• 12 h lag to forecast start
• 24 h horizon
• 1 h resolution

Intraday models:
• Extra 1 h Lag feature included
• 15 min and 1 h lag to forecast start
• 15 min and 1 h horizon
• 15 min resolution

End Day-Ahead
Auction

t – 12 h
Start Cont. 

Intraday

1 h slot
t – 9 h

15 min slot:
t – 8 h

t

t + 0,25h … t + 0,5 h … 

t + 24h

Lag = 12 h t + 1 h … t + 2 h … 
Day Ahead

Model

Lag = 1 h

Lag = 15 min

Intraday 
Models

Fig. 2 Methodology for analyzing effects of forecast inaccuracies on energy procurement



Page 10 of 25Ostermann and Haug  Energy Informatics            (2024) 7:13 

must be balanced by the balancing energy, which should be as low as possible and not 
on the associated costs or revenues resulting from the balancing energy price and the 
amount of energy. However, in other European Countries, incorporating the balancing 
market into the strategy would be possible.

Results
The first part of this section reports the results of the various models based on the dif-
ferent aggregation levels. The second part of this section describes the outcomes of the 
energy procurement.

Model performance for various aggregation levels

This section compares the results of the different forecasting models described in the 
previous sections. The presented results correspond to the model’s performance on the 
test set. The test set starts on 04.04.2023 at 00:00. It ends on 06.05.2023 at 23:45. The 
predictions are made at midnight with a 24-h horizon and 15-min resolution. Figure 3 
shows the power per charging point in kW for (A) a random site, (B) for all sites in the 
zip code, (C) in the TSO zone, and (D) aggregated for all sites during the test set.

The power per charging point for the site displayed on top has high peaks during the 
day on the weekdays. During the night and the weekends, no charging events occur. The 
site shown in A, is also dominant at the ZIP code level B, as the time series are similar 
but not identical. For example, small charging events can be seen on Mondays and Sun-
days. The aggregation at the TSO level differs significantly from that at the ZIP code 
level, where charging power is already very regular. Comparing the TSO zone with the 
aggregation of all sites, it is noticeable that the charging power is smoothed out even 
further in the afternoons and on the weekends. Further, the factor of simultaneousness 
decreases with higher aggregation. Assuming an average charging capacity of 11 kW, the 
factor of simultaneousness is around 10%.

Fig. 3 Power per charging point for different aggregation levels during the test set
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Figure 4 shows the actual power per charger in W for the entire portfolio in yellow, 
the predicted power of the Ada model in blue, and the 95% quantile in light blue for the 
test set. Overall, the forecast follows the real power, and the 95% quantile also follows 
the real power with a low dispersion with a few exceptions. Large quantile deviations 
on 10.04.2023 and 01.05.2023 are noticeable. Nevertheless, the prediction is close to the 
actual value. This can be explained by the fact that both days are national holidays in 
Germany, and this information is available to the models as a feature. However, as we 
have no annual data available, the model is uncertain, as can be seen from the deflection 
of the quantile.

Figure 5 shows the nRMSE (top) and the MASE (bottom) as a boxplot for the different 
aggregation levels and the various models. The models are arranged from left to right, as 
shown in the legend from top to bottom.

Almost all models have values above 1 for the MASE and nRMSE for both the indi-
vidual sites and the zip codes, which means that the benchmark model is better in some 
cases. Looking at the MASE and the nRMSE of the models for the TSO zones and the 
entire portfolio, it becomes clear that aggregation significantly increases the prediction 
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quality. Bagging, Ada, and RF have the most favorable MASE and nRMSE. Table 3 lists 
the metrics for the models for the portfolio. The best value is marked in bold, and the 
second best is underlined. The other model metrics for the different aggregation levels 
are listed in Tables 6, 7, 8.

The ensemble models Bagging, Ada, and RF excel in accurate point predictions, 
reflected by low nRMSE and MASE, and exhibit robust quantile prediction, as evidenced 
by the comparatively low PS. The Ada model has the lowest rRMSE with 0.355, the low-
est PS for the high Quantile with 2.767, and the RF the lowest MASE with 0.411 and 
R2 with 0.954. Furthermore, these three provide narrower prediction intervals, as indi-
cated by lower IS. The three deep learning models demonstrate moderate performance 
in point prediction, with the CNN having the lowest amongst them with 0.538, which 
is significantly better than the benchmark and better than the LinR. However, they are 
worse than the ensemble models, indicating a potential need for further refinement in 
capturing underlying patterns. Since we have chosen our hyperparameters to cover as 
wide a range as possible, but not every model has an oversized hyperparameter space, 
some models may be at a disadvantage. Specifically, looking at Table 5, this can be seen 
in the number of estimator parameters; for example, our RF model has a range of 500, 
750, and 1000, GradientB 50, 100, 150, 200, 250, 300, 350, and Ada 10, 50, and 100. Large 
numbers of estimators often lead to overfitting. The models may have yet to reach their 
full potential and can achieve even improved results depending on the aggregation level. 
The fact that Ada and RF performed best in the overall portfolio does not necessarily 
mean that these two are generally the best. In particular, a variety of test pipelines that 
test different feature compositions, such as weather data, different lag features, district 
specific holidays, but also, for example, different encoding strategies for the cycling 
time features and weekdays, in combination with larger hyperparameters, would pos-
sibly improve the performance of all models. But these steps were limited by the lack 
of computational power. Further, the deep learning models face challenges in accurately 
predicting quantiles, reflected by higher PS. As mentioned in “Materials and methods” 
section, we did not fully fine-tune and optimize the deep learning architectures; there-
fore, doing so may enhance their predictive capabilities. Comparing the results of the 
individual sites (see Table 5), it is noticeable that only the values of site E with over 100 
charging points are significantly better than those of the naive model. While sites A, B, 

Table 3 Metrics for the models based on portfolio level

Best result bold, second underlined

*Unitless, **in %, ***in W

Model nRMSE* MASE* R2** PS low Q*** PS high Q*** IS***

LinR 0.883 0.777 0.788 – – –

Bagging 0.432 0.358 0.949 1.815 2.815 133.882

GradientB 0.508 0.498 0.930 3.526 4.156 203.921

Ada 0.418 0.355 0.952 1.866 2.767 147.959

Random Forest 0.411 0.374 0.954 2.843 4.474 95.621
LSTM 0.610 0.603 0.899 37.899 76.411 150.056

CNN 0.630 0.538 0.892 42.207 71.183 140.144

NN 0.609 0.627 0.899 115.093 95.773 247.339
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and D all have a MASE greater than 1, some models at site C achieve a better value than 
the benchmark. It is interesting to note that, on the one hand, the site has fewer charg-
ing points than site D. On the other hand, the CNN model for the MASE and the LSTM 
for the nRMSE achieve the best values, although they perform worse than the machine 
learning models at the other aggregation levels.

In conclusion, Bagging, RF, and Ada perform best; they are particularly good at quan-
tile estimation and point prediction with narrow prediction intervals. The deep learning 
models (LSTM, CNN, and NN) show moderate performance with room for improve-
ment, especially regarding quantile prediction and narrow prediction interval widths. 
Comparing the results of Tables 6, 7, 8, finer aggregation levels (like zip code and site 
level) tend to pose more challenges for the models. The ensemble models Bagging, 
GradientB, and Ada maintain their robust performance across different aggregation 
levels, while RF shows performance degradation, indicating challenges in handling finer-
grained data. The same is true for the deep learning models, as they exhibit more sensi-
tivity to data granularity. The choice of the best-performing model may depend on the 
specific aggregation level and the trade-off between computational efficiency and pre-
dictive accuracy.

Model performance for different training lengths

To investigate the influence of available data on the prediction performance, we train the 
models on different data lengths. Figure  6 displays the nRMSE (top) and MASE (bot-
tom) as a boxplot for the models over all aggregation levels for different start dates of the 
training set. The start date 08.06.2022 represents the results for the complete data set 
described in “Model performance for various aggregation levels” section. As mentioned 
in “Materials and methods” section the test set is the same for all data lengths and mod-
els to ensure comparability.

Comparing the different start dates, it is initially noticeable that the deep learn-
ing models perform particularly poorly with a start date of 01.02.2023. All models 
perform better with more data, although the dynamics and behavioral patterns can 
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change due to adding charging stations at individual sites. However, a certain satu-
ration can be observed, as the minimum values of the models with the start date 
08.06.2022 do not improve significantly compared to 01.09.2022. It would be inter-
esting to investigate whether a further significant improvement occurs if more his-
torical data is added, for example, to map seasonality. Unfortunately, however, we 
do not have more data. Shorter data sets can lead to overfitting, but the training is 
less computationally expensive and requires fewer computational resources. This is 
of particular importance when implementing real applications. Overall, it remains a 
case-by-case decision whether the simple benchmark model is superior to machine 
learning models in the case of limited historical data.

Analysis of random site aggregation

By forming random groups of different sizes from all the sites and aggregating them, 
we further investigate the influence of different fleet sizes and the number of charging 
points on the prediction quality. The random group sizes consist of 10, 15, 20, 25, 30, 
40, 50, 75, and 100 sites, and the random draw is repeated 100 times. We thus formed 
a total of 36,500 different group compositions. We formed random groups of different 
sizes from all the sites, aggregated them, and then used them as input for the models 
to investigate the influence of fleet size and the number of charging points on the 
prediction quality. We formed the random group sizes of 10, 15, 20, 25, 30, 40, 50, 75, 
and 100 and repeated the random draw 100 times. We thus formed a total of 36,500 
different group compositions. Due to the large number, we did not use hyperparam-
eter tuning for the randomly composed time series. We only used the Ada model for 
the analysis based on the previous results, as it was among the best. Figure 7 shows 
the nRMSE (a) and MASE (b) for all different group compositions according to their 
number of charging points and frequency distribution.

Looking at the frequency distribution, it becomes clear that the benchmark model is 
only superior to the Ada model in a few exceptional cases when grouped according to 

Fig. 7 Hexplot for nRMSE (a) and MASE (b) for different group compositions according to their number of 
charging points
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the abovementioned quantities. Most groups have several charging points between 150 
and 400 and a MASE or nRMSE of 0.8 to 0.55. Although the MASE and nRMSE drop 
significantly with increasing charging points to around 0.5, a few group compositions 
perform poorly despite many charging points. The group with a MASE and nRMSE of 
about 0.65 at 900 charging points is particularly striking. At the same time, however, ran-
dom group compositions achieve an nRMSE or MASE of 0.55 or less with just around 
200 charging points.

The question, therefore, arises as to which the remarkably predictable groups exhibit char-
acteristics and whether these can be determined in advance. Charging point operators or 
aggregators could ensure their balancing groups are grouped to meet this characteristic. To 
investigate this question, we used a Wavelet analysis to examine the time series of a group 
composition with ten sites with an nRMSE of over one and one with an nRMSE of 0.55. 
Wavelet analysis is a mathematical method that breaks down signals or functions into their 
frequency components for analysis. Instead of conventional Fourier analysis, Wavelet analy-
sis records both frequency and temporal localization. It analyzes data at various scales and 
reveals features at varied resolutions by using tiny, wave-shaped functions known as wave-
lets. This allows the identification of fleeting features in the data. Wavelet analysis is a potent 
tool for deciphering and obtaining information from complicated signals. It has applications 
in many domains, such as signal processing, image analysis, and compression methods. The 
wavelet analysis also has the advantage that the dynamics of charging behavior, which change 
to some extent over time, are visible. Figure 8 displays the resulting wavelet plot of the wavelet 
analysis while the y-axis depicts the frequency in days, and the x-axis represents the time for 
the group of tens with a nRMSE of 0.55 (a) and above one (b). The yellow areas highlight the 
occurrence at specific times and frequencies and illustrate how the frequencies contribute to 
the signal.

The left wavelet plot shows a strong periodicity of 1 day and 7 days. It can also be seen 
that the signal is weaker at the beginning and increases from September onwards. In 
addition, the period around Christmas is recognizable in which the periodicity visibly 
decreases. The right-hand wavelet plot initially shows little periodicity, especially around 
November 2022. From the end of January, an increased daily and weekly periodicity can 
be seen, but more clearly separated than in plot (a). This is because some of the sites 
were only integrated into the load management system at this time. The displayed wave-
let plot thus enables a quick and easy visualization to analyze possible patterns, tran-
sients, and frequency components within the signal across different scales. The plot also 
shows that a shorter data set might lead to better results for the group composition (b).

It is advantageous for energy providers if the portfolio is as extensive as possible. 
However, energy and fleet managers require a location-specific forecast. In the case of a 
charging management system, a charging station-specific forecast is required. Whether 

Fig. 8 Wavelet plot for a group of ten sites with a nRMSE of 0.55 (a) and above one (b)
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a single location or a group composition can be predicted well can be estimated by look-
ing at the wavelet plot, as described above. On the other hand, the correlation between 
the lag features and the charging load can be determined with the help of a correlation 
analysis. If these correlate strongly, it strongly indicates that the location or group com-
position can be predicted with improved accuracy.

Energy procurement

As described in “Materials and methods” section, we use two intraday models and a 
day-ahead model with a 12-h offset and 60-min resolution to examine energy procure-
ment on the day-ahead and intraday markets. For this analysis, we use the median of the 
model predictions. The testing period is the same as mentioned in “Model performance 
for various aggregation levels” section. The day-ahead model has an MAE of 26.39 W/
charger and an RMSE of 53.30 W/charger. The intraday model with an offset of 60 min 
(intra60) and resolution of 15  min has an MAE of 15.67 W/charger and an RMSE of 
35.77 W/charger, while the intraday model with an offset of 15 min (intra15) and resolu-
tion of 15 min has an MAE of 13.94 W/charger and an RMSE of 29.33 W/charger.

Figure 9 shows the day ahead price in red, the intraday ID1 price in blue, and the bal-
ancing price in orange.

The upper graph shows only the day-ahead and intraday price, while the lower graph also 
shows the balancing price, with the y-axis scaled differently. The day-ahead price shows no 
significant outliers and ranges between − 8.82 and 207.92 €/MWh. The intraday price, on 
the other hand, shows a significantly more extensive range of − 1323.6 and 595.71 €/MWh. 
Looking at the chart below, it is clear that the balancing price shows even more significant 
outliers. Here, the minimum value is − 6082.56, and the maximum is 9853.34 €/MWh. For 
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example, if a trader had bought the required charging energy on the day-ahead market on 
10.04.2023 at 11:00, he would have received €8.82 for each MWh. On the intraday market, 
it would be €252.96 at 11:00, and €1323.6 at 11:45 for each MWh consumed. At the same 
time, a MWh would have cost €65.54 on the day-ahead market and €14.71 on the intraday 
market at 17:00 on the same day. On 11.04.2023 around 06:00 a.m., however, the day-ahead 
price is significantly below the intraday price. The price range here is just under €370/
MWh. At the same time, the balancing price was just under €690/MWh—every additional 
MWh required and not previously procured leads to considerable additional costs. The 
gap becomes even more extreme at 19:00, as the balancing price here is just under €7600/
MWh, which is around 54 times higher than the day-ahead price at the same time. If the 
forecast is significantly too low at these times and too little energy is procured, this leads 
to considerable additional costs. Procurement purely on the intraday market would lead 
to significantly higher costs here. These enormous fluctuations clearly show the potential 
of smart energy procurement and the additional flexibilization of loads, for example, by 
postponing charging processes. For the entire portfolio, the procured amount results in 
144.96 kWh of charging energy per charger in the test period. First, we assume that we 
have perfect foresight and purchase all the necessary charging energy once entirely on the 
day-ahead market and once completely on the intraday market at the ID1 and ID3 prices. 
This results in the following electricity costs for charging per charger: day-ahead € 15.87, 
intraday ID1 € 16.24, and Intraday ID3 € 16.17. Table 4 lists the results. This makes it clear 
that for the test period, it would be most cost-effective on average to procure all energy on 
the day-ahead market if one knew in advance exactly how much energy one would need, 
which in reality is not the case when procuring charging energy for a portfolio.

In the test period, procuring as little energy as possible would be financially advanta-
geous, as the balancing energy price is primarily negative. As explained in “Materials and 
methods” section, it is not permitted to systematically and deliberately exploit balancing 
energy to gain financial advantages in Germany. If this were permitted, it would be pos-
sible to speculate on the negative price peaks with a certain degree of risk by procuring 
very little energy at this time. The negative price peaks would lead to such large profits 
that it would be cheaper overall than procuring on the day-ahead market, which is valid 
for the test set and the whole data period. Therefore, in the following, we look not at the 
total costs, including the balancing price, but at the influence of the two intraday mod-
els on balancing energy, as the amount must be minimal. The costs for procurement on 
the day-ahead market due to the day-ahead forecast per charger are € 15.637. After the 
purchase or sale of the deviation from the forecast of the intra60 model, the additional 

Table 4 Results for energy procurement

*in € per charger, **in kWh per charger

Model Day-ahead costs* Intraday ID1 and 
ID3 costs*

Total costs ID1 and ID3* Balancing 
energy**

Intra60 15.637 0.227 | 0.211 15.865 | 15.850 12.40

Intra15 15.637 0.360 | 0.340 16.000 | 15.978 9.74

Intra15-5% improved 15.637 0.363 | 0.343 16.001 | 15.980 9.25

Intra15-10% improved 15.637 0.366 | 0.346 16.004 | 15.983 8.76

Intra15-15% improved 15.637 0.369 | 0.349 16.007 | 15.986 8.28

Intra15-20% improved 15.637 0.371 | 0.351 16.009 | 15.989 7.79
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costs per charger are € 0.227 for the ID1 and € 0.211 for the ID3, resulting in energy costs 
per charger of € 15.865 and € 15.850. As a result of the more accurate forecast of the 
intra15 model, more energy has to be procured, ultimately leading to higher costs. For 
the intra15 model, the costs per charger amount to € 0.36 for ID1 and € 0.34 for ID3 total-
ing € 16.00 and € 15.98. However, balancing energy quantities per charger of 12.40 kWh 
are required for the intra60 model and only 9.74 kWh for the intra15. To investigate the 
impact of a more accurate intraday forecast on costs and balancing energy, we reduced 
the error of the intra15 forecast by 5, 10, 15, and 20% compared to the actual value. The 
following costs in € per charger for intraday ID1 procurement result for the adjustment: 
0.363, 0.366, 0.369, and 0.371. The total balancing energy in kWh per charger amounts 
to: 9.3, 8.8, 8.3, and 7.8. Thus, a reduction in the necessary balancing energy of 20% only 
increases intraday procurement by 3%. About the total costs, the additional costs are even 
less than 0.1%. In addition, this avoids the risk of compensating for the sometimes highly 
high balancing energy prices, such as on 20.04.2024. The average expected value of the 
forecast must be used for intraday procurement, as otherwise there is a strategic over- or 
under-procurement and thus an exploitation of the balancing energy price. To examine 
the effects of under- or over-procurement on the day-ahead market, we use the 5% and 
95% quantile of the forecast of the day-ahead model and then procure the difference on 
the intraday market again. In this case, our analysis shows that it is more favorable for 
our predicted load energy in the test period to procure the lower quantile and then sell or 
buy the difference than to buy the upper quantile and then sell/buy the difference. How-
ever, the difference in the resulting total costs is less than 1%. In order to procure energy 
with as little risk as possible, energy and fleet managers should purchase the average fore-
cast energy on the day-ahead market. Static procurement of charging energy results in 
lower costs on the one hand. On the other hand, they are not forced to buy or sell large 
quantities in the event of significant fluctuations in the intraday market. In particular, 
large quantities to be balanced out can exacerbate the price difference in situations with 
little liquidity. It is crucial to make the intraday volume forecast as accurate as possible 
because, as shown, the costs only increase marginally, and the balancing energy required 
decreases to the same extent as the improved forecast. Further, when taking flexibility 
into account the optimization and cost reduction potential increases substantially, by not 
only shifting the charging into times with low prices but also doing arbitrage trading.

Discussion and conclusion
This section discusses the potential limitations and directions for future work. As previ-
ous studies have shown, our results confirm that machine learning methods are suitable 
for predicting the charging load of electric vehicles and that the prediction improves with 
increasing fleet size. However, previous studies often only consider point predictions, 
whereas this paper also applied probabilistic predictions. Ensemble models, especially 
ada, bagging, and random forest, were shown to be robust across different aggregation 
levels, making them a reliable choice for different scenarios. These findings are compa-
rable to those of Rathore et al. (2023). Although the machine learning models performed 
best and were superior to the benchmark model, our deep learning models do not uti-
lize their full potential. This can be recognized by comparing the results of the models in 
Table 3 and Tables 6, 7, 8. With additional adjustments in the deep learning architectures 
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and additional hyperparameter tuning, they could improve their adaptability to different 
levels of data granularity and achieve enhanced results. Furthermore, exploring additional 
features and feature transformations can improve model performance, especially for deep 
learning models at finer levels of aggregation. Regarding the limitations of using only the 
used algorithms, it could be argued that using different models such as support vector 
machines, k-nearest neighbor or especially state of the art deep learning model architec-
tures such as PLCNet or temporal fusion transformer might achieve better results (Lim 
et al. 2019; Farsi et al. 2021). They are including not only national but also state-specific 
holidays as a feature that could further improve the results of all models. Further, regional 
weather data as input feature might improve the forecast accuracy as we initially only 
tested with German-wide data. The influence of historical data of different lengths has 
shown that, as expected, more data provides improved results, but a certain degree of 
saturation is indicated. In the future, it would be interesting to investigate the influence 
of annual data, as this would allow the models to better account for seasonal effects. For 
new sites that have little or no historical data, one possible approach would be transfer 
learning. Here, a global model is trained on the existing sites. New sites that still need to 
have sufficient historical data can then be predicted. In addition, data augmentation tech-
niques can artificially generate data to have more training data available and ultimately 
may reduce overfitting. These approaches would be further possibilities for future research 
to investigate.

The random aggregation of the individual sites has shown that robust results are 
achieved from approximately 200 chargers compared to the benchmark model. For the 
random aggregation of the individual sites, it would also be interesting to investigate 
how the models react to different behavioral dynamics, for example, by adding chargers 
to the existing sites or including new sites. Future research could aggregate sites by clus-
tering hard-to-predict sites instead of randomly aggregating them or by training a global 
model on all data and then applying it to individual sites. Concerning the procurement 
of energy volumes, it was shown that an improved forecast leads to less balancing energy, 
but not to the same extent as higher procurement costs. It would be interesting for future 
work to investigate how procurement can be carried out in countries where it is also 
permitted to optimize expenses based on the balancing energy price. Additionally, this 
paper only examines static energy procurement without using the flexibility of electric 
vehicles, which results from the possibility of shifting charging processes. Future work 
should investigate how flexibility can be predicted. For example, one approach could be 
to predict the charging load and whether a vehicle plugs in as a time series per charg-
ing point to determine the shifting potential per charging point. In addition, the amount 
of energy and plugging duration could be determined as a regression for each plugging 
process, and the two models could be combined to increase reliability. The flexibility pre-
diction and subsequent optimal energy procurement become particularly complex when 
bidirectional charging is considered, significantly changing the boundary conditions in 
energy procurement. A combination of prediction and optimization models, e.g., with 
reinforcement learning, is an approach that future research should examine.

The results presented relate to the charging processes of German companies, primarily 
from the commercial sector. If data from public or private charging stations is considered, 
different results will be obtained due to the significantly different charging behavior. By 
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standardizing the charging load to the number, we have considered the ramp-up of electric 
vehicles. Furthermore, the results are transferable to other countries with similar compa-
nies. It should be noted that the charging load may change in the future due to the fol-
lowing factors: on the one hand, bidirectional charging will play an increasingly important 
role, allowing not only charging but also discharging. This will not only change the load but 
also give users an even greater incentive to keep their vehicles plugged in for long periods 
of time. Further technological advances in battery technology will increase the charging 
speed and the battery capacity, which will directly impact the charging load if vehicles have 
to charge less frequently but for longer, provided the power remains the same.

As companies might have limited time and resources, the following factors should 
be considered when implementing charging load forecasting models and any forecast 
model: sometimes naive models, such as the mean per day and time, yield accurate 
results without any implementation and maintenance effort. At the same time, they are 
easy to understand, and the computational costs are comparatively small. Therefore, in 
a real world application, the added value of a more accurate prediction should always be 
compared to the additional effort of developing and maintaining more complex models.

Data availability is one of the most important aspects that should be considered in 
long-term planning. Therefore, companies should ensure that appropriate structures 
are put in place early to enable data processing. However, politicians and legislators 
must also ensure the right framework conditions are in place. For example, the EU 
is pushing to create the European mobility data space (European Commission 2023). 
The aim should be for organizations to recognize the added value data availability, 
which will ultimately help them to make better products and business decisions.

Appendix
See Tables 5, 6, 7, and 8.

Table 5 Hyperparameters for machine learning models grid search

Model Hyperparameter Space

Bagging Base model Decision tree

Number of estimators 250, 375, 500

Maximal samples 0.75. 1.0

Bootstrapping True, false

RF Maximal depth None, 3, 5, 10

Number of estimators 500, 750, 1000

Minimal samples split 2, 4, 8

GradientB Learning rate 0.3

Number of estimators 50, 100, 150, 
200, 250, 300, 
350

Maximal depth 3

Minimal sample split 2

Subsample 1.0

Ada Base model Decision tree

Number of estimators 10, 50, 100

Learning rate 0.1, 0.5, 1.0

LinR Fit intercept True, false
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Table 6 Metrics of the models for the TZO zones

*Unitless, **in %, ***in W

TZO zone Model nRMSE* MASE* R2** PS low Q*** PS high Q*** IS***

Tennet LinR 0.883 0.806 134.983 0.793

Bagging 0.534 0.431 81.516 0.924 1.955 4.259

GradientB 0.536 0.523 81.820 0.924 3.887 4.527

Ada 0.467 0.414 71.388 0.942 1.945 4.142

Random forest 0.545 0.456 83.233 0.921 3.650 6.052

LSTM 0.493 0.513 75.266 0.936 34.397 69.342

CNN 0.589 0.519 89.997 0.908 38.683 76.597

NN 0.587 0.660 89.752 0.908 141.111 89.672

50Hertz LinR 0.825 0.860 91.940 0.787

Bagging 0.648 0.662 72.269 0.869 2.782 3.765

GradientB 0.628 0.686 70.013 0.877 3.481 4.488

Ada 0.623 0.659 69.436 0.879 2.498 3.808

Random forest 0.664 0.669 74.091 0.862 5.227 6.575

LSTM 0.654 0.721 72.922 0.866 97.063 101.574

CNN 0.788 0.838 87.828 0.806 88.751 92.326

NN 0.734 0.791 81.815 0.832 115.450 108.417

Amprion LinR 0.914 0.904 122.239 0.780

Bagging 0.427 0.473 57.084 0.952 2.115 2.819

GradientB 0.525 0.599 70.274 0.927 3.555 4.009

Ada 0.417 0.473 55.783 0.954 2.248 3.034

Random forest 0.447 0.507 59.807 0.947 3.796 4.939

LSTM 0.584 0.616 78.181 0.910 46.069 55.681

CNN 0.718 0.683 96.105 0.864 61.516 60.636

NN 0.561 0.652 75.076 0.917 117.008 91.710

TransnetBW LinR 0.845 0.768 173.191 0.768

Bagging 0.568 0.467 116.333 0.895 3.571 5.436

GradientB 0.533 0.514 109.334 0.908 4.468 6.936

Ada 0.579 0.470 118.761 0.891 3.123 5.592

Random forest 0.555 0.477 113.681 0.900 6.029 9.262

LSTM 0.574 0.611 117.723 0.893 52.813 111.074

CNN 0.634 0.600 129.904 0.869 63.730 108.037

NN 0.643 0.673 131.848 0.866 188.707 125.658

Table 7 Metrics of the models for the zip codes

Zip code Model nRMSE* MASE* R2** PS low Q*** PS high Q*** IS***

I LinR 0.975 1.09 0.351

Bagging 0.990 1.108 0.331 7.090 27.448 985.517

GradientB 0.981 1.088 0.343 6.039 24.667 1033.998

Ada 0.983 1.171 0.341 6.214 27.861 1176.891

Random forest 1.131 1.232 0.127 125.155 78.103 548.477

LSTM 1.015 1.138 0.296 252.223 235.476 605.484

CNN 1.013 1.002 0.300 211.708 235.503 574.080

NN 1.034 1.132 0.270 458.458 235.482 826.995
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Table 8 Metrics of the models for the individual sites

Site (number 
of charger)

Model nRMSE* MASE* R2** PS low Q*** PS high Q*** IS***

A (3) LinR 1.009 1.151 584.168 0.15 0 0

Bagging 1.106 1.115 640.565 − 0.023 3.024 37.963

GradientB 1.029 1.057 595.809 0.115 3.024 30.945

Ada 1.067 1.356 618.029 0.048 3.024 50.004

Random forest 1.111 1.105 643.396 − 0.032 3.024 41.262

LSTM 1.088 1.236 629.841 0.011 1943.876 117.946

CNN 1.172 1.252 678.441 − 0.147 666.728 117.946

NN 1.185 1.01 686.159 − 0.173 525.407 117.947

*Unitless, **in %, ***in W

Zip code Model nRMSE* MASE* R2** PS low Q*** PS high Q*** IS***

II LinR 0.960 0.94 0.687

Bagging 0.663 0.684 0.851 2.053 3.936 154.005

GradientB 0.611 0.657 0.873 2.620 6.178 191.541

Ada 0.689 0.698 0.839 1.968 4.082 162.425

Random forest 0.682 0.684 0.842 4.002 7.951 113.861

LSTM 0.763 0.872 0.802 61.401 99.888 189.507

CNN 0.703 0.756 0.832 67.554 99.889 194.910

NN 0.855 0.931 0.751 108.516 99.888 240.200

III LinR 0.958 1.008 0.375

Bagging 1.008 1.027 0.309 4.447 11.906 567.686

GradientB 0.992 0.993 0.330 4.675 12.048 546.991

Ada 1.005 1.047 0.312 4.196 12.550 633.464

Random forest 1.013 1.045 0.302 44.326 32.429 299.845

LSTM 1.059 1.106 0.237 279.547 163.712 509.868

CNN 1.095 1.048 0.184 294.927 163.713 528.844

NN 0.965 0.988 0.366 552.837 163.704 814.265

IV LinR 0.949 1 0.734

Bagging 0.820 0.823 0.801 5.605 10.621 527.691

GradientB 0.812 0.849 0.805 6.747 11.513 631.780

Ada 0.834 0.889 0.795 5.583 11.247 602.754

Random forest 0.814 0.837 0.804 15.005 20.154 340.988

LSTM 0.848 0.916 0.788 310.657 264.919 658.047

CNN 1.005 1.02 0.702 287.591 254.567 623.086

NN 0.978 1.166 0.717 870.033 263.764 1289.562

V LinR 0.807 0.837 0.815

Bagging 0.688 0.652 0.866 5.764 7.758 303.393

GradientB 0.660 0.666 0.877 5.494 8.427 394.922

Ada 0.666 0.663 0.874 5.020 8.045 320.075

Random forest 0.713 0.674 0.856 8.923 13.661 229.896

LSTM 0.791 0.787 0.823 85.854 209.834 347.807

CNN 0.928 0.85 0.756 73.755 209.837 343.705

NN 0.636 0.721 0.885 205.055 209.838 472.293

Table 7 (continued)
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*Unitless, **in %, ***in W

Site (number 
of charger)

Model nRMSE* MASE* R2** PS low Q*** PS high Q*** IS***

B (4) LinR 0.992 1.077 870.695 0.189 0 0

Bagging 1.013 1.017 889.115 0.154 10.281 82.067

GradientB 0.994 1.032 872.227 0.186 10.281 73.75

Ada 0.994 1.094 872.266 0.186 10.281 89.058

Random forest 1.031 1.034 905.217 0.123 10.283 81.927

LSTM 1.071 1.067 940.387 0.054 1695.592 400.964

CNN 1.164 1.19 1022.103 -0.118 926.987 400.964

NN 1.095 1.013 961.368 0.011 1211.949 400.964

C (8) LinR 0.954 1.149 294.785 0.116 0 0

Bagging 0.993 0.849 307.083 0.041 1.723 16.471

GradientB 0.989 1.042 305.84 0.049 1.617 14.012

Ada 0.982 0.981 303.652 0.062 1.797 15.972

Random forest 1.022 0.869 316.031 − 0.016 2.739 17.262

LSTM 0.894 0.89 276.51 0.222 807.033 63.078

CNN 1.057 0.802 326.657 − 0.085 234.903 63.082

NN 1.093 0.858 337.963 − 0.162 409.187 88.649

D (14) LinR 0.971 1.096 644.271 0.32 0 0

Bagging 1.022 1.108 677.737 0.247 9.038 56.199

GradientB 1.034 1.15 685.814 0.229 9.054 47.525

Ada 1.026 1.211 680.719 0.241 9.21 57.178

Random forest 1.027 1.112 680.964 0.24 13.526 64.093

LSTM 1.005 1.062 666.66 0.272 1060.265 353.12

CNN 1.071 1.241 710.662 0.172 588.897 353.132

NN 1.044 1.035 692.421 0.214 345.821 353.13

E (145) LinR 0.74 0.719 301.995 0.764 0 0

Bagging 0.671 0.537 273.832 0.806 10.581 12.018

GradientB 0.616 0.562 251.491 0.837 6.126 14.434

Ada 0.66 0.553 269.211 0.813 10.988 12.427

Random forest 0.691 0.547 282.057 0.794 11.293 16.224

LSTM 1.009 1.151 584.168 0.15 0 0

CNN 1.106 1.115 640.565 − 0.023 3.024 37.963

NN 1.029 1.057 595.809 0.115 3.024 30.945

Table 8 (continued)
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