
Industrial digital twins in offshore wind 
farms
Evi Elisa Ambarita1*, Anniken Karlsen1, Francesco Scibilia2 and Agus Hasan1 

Introduction
According to the Global Wind Report 2021, there was 743 GW of installed wind 
power capacity worldwide, and statistically, 2020 was the best year in history for the 
global wind industry with more than 93 GW of new installation (Lee et  al. 2021). 
Indeed, wind power has its market among renewable energy industries as it is con-
sidered eco-friendly and sustainable. The urgency in realizing the Paris Agreement 
on the net zero target of  CO2 emission by 2050 is forcing the energy industry to con-
tinue to develop following technological advances. Energy industry has been mov-
ing forward by involving intelligent technology following the industry revolution in 
its application. In 2011, industry 4.0 was first introduced at the Hanover Fair, as a 
program of the German government (Xu et  al. 2021). Industry 4.0 is driven by the 
Industrial Internet of Things (IIoT) and Cyber-Physical Systems (CPS) that utilize 
computer-based algorithms to control and monitor physical devices like vehicles, 
robots, machines, etc. Wind farm industry requires a fast change towards industry 
4.0, powered by smart technology such as machine learning, big data, the internet of 
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things, and digital twins to achieve the monitoring, automation and analysis of supply 
chains.

One of the features of Industry 4.0 is the capability to manage the entire life cycle 
of a product from the beginning to the end. This includes planning the initial needs 
of users and using their feedback to improve future designs. Digital twin technology 
is recognized as being able to realize this demand in the Industry 4.0 era (Salimbeni 
et al. 2022). Basically, digital twin is a virtual representation of a physical object with 
two-way communication and reflects live data of the physical object. Digital twins can 
be used for several purposes in the operation of offshore wind farms. It enables the 
integration of real-time data from various sensors, monitoring devices, and control 
systems deployed on floating wind turbines and associated infrastructure. By analyz-
ing historical and real-time data, advanced analytics and machine learning algorithms 
applied to digital twins can help in early fault detection, diagnostics, and predic-
tion of potential issues. For modelling, it creates dynamic and detailed simulations 
of the entire floating wind farm, particularly in changing environmental conditions, 
wave dynamics, and structural responses. It also facilitates communication and col-
laboration among different stakeholders, such as operators, maintenance teams, and 
management, through the digital twin platform. Digital twin technology can have a 
significant impact on the wind farm industry, as it may improve productivity, sustain-
ability, safety, and reduce operation and maintenance costs (Stump 2020). This tech-
nology can also provide opportunities for the development of autonomous operations 
(Chen et al. 2021).

The application of digital twin technology requires a framework which is a communi-
cation architecture/platform to connect digital assets and physical assets. The framework 
is also critical in ensuring connectivity between the various companies involved in the 
development and operation of offshore wind farms. Building and operating an offshore 
wind farm involves several stakeholders, for example, a manufacturer for constructing 
the turbines, a maintenance company for maintenance work, a power plant company for 
power distribution, and the owner. All these stakeholders have their own way of com-
munication within their company. They have their own “language” to store their data. 
The problem comes when one company needs to share their data with another company. 
Difference in “language” causes the data-sharing process to take longer. Consequently, 
it is time-consuming for a company to share their data with another company, which 
negatively impacts productivity. In Industry 4.0, there is a growing demand for all com-
panies involved in one project to communicate in a similar and standard “language” in 
order to integrate automatically without human intervention. This ability is called inter-
operability where the computer systems or programs can exchange the correct informa-
tion with each other and carry out the functions. Thus, a standardized framework for 
digital twins is needed to facilitate interoperability and ensure that computer systems 
can exchange data across sectors. Interoperability has proven to be highly beneficial in 
increasing productivity and effectiveness in the manufacturing industry, particularly 
concerning crucial functions such as condition monitoring, predictive maintenance, and 
product life cycle management. These same functions are also essential to the offshore 
wind industry. The lack of interoperability in the digital twin frameworks for offshore 
wind farms is a significant barrier that needs to be addressed. By transferring knowledge 
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about interoperability from the manufacturing industry to offshore wind farms, indus-
trial digital twins can be used to optimize the performance of offshore wind turbines.

The primary contribution of our study is to explore the potential for transferring 
knowledge of interoperable digital twins from the manufacturing industry to offshore 
wind farms, which will be addressed by focusing on these three objectives: 

1. to define the concept of digital twins in offshore wind farms
2. to investigate the solution framework used for interoperable digital twins in the con-

text of Industry 4.0
3. to conceptually apply the solution framework for offshore wind farms in the case 

study

The remainder of this paper is organized as follows. In “Method and material” section, 
we clarify the research method as well as the research materials. In “Results and discus-
sion” section, we present our findings and discussion including the case study. Finally, 
the conclusion and an outlook for future work are presented in “Conclusion” section.

Method and material
To achieve our objectives and thus increase our understanding of digital twins in off-
shore wind applications, we proposed a research methodology based on a qualitative 
approach inspired by Verdouw et  al. (2021). We integrated both a review study and a 
case study to demonstrate not only the existing potential but also to provide recommen-
dations for the future. As displayed in Fig. 1, the research was conducted in three phases: 
(i) literature on the digital twin concept, marked in green, (ii) literature on digital twin 
frameworks, marked in blue, and (iii) a case study, marked in purple.

The method and material for each phase are defined as follows: 

Fig. 1 A research approach for investigating interoperable digital twins in offshore wind farms
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 (i) we investigated the digital twin definition in offshore wind farms by conducting 
a narrative literature review based on a book chapter in Demiris et al. (2019). The 
green circles in Fig. 1 describe the selected materials covered in this phase. Digital 
twins, wind, and concept represent articles that discuss the concept of digital twins 
in offshore wind applications. First, we gathered articles mentioning digital twin/
twins/twinning and wind in their titles. The existence of “wind” can be interpreted 
as wind turbine, wind energy, or wind power. Next, we selected articles that define 
the concept of digital twins in their application on offshore wind farms. Only 
articles in English that are included among accessible articles from the primary/
original research have been reviewed. Then, we categorized the selected articles 
based on the purpose of using digital twins in offshore wind farms. The result of 
this phase is presented in “Digital twin concept in offshore wind farms”. This phase 
aims to increase understanding of the digital twin concept from several applica-
tions in offshore wind farms.

 (ii) since applying digital twin technology requires the digital twin frameworks, the 
next step was to look into the introduced framework in selected articles from 
phase (i), marked with the blue circle and blue arrow on the left side in Fig. 1. The 
investigation consists of how the framework was implemented, the specific pur-
pose of the particular framework, and the benefits of the introduced framework. 
Then, we investigated a framework that has been built upon the Industry 4.0 stand-
ardization from other industries. The blue marks on the right side in Fig. 1 belong 
to the second phase. We began with Industry 4.0 standardization and selected the 
manufacturing industry as a benchmark. This is because intellectual and advanced 
technologies such as digital twins have been successfully achieved in this sector. 
The articles reviewed in this phase are limited to the implementation of the solu-
tion framework, not including the development of the framework. We present the 
implementation of the solution framework on several applications. The result of 
this phase is presented in “Comparison of digital twin frameworks in wind power 
and manufacturing industries”. This review was conducted to provide an overview 
of how the solution framework can be advantageously developed in the manu-
facturing industry. Moreover, we evaluated the challenges faced in offshore wind 
farms from phase (i) that had been solved in the manufacturing sector using the 
solution framework in phase (ii). In other words, we built a parallel of challenges 
addressed in wind farm sector with similar problems addressed in manufactur-
ing applications. This evaluation result is outlined in “Discussion: the interoper-
able digital twin framework for the offshore wind industry”. This evaluation aims 
to highlight the feasibility of transferring the solution framework to a different 
domain.

 (iii) we investigated an existing case study conducted by one of the co-authors in Hagh-
shenas et al. (2023). The case study implements predictive digital twins in offshore 
wind farms and is adopted to demonstrate a high potential for the solution frame-
work being applied in offshore wind farms. Purple marks in Fig. 1, including the 
purple arrow, belong to the case study. The comprehensive investigation focuses 
on three components: (a) the visualization in the form of 3D, 2D, and augmented 
reality (AR), which integrates the actual weather data, (b) the simulation of data 
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processing, and (c) the communication protocol for connecting data from various 
sources. The purple arrow in Fig.  1 denotes that the solution framework set out 
in phase (ii) was conceptually applied to the case study. We also explored a tool 
called AASX Package Explorer to analyze how the tool handles interoperability. 
This phase result is presented in “Case study”.

Results and discussion
In this section, we present the findings from the research approach discussed earlier. The 
first part defines the digital twin concept in the context of offshore wind farms. The sec-
ond part compares digital twin frameworks applied in wind farms and manufacturing, 
then followed by a discussion of the interoperable digital twin framework for the off-
shore wind industry. The final part presents our case study.

Digital twin concept in offshore wind farms

Digital twins have been implemented in diverse sectors, such as manufacturing, health, 
meteorology, education, cities, transportation and energy (Rasheed et  al. 2020). Basi-
cally, the digital twin is a virtual representation of a physical asset which can exchange 
information with others and reflects real-time data of the physical asset (Branlard et al. 
2020a). Recently, researchers have categorized digital twins based on their specific appli-
cations. For example, Valk et al. (2020) conducted a structured literature review in order 
to develop a taxonomy of digital twins in general. Sjarov et  al. (2020) systematically 
reviewed the digital twin concept in the industry, while Cooper et al. (2022) presented 
the maturity level of digital twins pertaining to its application and benefit. Verdouw et al. 
(2021) explored digital twins in smart farming describing the digital twin definition from 
two perspectives: the Internet of Things and the product life cycle. These studies show 
that the digital twin concept is defined according to its application.

As mentioned earlier, digital twins can be used for several purposes in offshore wind 
farms. For modelling, it enables to simulate the impact of different conditions on the 
performance of offshore wind turbines. For condition monitoring and control, the digital 
twin is continuously updated with real-time data from wind farms, allowing operators 
to make informed decisions and adjustments without the need for physical presence. 
Together with machine learning algorithms, the invoked time-series data can be used 
to estimate the power output and predict potential failures. Due to the application dif-
ferences, we classified the digital twin concept into five perspectives, namely modelling, 
estimation, control, monitoring, and prediction, as shown in Table 1. In the early stages, 
digital twins are primarily used for modelling and estimation purposes, while in later 
stages, digital twins are utilized for controlling, monitoring, and predicting. Note that 
the implementation of digital twins in offshore wind farms is not limited to turbine-
related components, such as blade and rotor, but also encompasses the entire systems 
such as pitch angle control, mooring system, gearbox, bearing, support structure, and 
drivetrain. Furthermore, the definition of digital twins used in offshore wind farms var-
ies based on the specific application and components being considered. This segment 
aims to gain a deeper understanding of the digital twin concept in the context of offshore 
wind applications.
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From a modelling perspective, LeBlanc and Ferreira (2020) presented a digital twin 
model of an H Vertical Axial Wind Turbine (H-VAWT) towards the experimental 
characterization. By applying the polymax curve filter in Siemens Test.lab software, 
they captured complex loading phenomena during the test process to update the 
finite element model. Here, the digital twin is clarified as a digital replica of a physi-
cal device to predict turbine response for dynamic blade pitching. For turbine blade 
design, Chetan et al. (2021) developed a multi-fidelity digital twin structural model of 
the turbine blade for system control and stable rotor operation using the OpenFAST 
framework. The digital twin method comprised observing the rotor from the design 
stage to the manufacturing, testing, and operation stages. Sahoo et al. (2017) reported 
a structural analysis of shear webs with a circular hole on a turbine blade using a finite 
element model in order to reduce material testing. Here, the digital twin is inter-
preted as a numerical model which is able to simulate a physical behaviour under 
a certain environmental condition without experimental cost. Tygesen et  al. (2018) 
introduced the digital twin model for fatigue re-assessment on wind turbine struc-
tures using Structure Integrity Manager (SIMA) software to analyze and detect the 
inconsistency between the model and the real measurement. The authors introduced 
five levels of digital twin development in offshore wind farms, namely screening and 
diagnostics, finite element model updating, wave load calibration, quantification of 
uncertainties, and accumulated fatigue monitoring. Here, the digital twin is a reflec-
tion of the current state of the structure that can be analyzed to predict the future 
behavior of the structure.

From an estimation perspective, Branlard et al. (2020a) defined digital twin in off-
shore wind farms as a digital equivalent of the actual turbine combining measure-
ments from the physical turbine and the numerical model to estimate the turbine 
status and track the life cycle of the physical assets. Using the OpenFAST framework, 

Table 1 Classification of digital twins based on their purposes

Main purpose Applications Sources

Modelling H vertical axial wind turbine LeBlanc and Ferreira (2020)

Turbine blade Chetan et al. (2021), Sahoo et al. (2017)

Fatigue re‑assessment on structure Tygesen et al. (2018)

Estimation Wind turbine loads  Branlard et al. (2020a)

Wind speed  Hu et al. (2020), Li and Shen (2022)

Mooring life tension  Walker et al. (2021)

Remaining useful time of gearbox  Mehlan et al. (2022), Moghadam et al. (2021)

Remaining useful time of power converter  Sivalingam et al. (2018), Zeitouni et al. (2020)

Monitoring Gearbox  Xiangjun et al. (2020), Wadhwani et al. (2022)

Uncertainties of structural dynamics  Augustyn et al. (2021), Ebrahimi (2019)

Turbine substructure  Grosse (2019)

Mooring system  Trueba et al. (2021)

Wind turbines (farm)  Pargmann et al. (2018), Fahim et al. (2022)

Prediction Wind turbine  Li et al. (2021), Iosifidis et al. (2021)

Support structure  Wang et al. (2021), Momber et al. (2022)

Electrical components  Oñederra et al. (2019)

Gearbox  Zhao et al. (2021)
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Branlard et  al. (2020b) estimated wind turbine loads by applying the Kalman filter-
ing technique with measurement signals of rotational speed, pitch angle, genera-
tor torque, and tower-top acceleration. For wind speed prediction, Hu et  al. (2020) 
applied digital twins to predict time-series of wind speed based on ensemble empiri-
cal model decomposition (EEMD), long short-term memory (LSTM) neural network, 
and the Bayesian Optimization (BO) method. Based on digital twin technology, Li 
and Shen (2022) proposed a novel wind speed-sensing methodology for wind turbines 
by applying a series of estimators, verifiers, setters, and selectors called DTSense. 
Here, the digital twin is a digital replica that collects and stores operating data based 
on deep learning algorithms from physical assets to illustrate how an Internet of 
things (IoT) works through its life cycle. Furthermore, Walker et  al. (2021) devel-
oped a digital twin of the mooring life tension using a state-of-the-art data-driven 
method to improve lifespan and safety. They designed the first digital twin to predict 
the behavior of the healthy system compared with the actual one, then subsequently 
constructed the second digital twin to forecast the future axial tension of the mooring 
line using existing data for safety purposes. Referenced by Oneto et  al. (2018), here 
the digital twin is defined as a specific type of model able precisely to copy a physical 
system and learn the historical behavior to forecast the future behavior of the sys-
tem. Moreover, Mehlan et  al. (2022) employed bond graph modelling techniques to 
create a digital twin of wind turbine gear stages, which was further utilized for the 
implementation of real-time virtual sensing. The goal of this approach was to esti-
mate the remaining useful life (RUL) of the gear and bearing components through the 
application of fatigue damage models. Sivalingam et al. (2018) developed a method-
ology for RUL prediction for prognostic and diagnostic health of a power converter 
Insulated-Gate Bipolar Transistor (IGBT) on offshore wind turbines based on digital 
twin technology. Here, the digital twin is a virtual representation of a physical asset 
storing real-time simulation data in the framework to predict the RUL as a means of 
optimization and improved decision-making.

From a control perspective, Parvaresh et al. (2020) applied a digital twin for the con-
trol system of pitch angle in a variable speed wind turbine operating at wind speeds 
above the rated level. The authors were able to control the pitch angle via a digital twin 
by introducing a deep-learning backstepping controller with software-in-loop (SIL) and 
hardware-in-loop (HIL) approaches. In another report, Zeitouni et al. (2020) improved a 
novel adaptive controller for the pitch angle control of a wind turbine plant by augment-
ing the active disturbance rejection controller (ADRC) to evaluate the wind speed error 
and the difference between HIL and SIL results. Here, the digital twin in wind turbine 
systems consists of virtual assets as well as physical assets and connection data that tie, 
reflect, and control each other.

From a monitoring perspective, Xiangjun et  al. (2020) focused on anomaly detec-
tion of wind turbine gearboxes by merging the benefits of model simulation technol-
ogy and data-driven methods to improve operational reliability and minimize operation 
and maintenance (O&M) costs. Wadhwani et al. (2022) discussed the concept of a digi-
tal twin framework for forecasting the failure of turbine gearboxes with updated real-
time Supervisory Control and Data Acquisition (SCADA) data. Here, the digital twin is 
defined as a virtual space of a physical world that is built digitally utilizing real-time data 
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to monitor the physical assets and simulate the behavior of a wind farm in real-world 
entities. Augustyn et al. (2021) leveraged digital twins to monitor and update the uncer-
tainties related to the load-modeling parameters and structural dynamics in fatigue 
damage accumulation using Bayesian pre-posterior theory. In discussing the challenges 
of developing a digital twin model, Ebrahimi (2019) strongly suggested applying uncer-
tainty and intelligent algorithm tools to modify the digital twin platform in order to be 
closer to the real one and make it feasible. Grosse (2019) reported the development and 
benefits of the digital twin concept from Building Information Modelling (BIM) for mon-
itoring and inspection techniques in wind turbine substructures. Here, the digital twin is 
defined as an essential step in accurately and precisely assessing the structural integrity 
of pre-existing structures to support decision-making and optimal designs. Trueba et al. 
(2021) introduced an R&D project called MooringSense, a concept for floating offshore 
wind mooring system integrity management based on control, monitoring, and digital 
twin technologies to reduce expenses, optimize O&M, and increase energy production. 
Pargmann et al. (2018) applied digital twins to integrate not only technical information, 
such as the data streams from different sensor types but also business information to 
monitor and analyze a complete wind farm based on Cloud-technologies. Fahim et al. 
(2022) proposed a machine learning-based digital twin model using a 5G Next Genera-
tion Radio Access Network to monitor wind turbines, estimate the generated power, and 
create a wind turbine model in terms of wind speed. Here, the digital twin is a user-
friendly model that provides all updated and integrated information based on a cohesive 
and sound big data processing approach to allow the user a real-time view and to imple-
ment risk-based integrity management plans.

From a prediction perspective, Li et al. (2021) reported research on digital twins and 
collaborative cloud and edge computing applied in the operation and maintenance of 
wind turbines for fault prediction and diagnosis. Using real-world, 1-s wind speed data, 
Iosifidis et  al. (2021) explored the effect of wind turbulence as well as wind speed on 
semiconductor devices of direct-drive wind turbines resulting in fatigue. Wang et  al. 
(2021) focused on investigating the support structure of offshore wind turbines to pre-
vent unexpected damage and reduce maintenance costs by analyzing fault diagnosis, 
condition-based maintenance, and RUL prediction. Here, the digital twin is defined as 
a promising tool for understanding the undergoing mechanisms of structures for the 
purpose of fault prediction and establishing a diagnosis model to schedule the mainte-
nance plan and support decision-making methods. Furthermore, Momber et al. (2022) 
applied the digital twin concept for the prescriptive maintenance planning and control 
monitoring of surface protection systems on wind turbine towers. Montoya et al. (2022) 
developed a wind turbine digital twin model for failure prognosis by comparing actual 
data from SCADA and simulated data from software combined with artificial intelli-
gence algorithms in the digital twin creation. Oñederra et al. (2019) discussed a medium 
voltage (MV) cable model of different electrical components, such as power converter, 
generator and transformer, on wind farms in order to imitate the real asset in terms of 
preventive maintenance. Here, the digital twin is the use of abundant data about the per-
formance and behavior of physical assets to integrate them in a multi-disciplinary sim-
ulation within a digital environment which allows for predicting its performance. The 
gearbox is one of the crucial and risky parts that require special treatment to prevent 



Page 9 of 32Ambarita et al. Energy Informatics             (2024) 7:5  

fatigue and damage as it plays a significant role in connecting turbines and generators 
for producing power. Zhao et  al. (2021) introduced a CapsNet-based deep learning 
scheme for a data-driven fault diagnosis method for digital twins of a wind turbine gear-
box, including single fault and coupling fault. Moghadam et al. (2021) proposed a multi-
degree of freedom torsional model of a drivetrain system in the prediction of gearbox 
RUL using a 5 MW reference drivetrain. Here, the digital twin is a highly accurate but 
computationally fast model of the system, which can update itself by the online meas-
urement and predict its future behavior.

In addition to those research efforts, summarized in Table 1, there is advanced research 
by Chen et  al. (2021) discussing a human-cyber-physical system toward wind turbine 
operation and maintenance in the context of achieving Industry 5.0 technology stand-
ards. Highly effective training of AI through machine learning is required for Industry 
4.0 digital twin technology. Here, human intelligence (HI) was developed, where a high-
level decision made through a human–machine interface breaks the autonomy. This idea 
could be a promising tool for the improvement of an advanced wind farm, but only if 
there is a reliable framework that can connect all assets and industries related to wind 
farms, providing the so-called interoperability. Thus, the digital twin is not only utilized 
for modeling, control monitoring, and/or predictive maintenance, but also as a manage-
ment tool for the life cycle management of wind farms itself (Salimbeni et al. 2022).

Comparison of digital twin frameworks in wind power and manufacturing industries

In order to leverage digital twins, it is essential to establish a framework that facili-
tates data storage and communication between digital and physical assets. By analyz-
ing recorded operational data, it is possible to anticipate the future behavior of physical 
assets, while historical data can be used to predict potential device failures. The data 
stored in the framework can serve as a foundation for developing newer and more 
sophisticated devices. This segment explores various frameworks for implementing digi-
tal twins, including those employed in offshore wind farms and in the manufacturing 
industry. It also examines the potential for deploying these frameworks in offshore wind 
farms and highlights similarities and differences between them, as well as how they can 
be tailored to meet the distinctive requirements of the offshore wind sector.

Digital twin frameworks in offshore wind farms

Branlard et  al. (2020b) utilized OpenFAST linearizations to build a linear state-space 
model, including degrees of freedom (such as the shaft rotation and the tower-top 
motion) and considerations of the offshore environment for real-time load and fatigue 
estimation on wind turbines. OpenFAST is a framework, an open-source wind turbine 
simulation tool, a multi-physics and multi-fidelity tool, that couples dynamic response 
(fluid, control and electrical system, and structural dynamics) of wind turbines. Chetan 
et  al. (2021) also utilized the OpenFAST framework to capture the dynamics of the 
as-build design of the turbine blade due to various root bending moment conditions 
experienced during simulation. The significant benefit of OpenFAST is that it can auto-
matically linearize a wide range of conditions, including states, inputs and outputs. 
Another benefit of OpenFAST is that it can perform simulations with only a few DOF 
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(from 2 to 30 DOF) as proven by Branlard et al. (2020a) comparing 2 DOF and 16 DOF 
in a wind turbine, whereas traditional FEM requires a thousand DOF.

Parvaresh et al. (2020) presented a digital twin framework that combines hardware-
in-loop (HIL) and software-in-loop (SIL) techniques for pitch angle control of variable-
speed wind turbines. HIL involves testing software systems on cloud-based test benches 
that receive inputs from physical assets, while SIL is a cost-effective method of testing 
code in a simulation environment. The authors proposed the use of a deep deterministic 
policy gradient (DDPG) based nonlinear integral backstepping (NIB) method supported 
by model-free control (MFC) to minimize the difference between the SIL and HIL envi-
ronments. When SIL is an entirely virtual format, HIL involves data from sensors as if 
seeing real driving circumstances. The authors use SIL and HIL to make sure controllers 
can work in real-time situations and to model how a closed-loop system behaves in soft-
ware. Further advanced work, Zeitouni et al. (2020) augmented the active disturbance 
rejection controller (ADRC) to compensate for high aerodynamic variations, mechanical 
stresses on the drivetrain, and unknown uncertainties.

Pargmann et al. (2018), Li et al. (2021), and Fahim et al. (2022) utilized cloud comput-
ing technologies as a digital twin framework for offshore wind farms. Pargmann et al. 
(2018) gathered all data from several sensors in Raspberry Pi and SCADA to the cloud 
IoT interface of SAP Cloud Platforms (SCP). The authors also built a SAP Enterprise 
Central Component (ECC) named ZEIT cloud to store external information (weather 
forecasts, exchange rates, flight of birds, etc.) and other data (business intelligence, 
customer relationship management, supply chain management, enterprise resource 
planning) related to the offshore wind farm industry. They argued that the edge-cloud 
collaboration approach could integrate technical and business data within a single digital 
twin by using augmented reality (AR) to visualize wind farm data.

Li et al. (2021) presented a framework for real-time monitoring of O&M in offshore 
wind farms, consisting of three layers: data source, edge computing node, and public 
or private cloud computing. The benefit of edge-cloud collaboration for O&M is that it 
enabled continuous adjustment of simulation results, as the model is based on the zero 
component feature of the equipment. Moreover, Fahim et al. (2022) proposed a 5G-Next 
Generation-Radio Access Network (5G-NG-RAN) assisted cloud-based digital twin 
framework of Microsoft Azure for investigating wind farms. The study concluded that 
the use of the cloud framework enabled effective monitoring through the provision of 
data from supervisory control and data acquisition units in each turbine of a wind farm.

Tygesen et  al. (2018) utilized a state-of-the-art software called Structural Integrity 
MAnager (SIMA) as a digital twin framework to create a digital twin for the structural 
monitoring systems. SIMA is able to update digital twins according to the structural 
behaviour with the Bayesian-based Finite Element model and to perform the wave load 
calibration. Using SIMA, they update the mass and stiffness parameters of digital twins 
in order to minimize the discrepancy between the predicted and measured parameters. 
The advantage of SIMA is that it enables coupling digital twins directly with the real 
measurements, analyzing and detecting inconsistencies between the digital and real 
measurements.

Trueba et  al. (2021) proposed the MooringSense concept for implementing more 
efficient integrity management strategies for offshore wind mooring systems. The 
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MooringSense in digital twins consists of a high-fidelity fully coupled model divided into 
two aspects: predicted loads (virtual loads prediction, synthetic rope properties update, 
and floater motion prediction) and O&M data (remaining useful data, local damage cal-
culation in chains, and mooring analysis) for decision making. MooringSense presented 
the updated condition information of the mooring systems and an approach for reduc-
ing uncertainties, performed under both static and dynamic offshore wind farm con-
ditions. In addition to serving as a mooring system digital twin, the advantage of the 
MooringSense concept is the development of a smart motion sensor, a structural health 
monitoring (SHM) system, and control strategies on the wind turbine and farm levels.

Walker et  al. (2021) applied (state-of-the-art) data-driven models (DDMs) as a digi-
tal twin framework to identify long-term drifts in the mechanical response of mooring 
lines for offshore wind turbines. The DDM technique utilizes the injection of configura-
tor model components into the model dynamically, based on data received from external 
systems such as catalog systems. DDMs were used to improve computationally aware 
real-time monitoring systems for mooring lines by analyzing existing data of input–out-
put behaviours to predict future axial tension of mooring lines. With DDMs, the frame-
work has the potential to identify two approaches, the traditional machine learning 
method and the deep learning method, in order to predict the expected behavior of the 
healthy system, to be compared with the factual one. The benefit of DDMs is increased 
efficiency as they reduce cost and time to market by eliminating manual construction of 
model components, instead dynamically updating the model with changes in the catalog 
system.

All existing frameworks summarized in Table  2 focus only on the data connectiv-
ity between digital assets and physical assets, enabling the digital model to present 
the physical asset in terms of real-time data. To realize digital twins in the Industry 
4.0 standard, not only connectivity is required, but also the ability to exchange correct 
information among the companies, known as interoperability. In the offshore wind farm 
industry, there are several companies involved in the process of construction, opera-
tion and maintenance, such as manufacturers, suppliers, and customers. Even within 
one company, it is challenging to harmonize, understand, and use these pieces of data 
together. Besides, different companies use different applications and a different “lan-
guage” for the same asset aspects. The increased complexity of exchanging data across 
companies and supply chains requires interoperable digital twins following Industry 4.0 

Table 2 Summary of digital frameworks implemented in offshore wind farms

Frameworks Purposes Sources

OpenFAST Estimation  Branlard et al. (2020a), Branlard et al. (2020b)

Modelling  Chetan et al. (2021)

HIL and SIL Control  Parvaresh et al. (2020), Zeitouni et al. (2020)

Cloud computing technology Monitoring  Pargmann et al. (2018), Fahim et al. (2022)

Prediction  Li et al. (2021)

Structural Integrity MAnager (SIMA) Modelling  Tygesen et al. (2018)

MooringSense Monitoring  Trueba et al. (2021)

Data‑driven model Estimation  Walker et al. (2021)
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standardization. Interoperable digital twins not only simplify the process of exchang-
ing data across sectors but also increase the transparency, adaptability, and flexibility 
of data. Data interoperability can be achieved through interoperable digital twin frame-
works. The interoperable digital twin is not a new idea in the manufacturing industry: 
the implementation of interoperable digital twins has been successfully achieved using a 
standardized framework. In the following segment, we describe the solution framework 
that is required in offshore wind farms in order to achieve interoperable digital twins 
facilitating engineers in decision-making.

Digital twin framework in the manufacturing industry

In order to realize interoperability in digital twins, a standard is required, allowing simi-
lar information to be applied in more than one sector. Standardization and interoper-
ability strategies are key to success in implementing digital twins in the Industry 4.0 era. 
Asset Administration Shell (AAS) is a framework that has been promoted as the imple-
mentation of digital twins for the standardized Industry 4.0 to facilitate interoperability 
within one organization and across enterprise boundaries by allowing uniform access 
to the information and behavior of an asset (Geschäftsstelle 2018). Essentially, AAS is a 
machine-readable, technology or device-agnostic description of a component that pro-
vides access to all of its properties and functions. AAS consists of several submodels per-
taining to its structure, which describe the asset’s functionalities and information, such 
as parameters, properties, status, characteristics, and commercial and technical func-
tionalities (Sakurada et  al. 2021). AAS defines a meta-information model for Industry 
4.0 known as the Reference Architectural Model for Industry 4.0 (RAMI 4.0), built upon 
properties standardized under IEC 61360 (Redeker et  al. 2020). This segment investi-
gates how AAS has been widely applied in the manufacturing industry.

AAS has three types based on the pattern of interaction, namely passive, reactive, and 
proactive, as seen in Fig. 2. In the passive type, AAS operates as a static file or file pack-
age, with asset data being stored in a uniform data format. The reactive type indicates 

Fig. 2 Asset administration shell types (Geschäftsstelle 2018)
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a scenario where AAS can exchange information with other AASs or software applica-
tions through Application Programming Interface (API). In the proactive type, AASs 
can autonomously associate with each other via a standardized interface with a common 
syntax and semantics foundation, thereby facilitating peer-to-peer interaction among 
AASs (Ye et al. 2021). In the manufacturing industry, the interoperability of AAS is used 
for several purposes, such as production line design, life cycle management, condition 
monitoring, predictive maintenance, value chain, and autonomy.

From a modeling perspective, Lu et al. (2021) presented a general platform based on 
AAS. They focused on the communication layer by using Open Platform Communica-
tion United Architecture (OPC UA) and on the information layer by using Automation 
Markup Language (AutomationML) in RAMI 4.0 for modeling AAS. The general AAS 
platform consists of three layers for a production line design. The first one is the asset 
layer, containing two different industrial robots with their controller and a digit control 
machine tool. The second one is the AAS layer containing a single AAS of all assets. The 
third one is the application layer consisting of the AAS modeling mode and the applica-
tion scenario mode, which is to develop device AAS, verify specific scenarios, and order 
robots to work with Computerized Numerical Control (CNC). The AAS platform has 
platform control and platform communication between AAS and the device, also across 
AASs, by applying OPC UA clients and OPC UA servers which are connected in plat-
form control. Furthermore, Ye and Hong (2018) also built an architecture for the inte-
gration of manufacturing processes using OPC UA and AutomationML. They refined 
RAMI 4.0 into a four-layer architecture. The first one is the enterprise layer, which is a 
combination of business and function layers of the RAMI 4.0 model. The second one is 
the information layer for data management on operation and maintenance, system con-
figuration, and connectivity with other devices, to optimize decision-making. The third 
one is the communication layer, for establishing information exchange paths between 
user applications and field devices. The fourth one is the field layer which consists of 
the physical asset, e.g., sensors, controllers (PLC), actuators (robots), etc. The authors 
applied this architecture to a use case involving two conveyor belts for process hauling 
and two robot arms for the pick-and-place. They successfully integrated robot and con-
veyor engineering data using AutomationML and addressed the integration of Wi-Fi and 
Ethernet Powerlink protocols using OPC UA. Moreover, Lüder et  al. (2020) leveraged 
AAS’s role as the system integrator of engineering data logistics on advanced produc-
tion systems. They presented a method for the implementation of AAS in the context of 
Industry 4.0, utilizing it in an ultrasonic measurement cell and its components within 
a steel mill as a case study. The method employed AutomationML to centralize the 
engineering data storage and to exchange data throughout the chain for the produc-
tion process. The method realized a more efficient system for identifying, representing, 
and integrating engineering data. The authors concluded that AAS, due to its standardi-
zation, represents a simple yet effective technology for integrating production system 
engineering tools in an engineering network. Panda et al. (2018) presented OPC UA to 
host the AAS and provide a semantic dataspace for each asset in integrating plug-and-
produce components. OPC UA was utilized to integrate all the OPC functionality into 
one extensible framework, to clarify the communication mechanism through a pub-
lisher–subscriber model or a client–server, to connect the information in several ways 



Page 14 of 32Ambarita et al. Energy Informatics             (2024) 7:5 

by expanding supplementary vendor-specific information to the OPC UA base model, 
and to allow assets to be found across the production system. They concluded that the 
use of UPC UA in the communication protocol of AAS allowed easy integration of plug-
and-produce components into the network without any network-specific preconfigura-
tion. Birtel et al. (2020) developed a method for transforming passively communicating 
product memory into an active digital object memory model (ADOMe) utilizing AAS as 
the semantic interface for interoperability. They carried out a use case where the product 
can be remotely discharged within the manufacturing process due to a defect. OPC UA 
was used in AAS to enable devices with OPC UA communication capability to access 
AAS information across the hierarchy. The authors discovered that the integration of 
ADOMe using AAS enables products to communicate with each other individually and 
remotely, thus improving the overall functionality and efficiency of the manufacturing 
process. Motsch et  al. (2021) implemented the use of AAS in the context of the elec-
trical energy consumption interface in modular skill-based production systems. They 
applied the reactive type of AAS with a passive API as a software adapter, whereby a 
specific AAS metamodel-compliment structure was able to represent a given compo-
nent-specific interface. Information related to energy measurement from a Cyber-
Physical Production Module (CPPM), smart sensors, and an Infrastructure Node (ISN) 
was transmitted directly to the AAS energy submodels. To facilitate this, the authors 
employed OPC UA for communication between CPPMs, ISNs, and AAS, resulting in 
the aggregation of OPC UA-Servers. They also presented the proactive type of AAS for 
the communication system between CPPM and ISN to provide information on energy 
consumption for skill execution decisions or energy-related condition monitoring and 
dynamic interaction with other components.

From a Product Lifecycle Management (PLM) perspective, Marcon et  al. (2019) 
applied AAS to present case studies focusing on interconnecting sensors installed in the 
SmartJacket, on how Digital Factory (DF) components can operate and communicate 
with each other within the entire value chain. They analyzed the AAS model formation 
from the perspective of identification, configuration, communication, condition moni-
toring and safety. The authors proposed the integration of AAS into a central compo-
nent, specifically a smart wireless sensor, in the context of implementing a SmartJacket 
system. By integrating AAS directly into the data concentrator of the smart wireless sen-
sor embedded in the jacket, the authors argue that it is more effective for the SmartJacket 
system to communicate with the central control component (the central communication 
element behaves like an edge interface) and for the AAS to be physically included within 
the system. This approach improves the functionality and efficiency of the SmartJacket 
system by allowing for seamless communication and integration of AAS into the system. 
In the CPS era, a product not only performs PLM but also Application Lifecycle Man-
agement (ALM) which is the PLM of computer programs involving software architec-
ture, software testing and maintenance, etc. Deuter and Imort (2020) utilized the AAS 
implementation to establish a new strategy named Plm4AAS in order to integrate PLM/
ALM datasets in a single product model using Open Services for Lifecycle Cooperation 
(OSLC). The authors presented a method for the semi-automatic generation of PLM-
related data within the framework of AAS. The proposed approach allows for the con-
figuration of basic needs for PLM integration in AAS, thus enabling the definition of 
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relationships between all data while importing it into the AAS data model. To evaluate 
the proposed method, Deuter and Imort (2021) conducted a case study at the SmartFac-
toryOWL, where they produced a sample product (SmartLight). The results of the study 
demonstrated the effectiveness of the proposed approach in generating PLM-related 
AAS data in an order-controlled production process. Göllner et al. (2021) applied AAS 
for the generation of dynamic simulation models in order to aggregate all information, 
including the structural data about a machine for maintaining the product across its life 
cycle. The proposed concept was able to generate the dynamic simulation model auto-
matically built upon the standardized and interoperable digital twins, whereby all nec-
essary data is mapped into the AAS structure. They established the simulation model 
description (SMD), where all data extracted from the AAS meta-model in the digital 
twin gateway was gathered to generate the simulation model for a particular simulation 
tool. They declared that the proposed concept entailed particular benefits for individual 
machine solutions with similar components, which is able to reduce the time consump-
tion on manual efforts. Rauh et al. (2022) implemented AAS as an artificial intelligence 
(AI) asset management solution pertaining to AI life cycle management in the manufac-
turing industry. They argued that the AAS Standard facilitates and allows for streamlin-
ing time-consuming integration efforts in the plug-and-produce process. The concept 
of AAS allows the direct integration of all types of assets within a single information 
model. It is able to scale heterogeneous infrastructure while confirming reusability and 
reproducibility in terms of life cycle management. They declared that the AI model sup-
ported by the AAS standard offered a high degree of automation and interoperability on 
digital twin technology without requesting new system boundaries through communica-
tion language and the standardized API.

From a maintenance perspective, Cavalieri and Salafia (2020b) proposed an approach 
using the AAS concept to realize interoperability between different manufacturers and 
devices and to apply generic functionalities for a predictive maintenance solution on a 
smart factory. The approach relies on the AAS model and logical block (LB) concept 
which is an element modular categorizing the functionality related to the maintenance 
aspect, namely data manipulation or data acquisition. AAS presents the information 
in a uniform and semantically annotated manner, resulting in generic LB functionali-
ties being applied by an asset using any suitable solution exposed by a standardized API. 
They concluded that the LB and AAS applied in the predictive maintenance model were 
able to define the maintenance actions to improve the flexibility level of production. 
Lang et al. (2019) utilized AAS to support humans during the maintenance process. The 
AAS submodel consists of the procedure-based maintenance approach providing the 
user with a standardized description of necessary equipment, tools, procedures, safety 
concerns, etc, for maintenance. They applied OPC UA as the communication protocol in 
AAS due to its vendor independency and its service-oriented architecture, for the indus-
trial towel folding machine in SmartFactoryOWL as the use case. The AAS submodel is 
performed by updating AAS status, inputting the maintenance data log, and by supply-
ing feedback to improve the life cycle process. Tantik and Anderl (2017) proposed an 
approach combining AAS and the World Wide Web Consortium (W3C) specification 
to achieve a uniform structure for industrial CPS. The required functionality consists 
of five main segments, namely for representation, communication to internal assets, 
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communication to external CPS, security, and a portion for capability improvement, in 
which AAS provides an independent segment for data management. The use of AAS 
is highly suitable for standardization without interrupting the entity functionality. The 
proposed approach is implemented to store all information of the production process 
for the product life cycle, to customize the data model flexibly, and to access the required 
information automatically. As the use case for remote maintenance, the authors applied 
the approach to the robot arm.

From a monitoring perspective, Casado and Eichelberger (2021) merged the standard-
ized AAS with existing components—a vendor-neutral monitoring frontend (microm-
eter) and IIoT protocols such as message queuing telemetry transport (MQTT)—on a 
runtime monitoring approach for devices and services in Industry 4.0 installations. The 
micrometer was utilized to provide runtime measures uniformly, MQTT was used for 
soft real-time streaming, while the monitoring results were shown in terms of AAS 
structures so that stakeholders were able to access the desired and monitored informa-
tion through polling. The approach facilitated access to the monitored properties for 
individual services and devices, also as a fundamental feature for efficient aggregation 
of all installation elements. Pethig et al. (2017) applied AAS as an information model on 
the PLC of a work cell for condition monitoring of a servo motor in order to enhance 
the efficiency and flexibility of adaptable cyber-physical production systems (CPPS). 
The AAS is used to simplify the integration of the work cell into services and to auto-
matically choose the right signals and configure parameters, i.e., thresholds of the maxi-
mum torque, thus shortening the time consumption. An OPC UA Client was utilized 
for the communication protocol in AAS to connect the AAS on the PLC. The authors 
concluded that the implemented AASs were able to monitor the condition of the servo 
motor and detect the exceeded thresholds. Rehman et al. (2022) implemented AAS in 
controlling the functionality of an intelligent testing process in the production system 
for small to medium enterprises (SMEs) which depend significantly on testing processes 
for their low volume but highly bespoke products. The implementation of the AAS 
involved observing the behavior change on the asset, thus directly controlling the behav-
iour of a production process. The server shell of the AAS consisted of all information 
about the related expressions, settings, parameters, and configurations of the physical 
assets to request the necessary API for executing the skills. The authors concluded that 
the presented implementation of AAS type 2 enabled a decrease in the required time for 
setting up a new testing process and for controlling the testing operation.

From an autonomy perspective, Herzog et  al. (2020) proposed architecture of an 
autonomous adapting machine (ADAM) using AAS, particularly for the use case, a 
metal sheet cutting system, in order to minimize the effort on planning, implementa-
tion, communication, and recommissioning. AAS is utilized to manage the variability 
and interoperability among the machines and components, thus performing the chang-
ing requirements automatically. Ding et al. (2021) demonstrated a technology architec-
ture based on a blockchain using the AAS model for digital management, production 
plan and process, controlling the manufacturing task, and trusted autonomous execu-
tion. They established an AAS blockchain sub-model to facilitate communication with 
the system to complete distributed authentication in real operation pertaining to the 
establishment, operation and maintenance of a workshop. Seif et al. (2019) implemented 
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AAS as a means of creating a connector between the physical world and the IIoT world 
in mini-factories. The AAS approach aimed to provide a comprehensive representation 
of the asset, including the technical functionality and the relationship with other assets. 
The methodology was demonstrated through a case study conducted at the Model Fac-
tory @ARTC (Advanced Remanufacturing and Technology Centre) in Singapore, where 
a gearbox factory consisting of three distinct processes (fabrication, warehousing, and 
assembly) was selected as the testbed. The study employed an IoT platform with RESTful 
API connectivity, enabling automatic storage and communication protocol, to connect 
the physical assets to the digital assets represented by the AAS. As a result, the factory 
manager was allowed to identify available information for specific assets and the fre-
quency of data updates. The authors argued that the methodology is highly suitable for 
the manufacturing industry towards Industry 4.0. Stock et al. (2021) applied AAS in 5G 
architecture-enabled cyber-physical production systems (CPPSs) to represent virtualiza-
tion technology. The AAS was utilized as a unifying component to confirm a consistent 
information model in the CPPS for interoperability among the integrated components, 
which was initially carried out in different ICT and operation technology (OT) fields. 
Walter et al. (2022) presented an architecture applying AAS based on RAMI 4.0 for the 
integration of cable-driven parallel robots (CDPRs) in a system of industrial cyber-phys-
ical systems (ICPS). The purpose of using AAS is to provide the information associated 
with CDPRs on the communication and information layer of RAMI 4.0 using OPC UA 
in order to realize semantic interoperability.

The deployment and advancement of new technology in Industry 4.0 add high com-
plexity. It not only relates to how the data is adequately structured and represented, but 
also to the communication methodology for exchanging the information in order to 
integrate the data from multiple vendor-based systems (di  Orio et  al. 2019). This seg-
ment has explored the advantages of applying AAS from existing studies from several 
perspectives, as seen in Table 3. Most of them address the simplicity of AAS on com-
munication, integration, connectivity, interoperability, and autonomy. These apply to life 
cycle management, production line, condition monitoring, predictive maintenance, and 
autonomous execution in manufacturing plants. Existing studies have proven that AAS 
decidedly works in terms of standardization and interoperability between automated 
industrial systems and CPSs according to Industry 4.0 (Iñigo et al. 2020). The fruitful-
ness of AAS in the manufacturing industry can significantly impact other industries, 
particularly the offshore wind industry. In the following segment, we investigate the 
greater potential of using interoperable AASs in offshore wind farms in the future.

Discussion: the interoperable digital twin framework for the offshore wind industry

The wind energy industry, including both onshore and offshore wind farms, has yet 
to incorporate digital twins based on AAS. However, with the transfer of knowledge 
regarding AAS implementation from the manufacturing industry, there is significant 
potential for the development of interoperable AAS in offshore wind farms. In this seg-
ment, we discuss the possibility of addressing the challenges faced in offshore wind 
farms (as described in “Results and discussion” and “Digital twin frameworks in off-
shore wind farms”) that had been achieved in the manufacturing sector by using AAS, 
as outlined in “Digital twin framework in the manufacturing industry”. The summary is 



Page 18 of 32Ambarita et al. Energy Informatics             (2024) 7:5 

shown in Table 4 The goal of this discussion is to explore the feasibility of applying AAS 
in offshore wind farms in order to improve efficiency and productivity. By leveraging the 
existing solutions from the manufacturing sector, we can potentially mitigate the chal-
lenges in offshore wind farms, such as high maintenance costs, limited accessibility, and 
safety concerns.

For example, Li et al. (2021) presented a digital twin of wind turbines by combining 
cloud and edge computing technology for fault prediction in general. Montoya et  al. 
(2022) established a digital twin by comparing actual data from SCADA and simulated 
data from software to be analyzed. In this case, AAS provides the automatically updated 
storage and the communication protocol connecting the real asset to the digital asset, 
something which has been investigated by Seif et al. (2019) in mini-factories. Addition-
ally, when it comes to identifying fatigue issues in particular parts, i.e. the support struc-
ture or tower (Wang et  al. 2021; Momber et  al. 2022), the gearbox (Zhao et  al. 2021; 
Moghadam et al. 2021), and the semiconductor material (Iosifidis et al. 2021), can refer 
to the study by Motsch et  al. (2021). This study is called “electrical energy consump-
tion interface in modular skill-based production systems with the Asset Administration 
Shell,” and it shows that AAS can provide a customized interface for this purpose. Pre-
dicting the failure on the device before it occurs significantly impacts the turbine life-
time and prevents the consequent downtimes. Any maintenance activities affect the 
generated power of wind turbines significantly, which in turn directly impacts revenue. 
Especially for offshore wind farms, corrective maintenance requires specific resources, 
such as vessels with a gangway, crane, and helideck, which are not always available, gen-
erating costs. Predictive maintenance is beneficial in providing an opportunity to reduce 

Table 3 Summary of the AAS implementation

Main perspective Sources Focus on

Modelling  Lu et al. (2021) Communication and information layers

 Ye and Hong (2018) Enterprise, communication, and information

 Lüder et al. (2020) Data exchange along the chain

 Panda et al. (2018) Integration of plug‑and‑produce system

 Birtel et al. (2020) The ADOMe integration

 Motsch et al. (2021) Communication system

Management  Marcon et al. (2019) Interconnection of SmartJacket sensors

 Deuter and Imort (2020, 2021) PLM/ALM integration

 Göllner et al. (2021) Generate the dynamic simulation

 Rauh et al. (2022) AI life cycle management

Maintenance  Cavalieri and Salafia (2020b) Interoperability of smart factory

 Lang et al. (2019) The connectivity of life cycle processes

 Tantik and Anderl (2017) An integrated data model

Monitoring  Casado and Eichelberger (2021) The integration patterns

 Pethig et al. (2017) The integration of CPPS

 Rehman et al. (2022) Integrating intelligence into test process

Autonomy  Herzog et al. (2020) Interoperability among machines

 Ding et al. (2021) The transparency of integrated data

 Seif et al. (2019) Automated configuration of sensor system

 Stock et al. (2021) Interoperability among components

 Walter et al. (2022) Integrate a new class in ICPS system
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wind farm maintenance costs, unexpected shutdowns, and consequent downtimes. Pre-
dictive maintenance can be carried out with the recorded database and real-time simula-
tion stored in the AAS of digital twins of offshore wind farms.

Parvaresh et al. (2020) established a digital twin of offshore wind turbines for the pitch 
angle controller pertaining to a variable wind speed control strategy for the wind tur-
bine. Meanwhile, Birtel et  al. (2020) implemented AAS in a use case where the prod-
uct can be remotely discharged within the manufacturing process due to a defective 
product. Here, AAS is used to access and communicate all components remotely and 
individually, so that a component can easily control other components. For condition 

Table 4 Summary of relevant challenges in wind farms and manufacturing sectors

Wind farms Manufacturing

Purposes Cases Sources Cases Sources AAS roles

Fault prediction 
in general

Cloud and edge 
computing tech.

 Li et al. (2021) In mini factories  Seif et al. (2019) Automatically 
update storage

Comparing 
actual and simu‑
lated data

 Montoya et al. 
(2022)

Fatigue iden‑
tification in 
particular parts

The support 
tower

 Wang et al. 
(2021), Momber 
et al. (2022)

Electrical energy 
consumption 
interface

 Motsch et al. 
(2021)

Provide a 
customized 
interface

The gearbox  Zhao et al. 
(2021), Mogh‑
adam et al. 
(2021)

Semiconductor  Iosifidis et al. 
(2021)

Condition 
monitoring and 
control

Ppitch angle 
controller

 Parvaresh et al. 
(2020)

Remotely dis‑
charged within 
the manufactur‑
ing process

 Birtel et al. 
(2020)

Remote control

In servo motor  Pethig et al. 
(2017)

Integrated com‑
ponents

In 5G architec‑
ture‑enabled 
CPPS

 Stock et al. 
(2021)

Layer integration To integrate 
the technical 
information and 
the business 
information

 Pargmann et al. 
(2018)

In the com‑
munication 
layer, integrating 
enterprise layer 
(e.g. business 
layer) and infor‑
mation layer (e.g. 
technical layer)

 Ye and Hong 
(2018)

Layer integration

Prediction/esti‑
mation

Wind speed  Hu et al. (2020), 
Li and Shen 
(2022)

Generation of 
Dynamic Simula‑
tion Model

 Göllner et al. 
(2021)

Modelling

The axial tension 
of mooring lines

 Walker et al. 
(2021)

Tower load and 
fatigue

 Branlard et al. 
(2020b), Branlard 
et al. (2020a)

Remaining use‑
ful life

 Mehlan et al. 
(2022)

Track the life 
cycle

 Marcon et al. 
(2019), Deuter 
and Imort 
(2021), Rauh 
et al. (2022)

Life cycle man‑
agement
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monitoring of offshore wind farms, the AAS can be used as an information model for 
interoperability among the integrated components as presented by Pethig et al. (2017) 
in a servo motor and by Stock et al. (2021) in 5G architecture-enabled CPPS, to increase 
the efficiency and flexibility.

Pargmann et al. (2018) explored digital twins to integrate not only the technical infor-
mation but also the business information. Ye and Hong (2018) successfully achieved this 
aim by implementing AAS, referred to as RAMI 4.0, for manufacturing processes. In 
the enterprise layer, business data is included. The information layer consists of techni-
cal data, i.e. operation and maintenance. In the communication layer, the focus is on 
the integration among these layers. This proves that the implementation of AAS has the 
potential to realize the integration between technical and business information.

The historical data from sensors stored in AAS significantly contribute to predicting 
the wind speed (Hu et al. 2020; Li and Shen 2022) and the future axial tension of moor-
ing lines (Walker et al. 2021). Branlard et al. (2020b, 2020a) presented digital twins of 
offshore wind farms in order to estimate the tower load and fatigue. Meanwhile, Göll-
ner et  al. (2021) generated the dynamic simulation model automatically based on the 
standardized and interoperable information model where all necessary data is mapped 
into the AAS structure. Moreover, by modelling wind turbine gear stages for digital twin, 
(Mehlan et  al. 2022) estimate the remaining useful life (RUL) of offshore wind farms. 
The role of AASs in life cycle management (Marcon et al. 2019; Deuter and Imort 2020; 
Rauh et al. 2022) facilitates estimating the turbine states and tracking the life cycle of the 
physical objects. Moreover, by gaining a better understanding of the life cycle of offshore 
wind farms, we can analyze the shortcomings of existing turbine models, both physical 
and digital assets, for further improvement. The simplicity of interoperable AASs ena-
bles all stakeholders to observe and analyze the condition of the devices for improved 
decision-making, hence leading to increased productivity and effectiveness.

Case study

This segment provides findings from a comprehensive investigation of a previous case 
study conducted by one of the authors in Haghshenas et  al. (2023). The case study is 
based on the Hywind Tampen floating wind farm project, developed by Equinor, which 
aimed to implement a digital twin in offshore wind farms Qaiser et  al. (2023). The 
Hywind Tampen consists of eleven floating wind turbines, generating 94.6 megawatts of 
power, that was designed to meet one-third of the yearly energy demand of five oil plat-
forms in the Norwegian North Sea. The project demonstrated a positive impact in terms 
of reducing the yearly emissions of 200,000 tons of  CO2 and 1000 tons of NOx from gas 
turbine usage (Qaiser et al. 2023).

Digital twins in the context of industry 4.0 for offshore wind farms

The previous case study established the significant potential relating to implementing 
a digital twin in offshore wind farms to predict bearing failures and thus enhance deci-
sion-making of scheduled maintenance. The study also successfully demonstrated the 
visualization of the Hywind Tampen in various formats, including a 2D Graphical User 
Interface (GUI) cloud, 3D, and augmented reality. In the current study, we visualize the 
actual weather data (such as wind speed and direction) from the Norwegian North Sea 
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where the Hywind Tampen is located. We also specifically analyze the simulation of the 
data processing and the communication protocol of how data from several sources was 
transmitted and integrated. Finally, we present an overview of how an AAS-based digital 
twin could be conceptually applied in the case study.

Data source The creation of a digital twin integrates the data from a variety of sources, 
comprising various data types, in order to generate a virtual model capable of replicating 
the behavior of real-world physical assets. Once a digital twin has been established, it 
can be utilized to generate simulations and to forecast and assess the performance of the 
corresponding physical entity. Data sources that can be utilized in the construction of a 
digital twin may include visual data, measurement data, historical data, etc (Hasan et al. 
2023). In this case study, these data sources are classified into four categories: static data, 
simulated data, live data, and historical data (Haghshenas et al. 2023).

Visualization The visualization of the case study was achieved through various means, 
namely 3D visualization, a 2G GUI cloud, and augmented reality (AR). The 3D visualiza-
tion is applied in Unity 3D, an open-source platform that enables users to easily add assets 
from an inventory to a scene and to customize scenarios by adjusting internal and exter-
nal factors. The visualization consists of wind turbines and oil rigs as the representation 
of the Hywind Tampen scenario, as seen in Fig. 3.

The system interface provides two modes for users: operator and editor mode. Both 
modes allow modification of the wind farm inventory and wind condition settings, but 
the editor mode provides greater control over system parameters and configurations, 
accessible to users with higher hierarchical levels. Users in editor mode can adjust indi-
vidual turbine settings, such as blade length, turbine efficiency, and various types of 
losses. For both modes, users can view the power and RPM outputs of a specific turbine 
on gauges and line charts. The option to map the output power of each turbine is avail-
able by selecting the “map output power” feature. Additionally, users can check the “map 
bearing temperature” feature to view the current, maximum, and minimum tempera-
ture range of each turbine’s bearing. This feature can be useful for prediction purposes, 
though it is not discussed in detail in this study.

The power generated by a wind turbine can be calculated using the equation:

Fig. 3 3D visualization of the Hywind Tampen floating wind farm



Page 22 of 32Ambarita et al. Energy Informatics             (2024) 7:5 

where P is the output power, ρ is the air density, A is the swept turbine area, V is the 
wind speed, Cp is the power coefficient, and µ represents various losses, including 
mechanical and electrical losses. This equation is used to measure the power output of a 
wind turbine. The visualization tool is designed to enable adjustments to not only wind 
speed and direction but also blade length, turbine efficiency, and losses, which impact 
the calculated power output.

The data sources utilized by the system are modifiable within four categories. 
The first category, named “Unity Data” as the static data, encompasses user-defined 
parameters established within Unity3D by the user and editor to outline specific 
scenarios and desired outcomes. Both operator and editor modes are employed in 
this category, where users define their scenarios by adding turbines or oil rigs and 
setting wind speed or direction. The second category, so-called “FMU data” as the 
simulated data, incorporates complex simulated models imported from Matlab Sim-
ulink via the FMI plugin (as detailed in “Simulation” segment) to perform advanced 
experiments within Unity3D. In the existing case study, the wind speed was set to 
fluctuate between 12 and 14  m/s to demonstrate the variation in the output power. 
Meanwhile, the present study visualizes actual weather data from the Tampen area of 
the Norwegian North Sea, between the Snorre and Gullfaks oil fields. Consequently, 
the displayed power output in the adapted case study reflects the actual generated 
power. The third, named “OPCUA Data,” consists of the real-time sensor data being 
transferred from physical to digital assets through OPC UA (Kandemir et al. 2023) (as 
detailed in the “Communication protocol” segment). This allows for real-time data 
to be analyzed in “what-if ” simulations for decision-making support. If the results 
from these “what-if ” scenarios are unfavorable, digital twins can send commands to 
the physical assets. This mode aims to implement digital twins by providing two-way 
communication between physical and digital assets. The last category, referred to as 
the “Actual Data”, encompasses historical data obtained from an actual wind farm to 
examine the semi-realistic scenarios.

The 2D visualization is implemented through a cloud-based GUI platform utiliz-
ing Node-RED (as detailed in “Communication protocol” segment) in order to display 
the live data simultaneously with 3D and AR visualizations. The 2D dashboard aims to 
facilitate accessibility to the visualization by other users across various computers and 
mobile devices, especially when changes need to be made to physical and digital assets. 
As depicted in Fig. 4, the 2D dashboard comprises gauges, charts, indicators, and input 
fields.

The previous case study presented the utilization of augmented reality technol-
ogy through the implementation of the PTC Vuforia plugin within Unity3D in order 
to improve user interaction and capabilities. By leveraging IoT technologies, users can 
access digital assets through their smartphones without the need for advanced hard-
ware. The augmented reality platform not only provides a visual display but also enables 
users to set wind farm conditions as well as in the 3D platform. The augmented reality 
platform operates in conjunction with both the 3D and 2D visualization platforms. Fig-
ure 5 provides a representation of augmented reality.

(1)P =

1

2
ρAV 3Cpµ
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Simulation The simulation segment serves as an intermediary between the data sources 
and the visualization segment, meaning that the simulation input is the data source, and 
the simulation output/result is the visualization as seen in Figs. 3, 4, and 5. It is responsi-
ble for converting raw data into internal variables that can be associated with any object 
(such as turbine, tower, and wind farm), and for managing the data service and data 
bank. In Unity3D, simulation functions process and calculate all data received from vari-

Fig. 4 2D visualization through a cloud‑based GUI platform utilizing Node‑RED (Haghshenas et al. 2023)

Fig. 5 Augmented reality visualization for the Hywind Tampen wind farm (below: the zoomed‑in view)
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ous sources using customized parameters to generate the desired output and visualize 
it in the scene. These functions are based on wind energy physics and dynamic system 
equations, and can be modified by the user to perform what-if scenarios. The param-
eters specified by the user (such as blade length and yaw angle) and the data received 
from the data sources are integrated into Unity3D functions to generate output values 
such as power and rotor speed, representing the condition of the wind farm based on 
the designed experiment or real-time data from the physical asset. Before simulating the 
complex dynamic behavior of the entire wind farm system, it is necessary to simulate each 
component using different software at the same time, a process called co-simulation (CS). 
The leading standard for exchanging dynamic simulation models of each simulated data 
is the Functional Mock-Up Interface (FMI), whose model file is the Functional Mock-up 
Unit (FMU). In this case study, we created the original model in Matlab, which supports 
the FMI standard applying FMU version 2.0 CS. This version includes a solver and sup-
ports the directional derivatives and a clarified specification (Blochwitz et al. 2012). The 
case study uses Unity3D to simulate static data by calculating and returning output based 
on user-defined data. The simulated data is imported and processed from Matlab and 
Simulink in the FMU file format through the FMI plugin. Live data from physical assets 
can be accessed by using the OPC UA protocol and Node-RED (see the Communication 
Protocol segment) to send real-time sensor data to Unity3D for processing and calcula-
tion. In order to create a realistic scenario of the wind farm, the historical data from CSV 
files are imported to Unity3D and used in the simulation functions to generate output 
measurements, including the artificial representation of bearing temperature and vibra-
tion for each wind turbine which can be set to change at user-defined intervals. Upon 
initiating Unity3D, the system begins to extract bearing temperature and vibration data 
from the CSV files and applies it to each turbine.

Communication protocol The communication protocol within the framework of Indus-
try 4.0 plays a vital role in promoting connectivity among assets, facilitating seamless 
automatic integration (Ambarita et al. 2023). This study uses a framework that combines 
OPC UA and Node-RED to connect different parts of a system. The OPC UA is leveraged 
as the primary means of facilitating horizontal and vertical communications between sub-
systems in the field layer and upper-layer entities, utilizing authenticated communication 
to establish a connection between servers and clients. The OPC UA servers are created 
using the UaExpert application, with clients able to connect to the available servers from 
various devices. Node-RED is an open-source Application Programming Interface (API) 
platform developed by IBM’s Emerging Technology Services team, and provides a wide 
range of online services for connecting physical and digital assets. All the sensor data are 
collected and connected to the Arduino board, which is connected to a PC via serial ports 
in order to transmit the measured data to the system. The collected real-time data is then 
transferred to Unity3D via the OPC UA protocol utilizing Node-RED. Within Node-RED, 
a serial port block is augmented to receive the collected data from the Arduino board 
and transmit it to the OPC UA client block, which is connected to the primary OPC UA 
server. This data can be disseminated and utilized by other OPC UA clients. Two clients 
are employed to facilitate data transfer among the available platforms. The first client, 
developed in C# within Unity3D, is utilized for communication with the 3D visualization 
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and Augmented Reality platforms. The second client, created in Node-RED, is utilized to 
receive sensor data and facilitate communication with the 2D GUI dashboard. This way, 
the sensor data can be easily accessed through cloud platforms and WiFi devices.

Discussion: interoperable digital twin solutions for wind farm applications

The current case study holds a significant opportunity for the implementation of an 
interoperable digital twin using OPC UA. The literature review in “Digital twin frame-
work in the manufacturing industry” highlights OPC UA as the recommended tool in 
the communication layer of RAMI4.0. The digital twin framework in the manufactur-
ing industry leverages the interoperability of OPC UA to facilitate data exchange and 
provide information from diverse domains of interest. Cavalieri et al. (2019) conducted 
research on an OPC UA-based Asset Administration Shell by mapping the AAS meta-
model into the OPC UA information model. The authors created ObjectTypes (such as 
AASType, AASReferenceType, SubmodelType, AssetType, and DataSpecificationType), 
DataTypes (such as Identifier, KeyType, and KeyElements), and ReferenceTypes (such as 
HasSemantic, HasConceptDescription, and IsDerivedFrom) in OPC UA to correspond 
with the asset, AAS Reference, AAS Identifier, AAS type and instance, AAS derived-
From, AAS Submodel, AAS SubmodelElement, and AssetAdministrationShell in the 
AAS metamodel.

The OPC UA Information Model standardizes how servers communicate informa-
tion to clients through the utilization of OPC UA Nodes organized within the OPC UA 
AddressSpace (Lee et al. 2017; Foundation 2017) where the values from sensors are read 
and updated (Pribiš et  al. 2021). Each OPC UA Node is classified into several Node-
Classes, such as Variable NodeClass and Object NodeClass. The Variable NodeClass 
is employed in modelling data and represents values from various sensors or from one 
sensor on several properties (such as temperature sensor from the gearbox, generator, 
hub, etc) in offshore wind turbines. To distinguish between different sources of data, 
OPC UA employs two main VariableTypes, namely the DataVariableType and Property-
Type. The Variable NodeClass includes an attribute named Value for storing data and an 
attribute named DataType for specifying the content of the attribute Value. The Object 
NodeClass acts as a container for other OPC UA Objects and Variables. In cases where 
the Object Node does not possess an attribute capable of storing a data value (e.g., the 
temperature value of a sensor), an OPC UA DataVariable Node is employed to represent 
data associated with that Object. These features of OPC UA effectively specify and map 
abundant data from various sources in accordance with AAS types and instances. Since 
offshore wind farms have sensor data from various sources concerning the variability of 
data type, variables, values, and properties, the OPC UA Variable and Object NodeClass 
function potentially addresses the mapping needs of offshore wind farms.

Cavalieri and Salafia (2020a) also presented a case study on AAS modeling a motor 
controller. The mapping applied in their case study was founded on the proof of concept 
known as the AAS Information Model, which is available free of charge on Salafia (2020). 
The authors concluded that their approach offers the advantage of automatically inte-
grating data without human intervention. Pribiš et al. (2021) proposed an AAS design 
methodology that implements an OPC UA Server at the embedded device to facilitate 
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direct data exchange between sensors and actuators, reducing integration efforts and 
computational requirements.

In order to support our analysis of implementing AAS for offshore wind farms, we 
briefly explored the AASX Package Explorer. Using a simple example, we generated 
three assets (sensor, blade, and generator) for a wind farm, marked with a yellow circle 
in Fig. 6. Each asset is assigned an AAS that represents different turbines, marked with 
a green circle. We designed submodels for the AAS named SensorTurbine1 to represent 

Fig. 6 A simple example of AASX Package Explorer for a wind farm
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sensor variables such as temperature, RPM, eddy current, displacement, and acceler-
ometer, marked with a red circle. To account for temperature sensors placed in various 
locations, we created SubmodelElements (properties) in the bearing gearbox, generator, 
and turbine shaft, as well as for other sensors based on the requirements. At the prop-
erty level, data is categorized into three types: (i) constant, a property with a value that 
does not change over time, such as a coded value, (ii) parameter, a property that is set 
once and typically does not change over time, such as a configuration parameter, and (iii) 
variable, a property that is calculated during runtime. Consequently, the sensor data is 
classified as a variable.

In Fig. 7 as marked with a purple circle, we developed submodels for the AAS named 
BladeTurbine1, based on the type of data, such as design data and material. Design data 
are comprised of several properties including NACA type, blade length and width, angle 
of attack, and others. Material submodel represents information on blade material. For 
the AAS named GeneratorTurbine1 as marked with a black circle, we created submodels 
to encompass all the data we could acquire from the generator manufacturer, such as the 
nameplate, technical data consisting of product classification and technical properties, 
documentation, electric and fluid plan such as bill of material, contact information for 
service, and identification including the supplier information. All these properties were 
classified as constant. In order to simplify and standardize information, AASX Pack-
age Explorer provides a plug-in general form for several submodels, such as document, 
nameplate, identification, image map, and technical data. This AAS feature represents an 
optimal means of facilitating asset management that encompasses data specification and 
classification.

In order to facilitate a deeper understanding of submodels, ConceptDescriptions are 
created for SubmodelElements. The semantic ID of the SubmodelElement is automati-
cally linked to the ID of the corresponding ConceptDescription. The use of a semantic 
ID for SubmodelElements is mandatory for an automatic system to identify and under-
stand the meaning of the SubmodelElements, such as units or logical datatypes. The 
semantic ID can refer to a ConceptDescription within the AAS environment or an exter-
nal repository such as IEC CDD, eClass, or a company/consortia repository. If multiple 
SubmodelElements share similar information, they will have a similar ConceptDescrip-
tion ID attached. If Submodels and SubmodelElements were created by a company or 
stored in an external repository, they can be imported from dictionaries, tables, JSON, 
CSV files, or URLs. Several interoperability options are available to support AAS, such 
as importing AutomationML into AASX, importing AAS from i4aas-nodeset, importing 
OPC UA nodeset.xml as submodel, and reading OPC values into submodel.

Moreover, there are events between the AASX Package Explorer and the AASXServer 
where the time series data are being collected and simulated. It could be the simulated 
JSON data, OPC UA, or OPC UA together with the AASXServer. Whenever plenty of 
samples are collected, new collections will be created. Through this server, data from 
OPC UA is connected to the package explorer by copying the REST IP of the server into 
the AASX Package Explorer. There is also a feature in the package explorer to order “stay 
connected”, thus in the package explorer, we receive live data from the server. It shows 
that all available menus in AASX Package Explorer contribute to the use of AAS for 
achieving interoperability as an Industry 4.0 standard.
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Conclusion
Being part of a broader study aiming for the improvement of digital twins in offshore 
wind farms, this paper set out to provide insights into and map the potential related 
to transferring the knowledge of interoperable digital twins from the manufacturing 
industry. Using a qualitative approach, we established a research approach consist-
ing of three phases, where each phase provided findings that led us to the next phase. 
Through a comprehensive literature study on the implementation of digital twins in 

Fig. 7 Submodels of blade and generator
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offshore wind farms, we discovered that the frameworks applied in offshore wind 
farms were insufficient in achieving interoperability. Meanwhile, in the manufactur-
ing industry, Asset Administration Shell (ASS) has been promoted as a promising 
framework for implementing digital twins in the standardized Industry 4.0 to perform 
interoperability. Through the case study and our investigation on the AASX Package 
Explorer, we concluded that implementing AAS should be a possible development to 
further improve digital twins in offshore wind farms, thereby achieving interoperabil-
ity under Industry 4.0 standards.

We are, however, aware that this study only presents interoperable digital twins 
in offshore wind farms conceptually. To bridge the gap between theory and prac-
tice, future studies should contribute to practically implementing AAS-based digital 
twins in offshore wind farms. Moreover, close collaboration among significant parties 
is highly recommended. This implies providing data from the project owner, open-
source implementation of AAS (Jacoby et al. 2023), and tools with flexible architecture 
as offered by FA3 ST (Stojanovic et al. 2021). Through close collaboration, future stud-
ies initiate the application of AAS type 1 for modelling purposes and subsequently 
progress to AAS type 2. This progression involves utilizing AAS type 2 for tasks such 
as condition monitoring, control, and predictive maintenance concerning time-series 
data. Implementing a practical AAS-based digital twin in offshore wind farms should 
be a desired and possible development to realize energy industry 4.0 where all assets 
and stakeholders can seamlessly connect and integrate without human intervention, 
resulting in improved decision-making and enhanced productivity.
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