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Introduction
In the global energy consumption pattern, the proportion of renewable energy is 
increasing year by year, which has become a key factor driving economic development 
and technological progress. However, the issue of accurate prediction and effective uti-
lization caused by its randomness and uncontrollability, especially during peak load 
periods, has become an urgent challenge to be solved (Ozogbuda and Iqbal 2022; Ola-
digbolu et al. 2020a). Accurately estimating peak load can assist power grid operators in 
optimizing power grid dispatch and operation management, improving economic effi-
ciency and stability of the power grid (Oladigbolu et al. 2020b; Okonkwo et al. 2022). 
This study aims to address the above challenges and propose the application of the Imi-
tator Dynamic Algorithm (IDA) for estimating the peak load of renewable energy gen-
eration. The IDA is a reinforcement learning-based method that can imitate and predict 
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peak loads of renewable energy generation by simulating various states and decisions 
during power grid operation (Odou et al. 2020; Çelik et al. 2022). The innovation lies in 
the first application of the IDA to estimate the peak load of renewable energy generation, 
opening a new research path, and for the first time introducing Inverse Reinforcement 
Learning (IRL) into practical problems of power grid operation, achieving a combination 
of theory and practice. Other existing studies have also demonstrated various innovative 
methods used to address related issues. Specifically, Su C et al. developed an accurate 
optimization model that effectively determined the hourly power generation plan of cas-
cade hydropower stations. Their results indicate that the model can optimize the short-
term power generation plan of cascade hydropower stations under different hydrological 
conditions, whether it is during dry or flood seasons, and generate considerable total 
profits (Su et al. 2020). In addition, Rao G S et al. conducted a comparative study on the 
performance of various energy storage devices in multi regional power grids, selected 
a PID controller as the secondary control, and used the differential evolution artificial 
electric field algorithm to optimize the gain, highlighting the significant impact of energy 
storage devices in joint frequency and voltage control (Rao 2020). In addition, the spa-
tiotemporal semantics and interaction graph aggregation method proposed by Fang Y 
et al. for multi-agent perception and trajectory prediction, which perceives and predicts 
traffic environments within a unified framework, has been validated to be superior to 
state-of-the-art methods (Fang et  al. 2022). The research results will increase the effi-
ciency and stability of power grid operation, reduce operating costs, and have signifi-
cant economic value. At the same time, the research results provide new ideas and tools 
for researchers in related fields, promoting the in-depth development of theoretical 
research and practical applications, and has important social significance for promot-
ing the widespread use of renewable energy and the sustainable development of power 
systems. The research will be conducted in four parts. The first part is an overview of the 
peak load of renewable energy generation based on the IDA. The second part is a model 
for studying the peak load of renewable energy generation based on the IDA. The third 
part is an experimental verification of the second part. The fourth part is a summary of 
the research content and points out the shortcomings.

Related works
The application of renewable energy is gradually increasing globally, and accurately 
estimating the peak load of these energy sources is of huge significance for the stable 
operation and optimized configuration of energy systems. Wang and other scholars 
have established a model for optimizing the short-term power generation plan of cas-
cade hydropower stations in regional power grids, with the goal of minimizing the 
peak valley load difference among multiple power grids. This model not only consid-
ered traditional hydraulic constraints, but also considered the operational constraints, 
power constraints, and head effects of a single hydraulic unit. It was transformed into 
a mixed integer linear programming through a linearization strategy. The outcomes 
showed that the model was efficient and could effectively reduce the peak valley dif-
ference between the Shanghai and Zhejiang power grids, surpassing the actual oper-
ating performance (Wang et al. 2022). Li et al. proposed a new coordinated operation 
strategy for optimizing the combination of hydropower, thermal power, and wind 



Page 3 of 18Ye et al. Energy Informatics             (2024) 7:4  

turbines, and applied this operation strategy to an improved IEEE 118 node power 
system. This optimization ensured the highest utilization rate of wind energy while 
addressing recent wind prediction errors. The presented results demonstrated the 
ability of the proposed strategy to configure operations based on multi-source energy 
systems (Li et al. 2022). Bedadi and Gebremichael designed and optimized a hybrid 
power system consisting of solar energy, micro hydropower, battery packs, and con-
verters to meet the estimated total load based on residential needs. Simulation and 
optimization were based on factors such as load demand, climate data, and the econ-
omy of system components, aiming to minimize the total net present value cost. The 
results denoted that the optimized net present value and energy cost of the system 
were 78,763.26 US dollars and 0.0757 US dollars/kWh, respectively. The HOMER Pro 
simulation software tool effectively improved the design optimization effect of off 
grid and energy management systems (Bedadi and Gebremichael 2021). Munisamy 
and Sundarajan proposed a hybrid method called MASAAI, which combined mos-
quito search algorithm and artificial intelligence technology to achieve load frequency 
control of energy storage systems in multi region hybrid power systems and renew-
able energy. By integrating renewable energy sources such as solar energy, biomass 
energy, and fuel cells into the 3-zone system, system stability and power modulation 
control have been achieved. The simulation results in MATLAB/Simulink environ-
ment indicated that the MASAAI method was superior in efficiency to existing meth-
ods (Munisamy and Sundarajan 2021). Pavankumar et al. proposed the optimal grid 
connection based on photovoltaic, wind energy, biomass energy, and batteries to 
minimize annual lifecycle costs and the probability of power supply loss. When using 
MOACS to solve the optimal HRES design problem, probabilistic methods were used 
to consider the time-varying properties of RES and load. The results indicated that 
MOACS could provide better HRES optimization design (Pavankumar et al. 2021).

In this context, load estimation technology based on IDAs has attracted widespread 
attention as it can address the uncertainty and intermittency of renewable energy sources 
such as wind and solar energy. Balmik et al. proposed a IDA recognition framework that 
improved the robot’s full body motion control ability in both single support and dual 
support stages, and achieved a 95% accuracy rate for human motion recognition. The 
experimental results expressed that the teleoperation framework had good robustness, 
providing strong support for the development and application of teleoperation robots 
(Balmik et  al. 2022). Sharath’s research team has proposed a map matching algorithm 
based on dynamic two-dimensional weights, which combined dynamic weight coeffi-
cients and road width to achieve lane level localization. The validation results showed 
that the algorithm performed excellently in identifying correct links and lane recogni-
tion accuracy, reaching 96.1% and 84% (Nottingham data) and 98.4% and 79% (Mumbai 
Pune data), respectively. The research results indicated that this algorithm could pro-
vide effective support for the application of intelligent transportation systems (Sharath 
and Velaga 2019). Maghami and Hosseini proposed a new deep reinforcement learning 
(DRL)-based analysis method for the band structure of thermoelastic wave propagation 
to optimize the design of layered phononic crystal (PC) beams. By defining the game 
of DRL agents, a DRL agent named Deep Deterministic Strategy Gradient (DDPG) was 
trained to achieve the expected band structure. The experimental results denoted that 
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this method could effectively automate the design of PCs, greatly improving design effi-
ciency (Maghami and Hosseini 2022).

In summary, current research has some limitations in peak load estimation, espe-
cially in the field of renewable energy generation, and traditional methods are difficult 
to accurately cope with its instability and unpredictability. This study proposes to apply 
the imitator dynamic algorithm, which aims to improve the estimation accuracy by more 
accurately simulating the characteristics of renewable energy output. It is expected that 
the algorithm can predict the peak load more accurately, so as to provide stronger sup-
port for energy supply management and grid reliability, and provide a new perspective 
and methodology for subsequent research.

In the field of renewable energy generation forecasting, it is crucial to accurately esti-
mate the peak load. However, due to the complex nonlinear characteristics of the data, 
the traditional long short-term memory network performs poorly in processing these 
data. This study introduces the imitator dynamic algorithm, which is able to generate 
samples close to the real situation by learning the change pattern of the data. Exten-
sive experimental tests show that with the number of iterations increasing to 200, the 
prediction accuracy of the model reaches 62.35%, which is significantly better than that 
of the long short-term memory network, although it is decreased compared with the 
initial iteration. The imitator dynamic algorithm accurately learns the unknown data 
distribution according to two metrics of probability density and cumulative distribu-
tion within 5% error, demonstrating good generalization ability and robustness. These 
research results are of great significance for predicting the actual generation capacity of 
renewable energy. It not only helps grid operators accurately predict and dispatch power 
generation, but also supports sustainable energy discovery by improving grid stability 
and promoting the utilization of renewable energy. Studies such as Wang et al. (2022) 
and Li et al. (2022) have made progress in optimizing power systems and peak load esti-
mation of renewable energy. However, these researches are usually limited in dealing 
with specific environments or small-scale systems, and have not effectively integrated 
multiple energy sources and realized dynamic prediction and scheduling in large-scale 
systems. Given these limitations, this study introduces the Imitator Dynamic Algorithm 
(IDA) to address the prediction and management challenges in complex energy systems. 
IDA has demonstrated excellent data adaptability and robustness in many fields, such as 
the research results of Balmik A and Sharath MN. We expect that IDA will show strong 
potential in accurately forecasting and managing peak loads of renewable power gen-
eration with significant uncertainty and intermittency, supporting the development of 
smart grids. The goal of the research is to improve the computational efficiency of IDA, 
expand its applicability to more complex power systems around the world, promote the 
efficiency of renewable energy, and contribute to the sustainable development of the 
power grid.

Building a peak load estimation model for renewable energy generation based 
on IDA
The study proposed a peak load estimation model combining IDA and IRL specifically for 
renewable energy generation. IDA uses the self-learning ability of environmental reward to 
adapt to uncertain energy data, while IRL optimizes the model by imitating the behavior of 
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historical data without complex reward mechanism. The model integrates VAE and GAN 
technology to generate high-quality data samples and improve the training effect under 
sparse data conditions. This approach has shown strong potential to deal with the peak load 
estimation problem of renewable energy generation both in theory and practice.

Requirement fitting of IRL algorithm and IDA based on behavioral cloning

In the estimation of peak load for renewable energy generation, it is necessary to predict 
and manage electricity demand and supply to ensure stable operation of the power system. 
It involves complex decisions and strategies, how to operate power generation equipment, 
and adjusting power generation strategies based on weather and electricity prices. The driv-
ing mechanism and laws behind this are complex and difficult to obtain directly from the 
data (Cheng et al. 2021; Liao et al. 2021). Therefore, advanced machine learning methods 
such as behavior cloning-based IRL algorithms and IDAs are needed to learn from expert 
behavior to make better decisions in response to new unknown situations. These methods 
enable research to better understand and predict electricity demand and supply, develop 
better generation strategies, improve power system operational efficiency, reduce costs, and 
enhance stability and reliability. By utilizing the IRL algorithm of behavior cloning and the 
IDA, it is possible to learn from expert behavior to optimize decision-making, understand 
and predict power demand and supply, thereby improving the efficiency and stability of 
power system operation. This is actually a form of "supervised learning". The schematic dia-
gram of supervised learning is denoted in Fig. 1.

In Fig. 1, behavior cloning corrects errors in expert examples by learning them and form-
ing a new training dataset. Reverse reinforcement learning faces the problem of multiple 
reward functions that can explain expert behavior, while maximum entropy reverse rein-
forcement learning solves this problem by using the maximum entropy model to avoid bias 
and obtain unknown reward functions. The definition of information entropy is shown in 
Eq. (1).

In Eq. (1), H(X) is the information entropy, and p(xi) is the initial state of the exam-
ple. In the estimation of peak load for renewable energy generation, the maximum 

(1)H(X) = −
n

i=1
p(xi) log (p(xi))

.. .

Fig. 1 Schematic diagram of supervised learning
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entropy principle can be applied to optimize the decision-making process. Due to the 
randomness of the environment, there may be many samples that meet feature expec-
tations, so the study uses maximum entropy distribution to describe the distribution 
of sample trajectories. This method can handle the uncertainty and noise observed 
in the examples, thereby obtaining a more accurate reward function. The maximum 
entropy IRL algorithm utilizes the maximum entropy principle to avoid any bias and 
obtain unknown reward functions. The path expression with a higher total reward for 
the maximum entropy value is shown in Eq. (2).

In Eq. (2), α is the weight of the reward function, is the partition function obtained 
by summing all paths, and is the probability reward and total reward of the paths 
under the weight, respectively. It aims to obtain the optimal parameters for an action 
α , as shown in Eq. (3).

In Eq. (3), Lα is the linear partial derivative weight value. This process is essentially 
a learning process, through which an optimal action strategy can be obtained. The 
learning process of this strategy can be seen as a cloning behavior, as it attempts to 
replicate the optimal action. Therefore, the process of reverse reinforcement learning 
algorithm based on behavior cloning is to analyze the optimal behavior strategy to 
obtain the best learning results. The process of reverse reinforcement learning algo-
rithm based on behavior cloning is shown in Fig. 2.

In Fig. 2, the IRL algorithm first utilizes behavioral cloning technology to generate 
new near optimal expert examples, and then uses the maximum entropy IRL method 
to obtain the reward function. IDAs are used to achieve dynamic matching of peak 
loads for renewable energy generation. The IDA of the renewable energy generation 
peak load is shown in Eq. (4).

(2)P(ζ |α ) = 1

Z(α)
exp (R(ζ |α ))

(3)α∗ ∝ arg max
α

Lα = arg max
α

∑n

i=1
logP(ζ |α )

Fig. 2 Process of IRL algorithm based on behavior cloning



Page 7 of 18Ye et al. Energy Informatics             (2024) 7:4  

In Eq. (4), f (G) is the dynamic equation of the application virtual resource emulator; 
B is the expected fitting function; ni is the target participating resources in the random 
matching game stage; si is the execution space in the random matching game stage; si is 
the resource return in the random matching game stage. The calculation for the success 
rate of task execution is shown in Eq. (5).

In Eq.  (5), P is the success rate of matching task execution; P is the number of suc-
cessful resource matching scheduling executions; P is the degree of resource matching 
execution, with high matching accuracy and task success rate. The resource utilization 
rate is shown in Eq. (6).

In Eq. (6), W  is the resource utilization rate; e is the total amount of utilized resources; 
E is the total amount of available resources in game matching (Atanassov 2022). The cor-
responding probability formula is shown in Eq. (7).

In Eq. (7), η is the probability of being selected during the game matching process of 
resource individuals; qij is the demand strategy after j iterations at i time, and j is the 
demand strategy distribution system. After calculating the peak load resources of renew-
able energy generation that meet the demand one by one, the result with the highest 
probability is used as the matching result. When a structure that reaches the probabil-
ity value occurs during the calculation process, the calculation is ended and used as the 
matching target. By doing so, the dynamic matching of peak loads and resources for 
renewable energy generation can be achieved.

Generation of peak load estimation for renewable energy generation based on VAE/GAN

After conducting in-depth research on the demand fitting of behavior cloning-based 
IRL algorithms and IDAs, this chapter will further explore how to use VAE and GAN 
to generate peak load estimation for renewable energy generation. The combination of 
these two methods is expected to further improve the accuracy and stability of predic-
tion, optimize the operational efficiency of the power system, and offer effective tools 
for achieving the maximum utilization of renewable energy. The study will explore how 
to optimize the estimation of peak load for renewable energy generation using VAE 
and GAN. This encoding technique creates alternative data as input features, which 
can improve the training effectiveness of renewable energy peak load estimation and 
compensate for expert example errors. With the help of Auto Encoder (AE), IRL, and 
IDAs, power demand and supply can be more accurately predicted, generation strategies 
can be optimized, power system efficiency can be improved, costs can be reduced, and 

(4)
dG

dt
= f (G) = [B(ni,N ),B(si, S),B(ui,U)]

(5)P = c

C
× 100%

(6)W = e

E
× 100%

(7)η = qijf (G)
∑

Qf (G)
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stability and reliability can be enhanced. AE is an unsupervised learning method in the 
field of machine learning, which can learn the high-dimensional distribution of input 
sample sets and perform low-dimensional feature encoding. Due to the ability of auto-
matic encoders to achieve low dimensional encoding of high-dimensional data, they can 
be used to construct new alternative data as feature representations for input data. The 
network structure of AE is shown in Fig. 3.

In Fig. 3, the encoder and decoder form an AE for encoding and decoding input sam-
ples to achieve sample reconstruction. The encoder simplifies complex input samples, 
and the decoder generates outputs that are similar to the original samples. By limiting 
the intermediate encoding dimension, data compression and feature extraction can be 
achieved, generating samples that are similar but not completely identical to the original 
sample. The combination model of VAE and GAN is shown in Fig. 4.

In Fig. 4, the VAE/GAN model combines the strong generative power of generating 
adversarial networks with the feature representation ability of VAE. During the train-
ing process, the model completes encoding, reconstruction, and discrimination of the 
samples. The model with improved structure can more effectively utilize potential fea-
tures for sample similarity measurement. VAE can refer to the feature representation 
of discriminative data and use feature level error to measure data distribution patterns. 

Fig. 3 Network structure of AE

˜

Fig. 4 The Combination model of VAE and GAN
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By utilizing more meaningful similarity measures for the reconstruction objectives, the 
VAE/GAN model can generate higher quality samples. The reconstruction and restora-
tion expression of the output sample is shown in Eq. (8).

In Eq. (8), x is the encoding of the output sample and z is the reconstructed input sam-
ple. Due to the insufficient element level reconstruction error for images and other sig-
nals with invariance, a Gaussian observation model is used, as shown in Eq. (9).

In Eq. (9), Disi(x) is the output representation of the Disi(x) th layer of the discrimina-
tor network, and x̃ = Dec(z) is the decoding sample of x . The reconstructed combined 
model is shown in Eq. (10).

In Eq.  (10), both Dec and GAN  are mapped from the input variable z to the output 
space x , and while their functions are the same, GEN  can be replaced by Dec . The train-
ing process of VAE/GAN is shown in Fig. 5.

In Fig. 5, the encoder and discriminator use a convolutional network to output sample 
the input samples through three convolutional layers. The decoder structure is the oppo-
site, including three deconvolution layers. The hidden layers of encoders, decoders, and 
discriminators all use ReLU activation functions. Considering the stable role of batch 
standardization in traditional GAN models, batch standardization has also been adopted 
in encoders, decoders, and discriminators. To generate real renewable energy scenar-
ios, the VAE/GAN model is applied to model the unknown distribution data of renew-
able energy, which is difficult to accurately characterize the randomness, volatility, and 
intermittency of wind and solar power. Both the encoder and discriminant network use 
random gradient descent to update parameters for training. The encoder achieves map-
ping from a prior distribution to the generated data space by minimizing reconstruction 

(8)
{

z ∼ Enc(x) = q(z|x )
x̃ ∼ Dec(z) = p(x|z )

(9)p(Disi(x)|z ) = N
(

Disi(x)
∣

∣Disi
(

x̃
)

, I
)

(10)L = Lprior + L
Disl
Ilike + LGAN

˜

Fig. 5 The training process of VAE/GAN
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errors, while the discriminative network is trained to distinguish between real samples 
and generated samples. Decoder parameter weighting is shown in Eq. (11).

In Eq. (11), γ is the parameter and LDisiIlike is the signal error. The Gaussian radial basis 
kernel function between matrices is shown in Eq. (12).

In Eq. (12), GAN  is the kernel function bandwidth, and then the time is estimated as 
shown in Eq. (13).

In Eq. (13), v is the asymptotic equation for v estimation.

Building a renewable energy generation peak load estimation model based on optimized 

IDA

The introduction of optimized IDAs has played a crucial role in the construction of 
peak load estimation models for renewable energy generation. Firstly, behavioral clon-
ing technology is used to learn from the operational strategies of experts to obtain pre-
liminary dynamic models. Then, through an automatic encoder, the complex dynamic 
system is dimensionally reduced to more effectively understand and predict its behavior. 
Subsequently, the optimized IDA Is used to further optimize the model, improving its 
prediction accuracy by adjusting parameters such as learning rate and iteration times. 
Finally, the optimized model will be applied to actual power generation systems to pre-
dict peak load demand and achieve more effective energy allocation and management. 
The process of building a peak load estimation model for renewable energy generation is 
shown in Fig. 6.

In Fig. 6, when establishing a renewable energy peak load prediction model based 
on the IDA, historical load data, including power generation and related environ-
mental factors, is first collected. These data are input into the algorithm for training 
and generate imitation strategies. During the training process, it may be necessary to 

(11)θDec
+←− ∇θDec

(

γL
Disi
Ilike − LGAN

)

(12)K
(

x, y
)

= exp
(

−
∥

∥x − y
∥

∥

2
/

(

2σ 2
))

(13)t̂ = MMD√
v̂

Fig. 6 Construction process of peak load estimation model for renewable energy generation
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adjust parameters to narrow the gap between predicted and actual results. Finally, the 
accuracy of the model is evaluated and tested by comparing the predicted and actual 
outcomes. In the peak load estimation system for renewable energy generation, the 
detection object signal of any peak load is denoted in Eq. (14).

In Eq. (14), Xij is the j th sampling value in the i th peak load received signal. i is the 
sampling point amount, and m refers to the received signal’s sum of sampling points. 
Based on the limit theorem, the received signal energy’s the Gaussian distribution is 
expressed in Eq. (15).

In Eq.  (15), � means the instantaneous signal-to-noise ratio at any peak load; 
N (m, 2m) denotes the Gaussian distribution of mean m and variance m . At H1 , 
N (2m(�+ 1), 2m(2�+ 1)) represents the Gaussian distribution of mean m and vari-
ance 2m(2�+ 1) . The fusion center compares the fuzzy integral values of two types 
of fuzzy integrators based on a predetermined decision strategy, and makes the final 
decision, as shown in Eq. (16).

In Eq. (16), atotal1j indicates the fuzzy integral value of the j th peak load on the H0 
fuzzy integrator, and n expresses the amount of peak loads in the entire system. The 
sum of fuzzy integral values is shown in Eq. (17).

In Eq. (17), atotal0j refers to the fuzzy integral value of the j th peak load on the H0 
fuzzy integrator, and the fusion center compares the value of the sum of the two fuzzy 
integrals of the H0 and H1 . Based on the sum of the fuzzy integral values correspond-
ing to the fuzzy integrator, the main user signal’s state is determined. When sum0 is 
greater than sum1 , the main load signal is determined not to exist. Conversely, the 
main load signal exists.

Analysis of peak load estimation for renewable energy generation based 
on IDA
The purpose of this study was to use IDAs to predict the peak load of renewable 
energy generation. Firstly, the characteristics of this algorithm was utilized for model 
training and optimization. Then, the accuracy, practicality, and stability of the pre-
dicted results were evaluated to verify the effectiveness of the model.

(14)Yj =
m
∑

i=1

∣

∣Xij

∣

∣

2

(15)Y ∼
{

N (m, 2m),

N (2m(�+ 1), 2m(2�+ 1)),

H0

H1

(16)sum1 =
n

∑

i=1

atotal1j

(17)sum0 =
n

∑

i=1

atotal0j
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Effectiveness analysis of the model optimized by IDA

After building a renewable energy generation peak load estimation model based on the 
IDA, the optimization effect will be further analyzed. The effectiveness of model opti-
mization depends on multiple factors, among which precise adjustment of algorithm 
parameters and suitable hardware and software support are crucial. For the adjustment 
of algorithm parameters, it is necessary to optimize based on the actual situation, taking 
into account factors such as model accuracy and stability. Five wind power plants and 
five solar power plants were selected for the experimental scenario. These power plants 
are located in different climate zones, deployed in diverse geographical environments 
from coastal to inland, and from plateaus to plains, providing continuous hourly power 
generation and environmental data for two years. The selection of hardware and soft-
ware should consider both performance and cost to achieve the best operational results. 
The relevant hardware and software parameters are shown in Table 1.

The core purpose of this experiment is to evaluate the accuracy of IDA in predicting 
peak loads of renewable energy generation, as well as the stability and universality of 
the model. The study compared the effectiveness of intelligent fault diagnosis networks 
optimized based on IDAs with those based on long and short-term memory (LSTM) 
networks. Firstly, it conducted experiments using the original dataset. Compare the IDA 
optimized intelligent fault diagnosis network with the LSTM based network, and record 
the average fault diagnosis accuracy of the two methods after 100, 150, and 200 itera-
tions. The data is shown in Fig. 7.

In Fig. 7, compared to the LSTM network, the proposed algorithm performed better, 
with an average accuracy significantly higher than the LSTM network. The accuracy of 
both algorithms started from zero. However, as the amount of iterations increased, the 
accuracy of the proposed algorithm quickly rose to a high level of 70.25, significantly 

Table 1 Related hardware and software parameters

Category Parameter/specification Description Value/details

Algorithm parameter Alpha Learning Rate in the imita-
tion dynamics algorithm

0.01

Num_epochs Number of training epochs 100

Batch_size Size of the mini-batch for 
stochastic gradient descent

32

Gamma Discount factor in the 
reward function

0.99

Epsilon Epsilon value for the epsilon-
greedy exploration strategy

0.1

Lambda Regularization parameter for 
the reward function

0.001

Hardware specification CPU Central processing unit Intel® Core™ i7-8700 K CPU 
@ 3.70ghz

RAM Random access memory 32 GB

GPU Graphics processing unit NVIDIA geforce GTX 1080 Ti

Software specification Operating system The software platform Ubuntu 18.04 LTS

Programming language Coding language used Python 3.7.10

Libraries/Frameworks Supporting software tools Tensorflow 2.3.0, Numpy 
1.19.5, Pandas 1.1.5, 
Matplotlib 3.3.4, Scikit-learn 
0.24.1
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surpassing the performance of LSTM networks under the same amount of iterations, 
highlighting the advantages of the proposed algorithm in fault diagnosis. However, 
when the amount of iterations increased to 200, the accuracy of the proposed algorithm 
decreased to 62.35. Despite some decline, the overall performance was still significantly 
better than that of LSTM networks. This phenomenon may be due to overfitting of the 
model as the number of iterations increased, leading to a decline in its performance on 
unknown data. The impact of data normalization on model accuracy is shown in Fig. 8.

In Fig. 8, data standardization can significantly improve the accuracy of model predic-
tion, and almost all types of faults can be accurately detected, while non standardized 
data has poor results, with only partial faults being detected. Before conducting multi 
classification tasks, it is necessary to convert the original data labels into one hot encod-
ing to make the calculation of distance between categories more reasonable. After using 
the IDA optimization, the predictive model of the power generation system has signifi-
cantly improved. Especially when predicting peak load demand, the accuracy is greatly 
improved, which is crucial for better energy management.

Analysis of load estimation results based on IDA

A detailed case study is presented to show the application of load estimation results 
based on the simulator dynamic algorithm in real solar and wind power generation sys-
tems. Each case is derived from real power system operation data, thus allowing the 
study to validate the actual performance and accuracy of the algorithm. These data not 
only demonstrate the effectiveness of the algorithm in estimating load, but also support 
the research hypothesis that through model learning, research can improve the predic-
tion accuracy of power system behavior. The load data utilized in this study are derived 
from actual solar and wind power generation systems in a certain area of China, from 
which the study has collected detailed hour-level capacity records over the past year. 
The dataset contains over 8760 records and has been quality checked and pre-processed 
to ensure accuracy and consistency. The preprocessing steps include missing values 
imputation, outlier removal, and data normalization, aiming to prepare reliable inputs 

Fig. 7 Average fault diagnosis accuracy
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for algorithm training. In practical applications, the algorithm’s estimated load results 
were consistent with the actual values, and the error range was small, effectively improv-
ing the operational efficiency of the power system. In addition, this algorithm had good 
adaptability to different types and scales of power systems, further improving its appli-
cation value. The sample load estimation results during the solar energy data training 
process are shown in Fig. 9.

In Fig. 9, there was a significant difference between the reconstructed samples of the 
VAE/GAN model and the test samples during the initial training period (as shown in 
Fig. 9a and b). As the training progressed, the model gradually grasped the real data var-
iation patterns, and the fluctuation characteristics of the generated samples gradually 
approached the real scene. In Fig. 9c and d, after 90 cycles of training, the fluctuation 
characteristics of the test samples and reconstructed samples were basically consist-
ent, proving that the data generated by this method can effectively reflect the dynamic 
behavior of real wind power data. The data showed that the fluctuation range of the 
reconstructed sample was within 1%. The samples during the wind power data training 
process were consistent with the estimated results, as shown in Fig. 10.

In Fig. 10, the reconstructed samples effectively reflected the fluctuation and intermit-
tent characteristics of wind and solar power generation. After model training, the gen-
erator could generate a large amount of data samples for statistical analysis. Based on the 
two indicators of probability density and cumulative distribution, the model accurately 
learned the unknown data distribution patterns within a 5% error range. Through the 
simulation analysis of solar and wind power generation load, the model shows an error 

Fig. 8 The impact of data normalization on model accuracy
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range within 1% in the estimation results, which is far better than the industry stand-
ard error tolerance value of 5%. Compared with traditional forecasting methods, such as 
moving average or linear regression analysis, the proposed algorithm shows more stable 
and accurate load tracking. Through statistical analysis, we further evaluate the prob-
ability density function and cumulative distribution function of the generated samples, 
which confirms the ability of the model to learn unknown data distribution.

The case study highlights the potential application of simulator based dynamic algo-
rithms in the field of solar and wind load estimation. The experiment has proven that 
this algorithm not only improves the operational efficiency of the power system, but also 
provides a new perspective for decision support in related industries. The results of this 
study lay the foundation for further applying such models in other types of renewable 
energy, and future work will explore the applicability and optimization methods of algo-
rithms in a wider range of scenarios.

The proposed load estimation method based on mimic dynamic algorithm is studied, 
and accurate load prediction is achieved in a simulated environment. The application of 
this technology in real power systems can provide critical load data for operators to help 
cope with power supply fluctuations and peak loads and ensure grid stability. In the field 
of renewable energy, the algorithm can optimize production strategies and enhance the 
flexibility of electricity market transactions. Integrated into the smart grid system, the 
algorithm will promote the accurate execution of grid scheduling and maintenance deci-
sions. The algorithm has the potential to cross industry boundaries, and can be applied 
to other fields that need precise load forecasting, such as manufacturing and retail.

Fig. 9 Sample load estimation results during solar data training process
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Conclusion
In the prediction of renewable energy generation, peak load estimation is crucial, but 
traditional LSTM networks have poor performance in handling complex nonlinear 
data. To address this issue, the study introduced the IDA as a new prediction tool. This 
algorithm is based on real data and generates samples that are close to real scenes by 
replicating their change patterns. The results indicated that as the amount of iterations 
increased, the prediction accuracy of the algorithm quickly increased to 70.25%, sig-
nificantly surpassing the performance of LSTM under the same amount of iterations, 
highlighting the advantages of the algorithm in fault diagnosis. In addition, by convert-
ing the original data labels into one hot encoding, the calculation of distance between 
categories was more reasonable, thereby improving the accuracy of multi classification 
tasks. After 90 cycles of training, the fluctuation characteristics of the test samples and 
the reconstructed samples were basically consistent, proving that the data generated by 
this method can effectively reflect the dynamic behavior of real wind power data, and 
the fluctuation range of the reconstructed samples was within 1%. Although in renew-
able energy generation forecasting, IDA shows the advantages of dealing with complex 
nonlinear data and significantly improves the accuracy when iteration increases, this 
forecasting tool may face challenges in extreme climate conditions. IDA is able to gener-
ate high accuracy predictions for standardized data and general patterns of fluctuations, 
but it is not guaranteed to be effective in extreme climate scenarios. The difficulties of 
data collection caused by extreme weather, the weakening of model adaptability and 

Fig. 10 The samples in the wind power data training process are consistent with the estimated results
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the decrease of prediction reliability are the main limitations faced by IDA. In addition, 
IDA relies on existing data to learn and generate samples. If the existing data is not suf-
ficient to cover all potential power generation patterns and environmental conditions, 
the generated samples may not fully reflect the actual complex diversity. Therefore, 
future research needs to expand the coping scope of IDA, including better learning of 
data change patterns under extreme weather, and exploring the possibility of introduc-
ing more diverse data sources to enhance the robustness and application breadth of the 
model in different scenarios.
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