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Abstract 

This paper introduces an univariate application‑independent set of load profiles or time 
series derived from real‑world energy system data. The generation involved a two‑step 
process: manifolding the initial dataset through signal processors to increase diversity 
and heterogeneity, followed by a declustering process that removes data redundancy. 
The study employed common feature engineering and machine learning techniques: 
the time series are transformed into a normalized feature space, followed by a dimen‑
sionality reduction via hierarchical clustering, and optimization. The resulting dataset 
is uniformly distributed across multiple feature space dimensions while retaining typi‑
cal time and frequency domain characteristics inherent in energy system time series. 
This data serves various purposes, including algorithm testing, uncovering functional 
relationships between time series features and system performance, and training 
machine learning models. Two case studies demonstrate the claims: one focused 
on the suitability of hybrid energy storage systems and the other on quantifying 
the onsite hydrogen supply cost in green hydrogen production sites. The decluster‑
ing algorithm, although a bys study, shows promise for further scientific exploration. 
The data and source code are openly accessible, providing a robust platform for future 
comparative studies. This work also offers smaller subsets for computationally intensive 
research. Data and source code can be found at https:// github. com/s‑ guent her/ estss 
and https:// zenodo. org/ recor ds/ 10213 145.
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Introduction
This paper proposes a set of load profiles represented as time series data in the con-
text of energy systems. The aim is to enable researchers to test and benchmark method-
ologies and algorithms. Additionally, the data set facilitates a deeper understanding of 
researchers’ specific problems.

Given the imparative to transition from fossil-based to renewable energy systems, 
energy systems are currently a critical area of research, resulting in significant altera-
tions in the energy system landscape (Proedrou 2021; Grandjean et al. 2012; Sandhaas 
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et al. 2022; Meinecke et al. 2020a; Intergovernmental Panel On Climate Change (Ipcc) 
2023). Numerous methodologies and algorithms have been proposed to enhance renew-
able energy systems (Meinecke et al. 2020a, 2020b; Ammari et al. 2022; Olatomiwa et al. 
2016; Yang et al. 2018). Examples include component sizing optimization in wind, pho-
tovoltaic, diesel, and battery systems; energy management design; self-consumption 
rate optimization; schedule optimization of flexible loads; or topology optimization in 
distributed microgrids (Ammari et al. 2022; Olatomiwa et al. 2016). These methodolo-
gies and algorithms target various objectives, such as increasing performance, lifetime, 
efficiency, or reliability and decreasing costs or system size (Olatomiwa et al. 2016; Yang 
et al. 2018; Anoune et al. 2018).

Methods and algorithms require data to determine and quantify their effectiveness 
(Proedrou 2021; Grandjean et al. 2012; Sandhaas et al. 2022; Meinecke et al. 2020b; Hulk 
et al. 2018). Comprehensive testing is essential and must involve both parameter sensi-
tivity and input data sensitivity. Parameter sensitivity is often evaluated using methods 
like Monte Carlo simulations (Brandt et al. 2023), whereas input data sensitivity analysis 
for methods and algorithms necessitates a variety of input data types.

Studies on methods and algorithms in energy systems can be classified into three cat-
egories: (a) studies that use only one load profile, providing only qualitative or indicative 
results; (b) studies that utilize a few load profiles, which could be either real, artificial, or 
both, offering a better but still incomplete understanding; and (c) studies that conduct a 
methodicaly comprehensive input data analysis (Proedrou 2021; Meinecke et al. 2020b).

An issue is that even studies classified under category (c) can yield biased and non-
representative results, thereby making a quantitative performance assessment elusive. 
Moreover, specialized data sets limit the reusability and comparability of results across 
different studies. Boundary conditions, such as when algorithms perform optimally or 
fail, are indeterminable. Data often lacks reproducibility due to confidentiality in indus-
trial settings (Meinecke et al. 2020a; Sandhaas et al. 2022) or privacy concerns in resi-
dential setups (Proedrou 2021; Sandhaas et al. 2022; Meinecke et al. 2020a).

A viable solution is providing a representative open-source data set, an objective that 
has attracted increasing interest since 2005 (Proedrou 2021). Prior tools, methods, 
and data sets that provide or generate load profiles have been proposed. These mainly 
encompass residential, commercial, municipal load profiles (e.g. Pflugradt et al. (2022); 
Staudt et  al. (2018); Tjaden et  al. (2015); Wang and Hong (2020); Team (2022); Islam 
et  al. (2020); Anvari et  al. (2022); Marszal-Pomianowska et  al. (2016); Fischer et  al. 
(2015); Widén et al. (2009); Armstrong et al. (2009); McLoughlin et al. (2015); Granell 
et al. (2015); Grandjean et al. (2012); Wilson et al. (2021); Angizeh (2020); Meier et al. 
(1999); Park et  al. (2019); Lindberg et  al. (2019)), industrial load profiles (e.g. Braeuer 
(2020); Huber et  al. (2019); Gotzens et  al. (2020); Sandhaas et  al. (2022); Binderbauer 
et al. (2022); Angizeh (2020); Meier et al. (1999)), electric vehicle load profiles (e.g. André 
(2004); Giorgi et al. (2021); Sorensen et al. (2022)), grid and microgrid load profiles (e.g. 
Behm et al. (2020); Meinecke et al. (2020a, 2020b)) and renewable energy load profiles 
(e.g. Pfenninger and Staffell (2016); Staffell and Pfenninger (2016)).

Methods to derive these data sets typically include augmentation (e.g. Tjaden et  al. 
(2015); Meier et al. (1999)), behavior/agent-based techniques (e.g. Pflugradt et al. (2022); 
Hoogsteen et  al. (2016); Widén et  al. (2009); Armstrong et  al. (2009)), probabilistic/
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stochastic approaches (e.g. Anvari et al. (2022); Marszal-Pomianowska et al. (2016); Fis-
cher et  al. (2015); Sandhaas et  al. (2022); Giorgi et  al. (2021); Sorensen et  al. (2022); 
André (2004)), clustering/segmentation (e.g. Islam et  al. (2020); McLoughlin et  al. 
(2015); Granell et al. (2015); Sandhaas et al. (2022); Binderbauer et al. (2022); Park et al. 
(2019); Kim et al. (2018)), regression (e.g. Gotzens et al. (2020); Lindberg et al. (2019)), 
Artificial Neural Networks (e.g. Wang and Hong (2020); Behm et al. (2020)), and physi-
cal simulations (e.g. Wilson et al. (2021); Pfenninger and Staffell (2016); Staffell and Pfen-
ninger (2016)).

Notably, the scope of the papers listed is not exhaustive. For a more in-depth review, 
metastudies that investigate available data are available, and the reader is referred to 
them (Proedrou 2021; Grandjean et  al. 2012; Sandhaas et  al. 2022; Meinecke et  al. 
2020a).

In the context of this study, the hctsa package is particularly noteworthy (Fulcher 
et al. 2013; Fulcher and Jones 2017; Fulcher et al. 2023). It assembles an interdisciplinary 
representative set of data across various scientific fields, curiously neglecting energy 
data. This set is derived from a superset of data by equally weighting various scientific 
domains (Jones et  al. 2021; O’Hara-Wild 2023). The present study shares some meth-
odological similarities with hctsa and will delve into these later.

Each of the existing data sets offers unique value but is also highly specific, posing 
challenges for universal applicability across a wide array of individual studies. These 
challenges stem from various factors such as varying size, temporal and spatial resolu-
tion, presence of data gaps, level of data aggregation, intended use case, and generation 
methodology (Proedrou 2021; Meinecke et al. 2020a). Moreover, many of these studies 
aim to generate high-quality data for specific applications, leading to solutions that yield 
insights unique to those applications. By nature, this application specificity constrains 
the feature space and the diversity of the data, which may be adequate for algorithms tai-
lored to specific applications. The present work acknowledges the value of these special-
ized data sets and does not intend to render them obsolete. Instead, it aims to address a 
different gap, recognizing that this makes the value of this work also highly specific.

The objective of this paper is to propose a carefully curated set of application-inde-
pendent load profiles for use as input data to be able to quantify the impact of input 
data on various methodologies and algorithms. As a byproduct, the paper also intro-
duces a declustering methodology to create this set. The dataset is derived from real-
world energy system data and modeled to manifest high diversity and low-discrepancy. 
In other words, the integral features of the time series in this set span a broad range 
while retaining typical time and frequency domain characteristics inherent in energy 
system load profiles.

As a result, the present study delivers generalized univariate data, facilitating over-
arching, application-independent insights. Depending on the specific research question, 
the data set can be utilized as a standalone resource or as supplementary input data to 
draw additional conclusions. In particular, the data set aims to enable researchers to 
address questions such as identifying the requisite time series features for high perfor-
mance of methodologies and establishing correlations between time series features and 
performance. Two case studies substantiate the effectiveness and value of this dataset: 
one focused on hybrid energy storage systems and another on hydrogen production 
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sites. The paper also provides a general guide on the dataset’s usage. Associated with this 
study is a git-project that offers the source code and additional material. These resources 
can be accessed at https:// github. com/s- guent her/ estss. The datasets associated with the 
study are also available at https:// zenodo. org/ recor ds/ 10213 145.

The paper is structured as follows: "Methodology" section outlines the methodology 
to derive a low-discrepancy dataset, detailing the desired properties and the algorithm 
employed; "Resulting Sets of Time Series" section presents the resulting datasets; "Appli-
cation and Usage" section demonstrates the claims through case studies and provides 
general usage information; and "Summary" section offers a summary and outlines future 
work.

Methodology
First, the desired properties of the data set are delineated, and an overview of the meth-
odology is provided. This overview sets the stage for the forthcoming subsections, which 
delve into time series features, the initial dataset, and the manifold and decluster steps of 
the proposed methodology.

Data set specification and method overview

In this study, the terms time series, load profile, and signal are used interchangeably and 
will henceforth be referred to as time series. This term is predominantly used in machine 
learning methods in contrast to load profile from energy engineering or signal from 
information technology and electronics, and the methods employed in this research pri-
marily draw upon machine learning paradigms.

A time series can be characterized by various scalar features such as the mean or root 
mean square, among others. The subsequent subsection comprehensively introduces 
these features. Multiple features form an n-dimensional feature vector, mapping each 
time series to a point in an n-dimensional feature space. Consequently, a set of multiple 
time series forms a point cloud within this feature space.

A key advantage of representing a set of time series in feature space is that it imposes 
order on an otherwise unordered set of time series in the time domain. This order is 
beneficial for uncovering functional relationships or correlations between the outcomes 
of various methodologies and a given time series feature. To elaborate: a methodology 
may calculate a scalar result for a given time series, such as the minimum required stor-
age dimension. Such a result can be assigned to each time series in a set, and without 
features for ordering, only basic descriptive statistical measures like mean, minimum, 
maximum, and quantiles can be derived. However, the imposed order in the feature 
space enables plotting these results against a feature, thereby revealing potential correla-
tions. Notably, these identified correlations are independent of the specific set and are 
generalizable, in contrast to statistical measures that are only valid for the particular set 
under consideration.

The objective is to generate a set of time series that is approximately uniformly dis-
tributed within a defined boundary in the feature space, essentially seeking a low-
discrepancy set of points (Kuipers and Niederreiter 2006; Drmota and Tichy 1997). 
Figure 1 exemplifies this objective. Figure 1a presents an arbitrarily distributed set in 
a 2D-plane, where an accumulation or cluster is noticeable in the upper-left corner, 
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and a sparse region is apparent in the right half. Figure 1c displays the same distribu-
tion but as an n-dimensional histogram. In this representation, each row corresponds 
to the distribution of a single dimension, depicted as a color-coded histogram. The 
cluster or accumulation is evident in both dimensions, characterized by densely pop-
ulated bins on the left and sparsely populated bins on the right (darker shades indi-
cate more densely populated bins). On the other hand, Fig. 1b and Fig. 1d illustrate 
a set that is uniformly distributed. Specifically, the points are evenly spread across 
the 2D-plane in Fig. 1b, while the histograms in Fig. 1d contain approximately equal 
numbers of points within each bin. These properties of uniform distribution extend to 
the n-dimensional set, as well.

The advantages of employing this uniform set over an arbitrary set are multifold. An 
arbitrary set tends to occupy a smaller volume within the feature space, limiting the 
scope of feature-bounds and potentially obscuring underlying relationships. Moreover, 
such sets are often highly clustered, increasing computational time and leaving sparse or 
empty regions in some feature-ranges, concealing functional relationships and widening 
confidence intervals.

The desired set of time series shall have additional characteristics.

• It should comprise time series with both varying and constant signs, each forming a 
subset of equal size.

• Both subsets, as well as their union, shall be uniformly distributed within the feature 
space.

• Furthermore, the integral of each time series should peak in the beginning at time 
t = 0 and reach its minimum at the last time step t = tend , to simplify problem for-
mulations for methodologies using this data, by establishing known boundary con-

Fig. 1 Distribution of time series in feature space. a arbitrary distribution with evident clustering in 
2D‑plane; c same distribution visualized as n‑dimensional histogram. b desired uniform distribution with 
low‑discrepancy in 2D‑plane and d its corresponding representation as n‑dimensional histogram
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ditions without sacrificing generalizability. For instance, this mimics an entire dis-
charge cycle in energy storage applications.

• Each time series is discrete and shall consist of 1000 unitless points, serving as a 
trade-off between the informational content of a time series and the computational 
load for methodologies that utilize the data.

• Further, the time series are normalized to a maximum absolute value of one.
• Different sizes of time series sets shall be made available, each adhering to the above 

conditions. These sets will be defined to have sizes of 4096, 1024, 256, and 64 points, 
enabling users to balance computational complexity against resolution.

• The smaller sets shall be subsets of the larger ones.

Figure 2 schematically outlines the algorithm for obtaining the desired set of time 
series. The first step, detailed in "Initial Time Series" section, involves assembling an 
initial set of time series collected from various domains. This set is highly clustered 
within the feature space with several empty regions, as depicted in the lower portion 
in Fig. 2a. "Time Series Features" section  introduces the features that form this fea-
ture space. In the second step, elaborated in "Manifold Step" section and represented 
in Fig. 2b, the set is manifolded through various transformations. These transforma-
tions involve the recombination of time series through methods such as superposi-
tion and concatenation. Additional transformations are achieved by applying various 
signal processors such as compressors and limiters. The resulting manifolded set 
retains high levels of clustering. However, a small share of time series now populates 
the entire range of the feature space.

Finally, the set is declustered and pared down to the desired number of time series. 
This process, described in "Decluster Algorithm" section and represented in Fig. 2c, 
involves selecting time series uniformly across the feature space, thus eliminating any 
existing clusters. The decluster step results in a set with the desired properties.

Transforming time series data into feature space is a prevalent step in data pipelines 
in machine learning (Fulcher et  al. 2013; Hastie et  al. 2009). While transformation 
into feature space is commonly used in literature to cluster data into distinct groups 

Fig. 2 Outline of the algorithm for generating a heterogeneous and low‑discrepancy set of time series 
through three main steps: a Assembly of an initial set of time series from various domains (detailed in "Initial 
Time Series" section) that is highly clustered in feature space (introduced in "Time Series Features" section); b 
Manifold this set through recombination and modification (detailed in "Manifold Step" section). Clusters are 
retained; and c Decluster this set by finding a low‑discrepancy subset from the previous superset (detailed in 
"Decluster Algorithm" section)
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(Ismail Fawaz et al. 2019), the current study employs it to decluster data. This is achieved 
by populating sparse volumes and alleviating dense volumes within the feature space.

Some efforts towards declustering or anticlustering can be found in Mishra et  al. 
(2017); Späth (1986); Valev (1998), but the state-of-the-art methodology stems from the 
anticlust package (Papenberg and Klau 2021; Brusco et al. 2020; Papenberg 2023). The 
method constructs subsets from the main set, where each subset is internally dissimilar 
but maximally similar to other subsets. It is based on a modified or inverted version of 
the k-means algorithm. In both anticlust and our approach, the goal is to maximize the 
dissimilarity within each subset. The key distinction lies in the composition of the final 
set. In anticlust, the union of subsets creates the main set, thereby preserving the overall 
density distribution albeit with fewer total elements.

In contrast, our method selects a single subset and discards the rest, which equal-
izes the density across the feature space. Consequently, anticlust can be considered an 
advanced form of stratified sampling, while our declustering approach transforms the 
shape of one distribution into another – in this work, a uniform distribution, although 
the methodology is extendable to other shapes. Furthermore, anticlust focuses on maxi-
mizing dissimilarity solely based on the four statistical moments, while the present study 
aims to maximize dissimilarity across a broader range of features.

Time series features

In the context of time series analysis, a feature maps a time series to a scalar value. 
Numerous features have been defined in the literature, and for this study, we compile a 
list of features derived from various sources. The hctsa package provides the most com-
prehensive collection, defining over 7700 features (Fulcher et al. 2013). However, many 
of these features stem from the same method but with different parameters, such as the 
autocorrelation with 100 different lags. The catch22 package reduces this dimensionality 
to 22 features without a significant sacrifice in classification accuracy (Lubba et al. 2019).

Several other toolboxes for feature-calculation exist, including kats (Jiang et al. 2022), 
tsfresh (Christ et  al. 2018), tsfel (Barandas et  al. 2020), theft (Henderson and Fulcher 
2022), feasts Ravi et al. 1994, and tsfeatures (Hyndman et al. 2023). In this study, we only 
consider those available in Python, namely kats, tsfresh, tsfel, and catch22 and comple-
ment some features manually taken from Wang et al. (2015). After removing duplicates, 
redundancies, and features that require arbitrary parameters, the total number of unique 
features is reduced to 119 from an initial 255 base features without variants. This list 
includes simple features like mean, standard deviation, and root mean square, as well 
as more complex ones such as the lag of the first minimum of the autocorrelation func-
tion or the goodness of exponential fit to embedding distance distribution. A summary of 
the features used and a detailed discussion of the selected and dismissed features can be 
found in the additional material.

These features serve two distinct purposes within the methodology. A dimensionally-
reduced set is used to build the feature space, in which the time series should be uni-
formly distributed. Meanwhile, the complete set is employed in the analysis to correlate 
results and identify functional relationships.
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Initial time series

The starting point for the methodology is an initial data set. This data set comprises 
time series from various domains, including photovoltaic systems, wind farms, resi-
dential, commercial and municipal buildings, microgrids and grids, industrial loads, 
machine tools, production plants, real-world and artificial driving profiles, as well as 
train and tram load profiles for both onboard and substation systems. This compilation 
aligns with the literature presented in the introduction section. The lengths of these time 
series range from 420 to approximately 2 ×106 , with temporal resolutions varying from 
milliseconds to hourly aggregation. The values of the measured quantities span from 
1 ×10−2 to 400×106 . However, both the temporal resolution and absolute value of the 
measured quantities are irrelevant due to subsequent normalization.

The utilized time series data set includes confidential information. To maintain confi-
dentiality while ensuring accessibility, a randomized, sectionized, and normalized deriv-
ative of this data set is created. This derivative is constructed by extracting randomly 
located sections of varying lengths from the raw data, resampling them to 1000 points 
via a piecewise cubic Hermite interpolating polynomial (Fritsch and Butland 1984), and 
normalizing them to a mean of zero and a maximum absolute value of one. The range 
of section lengths is manually determined for each time series to capture characteris-
tic shapes within the complete time series while avoiding over- or under-sampling. The 
resulting time series set is made publicly available in the additional material to ensure 
transparency and reproducibility of subsequent steps and results.

After the selection and normalization processes, the initial data set contains 
211 = 2048 time series. A random selection of 32 time series from this set is illustrated 
in Fig. 3 to provide a visual overview of the data set’s diversity. The depicted time series 
exhibit a wide range of time- and frequency-domain characteristics.

Manifold step

A series of modifications manifold the initial data set: recombination via concatenation 
and superposition, application of signal processors, and fixing boundary conditions. The 
objective is to increase the diversity and variance within the feature space. The adopted 
manifold approach has been empirically derived to meet this objective.

Time series recombination

The recombination step involves two substeps: concatenation and superposition. The 
first substep, concatenation, employs the initial set of time series. A random selection of 
random count time series is made, from which a new subsection is extracted with a var-
ying length and location. These subsections are then resampled to a different length and 
concatenated into a single time series. The resulting time series is resampled and nor-
malized again. The parameters used for this substep have been empirically determined 
and are documented in the additional material.

The second substep, superposition, involves the random selection of random count 
time series from both the selection and concatenation pools. A randomly chosen scalar 
then scales each time series. Superposition is achieved by summing up the scaled time 
series at each time step. The resulting time series is again resampled and normalized. 
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Parameters for this substep have also been empirically determined and are documented 
in the additional material.

Both substeps, concatenation and superposition, are implemented to augment the 
diversity of the entire set. In energy systems, these abstract operations can be inter-
preted in functional terms. Concatenation can model a state change within a system, 
while superposition can represent various operational equipment contributing to a com-
mon electrical bus.

The data set manifolds to 213 = 8192 time series after concatenation and 215 = 32768 
points after superposition.

Time series modifications

The recombined data set containing 32,768 time series is further manifolded by apply-
ing a chain of base signal processing operations to each time series. These operations 
include invert, expand, compress, curtail, shift, and time distortion. Table 1 presents an 
overview of these operations.

These base operations are concatenated in a chain with random sequence, random 
parameters, and random count to modify a given time series. Each base operation may 
be selected twice based on a predefined probability, and the list of realized operations in 

Fig. 3 A random selection of 32 time series of the initial set. A huge variety in time‑ and frequency‑domain 
characteristics is apparent
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the chain is shuffled. Subsequently, the time series are normalized to a maximum abso-
lute value of one after each operation. Exemplarily, the chains could appear as

• compress: 0.70 |> expand: 2.17 |> invert |> curtail bot-

tom: 0.14 |> shift: 0.65 |> curtail top: 0.24 or
• curtail mid: 0.09 |> shift: 0.23 |> compress: 0.62 |> 

expand: 1.58

where the number following the colon indicates the randomly selected parameter and 
the |> symbol denotes a pipe, which passes the output of the left-hand side function 
into the right-hand side one. The mean length of the chains based on selected probabili-
ties is 4.9 with a standard deviation of 1.7. The parameters and probabilities for these 
operations are empirically selected to ensure a high variance in the time domain repre-
sentation of the input time series, while preventing the time series from degenerating 
to a constant value for the majority of the time. The details are documented in the addi-
tional material.

Table 1 Time series modifications with corresponding equations and exemplary behaviour on a 
sine‑wave

Invert y(t) = −x(t)

Expand
y(t) = xa(t) for x(t) ≥ 0

−xa(t) for x(t) < 0

Compress see expand

Curtail
y1(t) =

�

x(t) for x(t) ≤ a
a for x(t) > a

y2(t) =
�

−a for x(t) ≤ −a
x(t) for x(t) ≥ −a

y3(t) =







x(t)− c/2 for x(t) ≥ a/2
x(t)+ c/2 for x(t) ≤ a/2
0 otherwise

Shift + Normalize y(t) = x(t)+a
max |x(t)+a|

Time Distort y(t) = x(τ ) with τ = f (t)
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The inclusion of these operations is motivated by several considerations. Curtailment 
is often encountered in energy systems due to equipment limitations or direct cur-
rent (DC) bus restrictions. The shift operation reintroduces a DC component or offset 
removed during earlier normalization. Inversion is included, as the sign of the power 
flow often depends on its definition. Expand, compress, and time distortion, although 
not directly corresponding to operations in energy systems, are mainly included to aug-
ment the diversity of the time series pool. They may also result from energy manage-
ment system rules and control inputs.

For each time series in the recombined set, 16 variations are created through randomly 
generated chains of operations, leading to a total of 219 = 524288 time series.

Fix boundary conditions

As stipulated in the data set specification in "Data Set Specification and Method Over-
view" section, each time series should have its maximum integral value at t = 0 and min-
imum at t = tend . Consequently, the integral of any intermediate positive values must 
not exceed the integral of the prior time series. Furthermore, a time series must not start 
or end with positive values.

Figure 4 elucidates this issue and the principle for its resolution. Figure 4a presents the 
original, arbitrary time series in the time domain, depicted in grey, along with its corre-
sponding integral shown in Fig. 4b. The maximum and its time stamp of this integral are 
identified. A negative offset is subsequently added to the original time series, spanning 
from the start to the identified time stamp, as indicated by the hatched area in Fig. 4a. 
The area of this offset equals the maximum of the integral. This offset is added as a sinu-
soidal quarter-wave rather than as a constant value, thus ensuring a smooth alteration 
of the time series shape instead of introducing a harsh step. If necessary, these steps are 
repeated.

Fig. 4 Principle on how to fix the boundary conditions of a time series, so that the integral does not exceed 
zero. a shows the time series and b the corresponding integral. Determine the maximum integral of the grey 
input time series and superpose a sine‑quarter‑wave with the same integral to the beginning of the original 
time series to gain the dark‑blue and dashed output time series
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Decluster step

This section outlines the decluster step, beginning with some preprocessing measures, 
followed by the problem definition for the decluster algorithm. Finally, the algorithm 
designed to solve the previously defined objective is discussed.

Preprocessing

Preparation steps include normalization in both the time domain and the feature space 
and dimensionality reduction of the feature space. The time series are normalized to a 
maximum absolute value of one with a non-zero mean. The non-zero mean poses a chal-
lenge since some features are sensitive to the mean and the standard deviation (Fulcher 
et al. 2013). A common approach to mitigate this issue involves z-score normalization of 
the time series prior to feature calculation, given by the formula (Fulcher et al. 2013)

where x(t) denotes the mean and σx(t) the standard deviation of the time series x(t). This 
approach is also employed in previous works (Fulcher et al. 2013; Lubba et al. 2019), and 
the features calculated using z-scored data are documented in the additional material.

The feature space is also normalized as each feature vector across the time series set 
can possess highly differing ranges and skewed distributions, potentially with outliers. 
Differing ranges and outliers are a concern because distance measures in the feature 
space will overly emphasize features with large ranges (Murphy 2013; Hastie et al. 2009). 
A common method to address this is to normalize the feature vector, too (Murphy 2013; 
Hastie et al. 2009). In this study, an outlier-robust sigmoidal transformation is employed, 
given by Fulcher et al. (2013)

where f denotes the vector of a single feature of all time series of the data set, median 
denotes the median and iqr denotes the inter-quartile range. This nonlinear transforma-
tion maps an unbounded feature space to the interval [0, 1], approximately maintaining 
linearity within the inter-quartile range and compressing outliers to the interval bounds. 
This method is similar to the logistic sigmoid but is robust due to its dependence on the 
median and inter-quartile range instead of mean and standard deviation (Fulcher et al. 
2013).

The choice of normalization directly impacts the ensuing algorithm’s objective of uni-
formly distributing points within a nonlinear space. When mapped back to linear space, 
the nonlinearity leads to a thinning out of points in the boundary regions. However, this 
is considered acceptable because most of the feature space remains densely populated, 
and the alternative, dismissing outliers, would result in information loss.

Following normalization, dimensionality reduction becomes essential. In this study, 
a 119-element feature vector represents each time series, creating a 119-dimensional 
feature space. The ambition to establish a uniformly distributed set in such a high-
dimensional space encounters challenges due to the curse of dimensionality (Houle et al. 

(1)ỹ(t) = x(t)− x(t)

σx(t)

(2)f̂ =
(

1+ exp

(

− f −median(f)

1.35 · iqr(f)

))−1
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2010). With increasing dimensions, the feature space becomes sparser, necessitating an 
exponentially larger number of points for adequate coverage. Additionally, traditional 
distance measures become less meaningful, computational complexity proliferates, and 
redundant or irrelevant attributes introduce noise (Duda et al. 2001; Witten et al. 2017).

To address these issues, this study adopts dimensionality reduction techniques that 
retain only the most relevant dimensions, eliminate highly correlating dimensions, and 
consequently reduce noise and absolute dimensions within the feature space (Duda et al. 
2001; Witten et al. 2017). To accomplish dimensionality reduction, a hierarchical clus-
tered correlation matrix is utilized (Müllner 2011; Bar-Joseph et al. 2001), a method also 
employed in prior works (Fulcher et al. 2013; Lubba et al. 2019). This approach computes 
the Pearson correlation between all features and arranges them in a matrix such that 
highly correlated features are adjacent.

Figure  5 presents this clustered matrix, framing 14 clusters with orange squares. 
Within each cluster, features are sorted by their correlation strength to other features in 
the same cluster. The representative feature for each cluster is indicated with an orange 
square on the diagonal and is generally the feature with the highest intra-cluster cor-
relation. Exceptions are made when a different feature demonstrates a significantly 
lower correlation with outer-cluster features or is easier to interpret while maintaining 

Fig. 5 Hierarchical clustered correlation matrix employed for dimensionality reduction, (cp. Fulcher 
et al. (2013); Lubba et al. (2019)). Fourteen clusters, outlined with orange squares, emerge from the 
original 119‑dimensional feature space. Color encodes modified pearson correlation between features. 
Representative features for clusters are marked on the diagonal. These are (from top left to bottom right): 
temporal_centroid, loc_of_last_max, dfa, rs_range, mode5, share_above_mean, iqr, mean, rcp_num, 
acf_first_zero, median_of_abs_diff, freq_mean, mean_2nd_diff, trev. See the additional material for more 
information
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comparable performance. This study further refined the correlation matrix to include 
non-linear correlations. Specifically, matrices for 1/x, 

√
x , and x2 correlation are also 

computed. The final combined correlation matrix takes the maximum correlation value 
from these individual matrices. The 14 selected cluster representatives (cp. Fig. 5) deter-
mined in this phase form the prerequisite for the subsequent step.

Problem definition

A low-discrepancy subset shall be extracted from a superset in n-dimensional space, 
which in this case comprises 14 feature-dimensions. The optimization problem can be 
stated as follows:

Given a search space set M consisting of m points – specifically, the manifold 219-ele-
ment time series set in this context – in n-dimensional space, the objective is to find 
a low-discrepancy subset  K containing k points, where k < m , that minimizes the 
functional

where rij is the distance metric (euclidean, manhattan, etc.) between two points i and j in 
the subset K . This problem is akin to a variant of the k-minimum-spanning-tree problem 
and has been proven to be NP-hard (Ravi et al. 1994; Chlebík and Chlebíková 2008). The 
distance calculation is computationally expensive as well, operating in polynomial time 
O(nk2).

To address this, an alternative metric named heterogeneity hnb is introduced:

where Hnb is a normalized histogram array with b bins over a set with n dimensions. This 
metric minimizes to zero when each bin in each dimension contains an equal fraction of 
1
b
 points and disproportionately penalizes bins that deviate significantly from the average.
The alternative heterogeneity optimization target only approximates the original 

measure and may introduce additional correlations between previously uncorrelated 
dimensions. These drawbacks are acceptable, as the distance measure in the exact opti-
mization problem becomes increasingly vague in higher dimensions, with unpredictable 
consequences. The alternative metric primarily enhances the uniformity or low-discrep-
ancy in each dimension.

It should be noted that the minimization problem will not yield a perfectly uniform 
distribution; instead, it will find the most uniform distribution possible within the vol-
ume of the given superset. Due to the NP-hard nature of the problem, the algorithm 
outlined in the following section will only approximate the optimal solution.

Decluster algorithm

The algorithm implemented in this study follows the paradigm of classical genetic opti-
mization algorithms, albeit without crossover and relying solely on mutation. First, an 
initial population consisting of one candidate with k elements or time series is generated 

(3)
∑

i

∑

j

1

r2ij
,

(4)hnb = 1

n

∑

n

∑

b

(

Hnb −
1

b

)2

,
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from the search space set M . The fitness of this candidate is calculated, and l new can-
didates are generated through mutation. Subsequently, the fitness is calculated for each 
new candidate, and the one with the best fitness is chosen. This process is iterated until 
the fitness ceases to improve.

The fitness function employed here evaluates the heterogeneity as defined in Equa-
tion (4). Additionally, custom initialization and mutation steps have been implemented, 
which are detailed below.

The initial population is generated using a quasi-random Halton sequence (Owen 
2017) in the n-dimensional feature space, with each point mapped to its nearest neigh-
bor in the search space set M . More details and parameters can be found in the addi-
tional material.

The custom mutation step is designed to efficiently improve fitness or heterogene-
ity (as in Equation (4)) by directly attempting to equalize the n-dimensional histogram 
as follows: A selection probability is assigned to each bin of each dimension of the n
-dimensional histogram, proportional to the sparsity of that bin. Upon selecting a bin, 
a point from the search space set M is chosen and inserted to fall within the bin’s edges. 
Afterward, another point is removed from the candidate set in the same manner but 
based on a probability that is assigned to each bin in proportion to the density of the bin. 
It should be noted that these insertion and deletion steps affect not only the chosen bin 
but also corresponding bins in other dimensions, potentially leading to a degradation in 
fitness.

Resulting sets of time series
After thoroughly outlining the methodology, we now focus on the data sets resulting 
from the decluster algorithm applied to the manifolded set, highlighting its perfor-
mance in feature space heterogeneity. This performance is evident in Fig.  6, depict-
ing the n-dimensional histograms visualizing the distribution in feature space for the 

Fig. 6 The n‑dimensional histograms of a initial, b manifolded, and c–f declustered sets. Blue/red shades 
indicate bins that are too sparse/dense. Feature names (rows) of the individual dimensions from top to 
bottom are documented in Fig. 5. Columns represent the value range of each feature. In a, b: many clusters 
and skewed distributions; c–f: improved uniformity, enhancing with smaller sets
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various sets. The color encoding for the histograms in Fig. 6 distinguishes bins as fol-
lows: Grey shades mark bins that contain 8% to 12% of all points, which corresponds 
to the expected number of points in a uniform distribution within a 10-bin histogram 
and with a tolerance of ±2%. Blue shades signify a downward deviation from this opti-
mal uniform distribution. Darker shades of blue indicate higher levels of deviation. 
Red shades indicate similarly an upward deviation from the optimal uniform distribu-
tion. The rows in Fig. 6a to Fig. 6f represent the distribution in the cluster-representa-
tive feature-dimensions that are documented in Fig. 5.

In Fig.  6a, the n-dimensional histogram of the initial set displays dimensions that 
are fairly uniformly distributed, especially in dimensions 1 to 3, where each bin con-
tains 5% to 15% of all points. However, most dimensions are highly clustered and 
skewed, notably dimensions 5 and 8. Similar general characteristics are observed for 
the manifolded set represented in Fig. 6b. The critical difference lies in the increased 
number of points available for selection during the decluster step to generate the sets 
shown in Fig. 6c to Fig. 6f.

Figure  6c displays the largest declustered set comprising 4096 points, furtherly 
abbreviated as n4096set. Most dimensions exhibit a uniform distribution with only 
minor skewness, specifically in dimensions 5 and 11. In a weakened form, these slight 
deviations echo the irregularities found in the manifolded set. The histograms for 
smaller subsets comprising 1024 and 256 points, furtherly abbreviated as n1024set 
and n256set and shown in Fig. 6d and Fig. 6e, respectively, converge closely to an 
ideal uniform distribution, exhibiting only minor deviations. In the smallest subset, 
denoted as n64set and displayed in Fig. 6f, the heterogeneity is relatively low albeit 
not as optimal as in the superset n256set. Two reasons account for this: first, an 
aliasing effect caused by representing 64 points in a 10-bin histogram, as 64 and 10 
are not integer-divisible, and second, the impact of a single point in a 14-dimensional 
space becomes significant due to the limited number of points. Despite these chal-
lenges, the n64set remains fairly uniform and representative.

Additionally, the feature space can be represented by an n-dimensional histogram of 
all 119 dimensions, not just the 14 dimensions defined by the cluster representatives. 
Although the heterogeneity is less optimal, the decluster effect is still discernible in 
the omitted dimensions. For instance, the initial set has a 119-dimensional hetero-
geneity of 0.35 with a standard deviation of 0.16 in the individual dimensions, while 
n256set achieves a 110-dimensional heterogeneity of 0.17 with a standard deviation 
of 0.09.

Figure 7 presents the subset comprising the 32 signed time series from the smallest 
declustered n64set, displayed in the time domain to provide a visual representation 
of the results. These time series are sorted from top to bottom and from left to right 
according to their mean.

At first glance, the time series in Fig. 7 appear to be quite similar to those in the ini-
tial data set shown in Fig. 3. However, a comparison between Fig. 6a and Fig. 6f reveals 
that this subset is much more uniform in feature space, despite having fewer elements. 
Importantly, it also covers a larger volume of the feature space. The observed similarity 
in the time domain can also be corroborated in the frequency domain, although these 
details have been omitted for conciseness and can be found in the additional material.
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Application and usage
The effectiveness of the declustered data set is demonstrated through two examples: 
a hybrid energy storage system (HESS) and a hydrogen production system. These 
examples demonstrate that abstract data can yield application-specific insights. Addi-
tionally, general guidelines for working with the data sets are derived from these 
examples.

Hybrid energy storage systems

“A HESS combines two different energy storage technologies into a single storage system 
to increase the performance of the overall storage system, decrease costs and dimen-
sions and increase the overall systems lifetime, efficiency, and response time”. Günther 
et al. (2022). Previous work by the authors (Günther et al. 2018) shows that the feasibil-
ity of implementing a HESS depends on the application or the input time series. Some 
applications offer few opportunities for effective HESS implementation and are thus 
unsuitable, while others present multiple options and high suitability. The work intro-
duces a metric called hybridisation potential P , ranging from 0, indicating no suitability 
for HESS, to 1, indicating high suitability for HESS. For a more detailed discussion, the 
reader is referred to Günther et al. (2018).

Fig. 7 Time series of the subset comprising the 32 signed time series of the smallest declustered n64set, 
showing good compliance in time and frequency domain with the initial set (cp. Fig. 3) but exposing much 
better distribution in feature space (cp. Fig. 6)
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This example aims to identify the factors or time series feature that dictate the 
hybridisation potential P . This identification is achieved by mapping the hybridisation 
potential P as an additional feature onto the declustered set. We then seek functional 
relationships between this and existing features. Calculating the correlation with all 
other features reveals high-correlating pairs (with a correlation greater than 0.8) such 
as mean, rms, or ecdf20, as well as low-correlating pairs (with a correlation less than 
0.1) like embedding distance, acf1, or seasonality strength (see the additional material 
for a description of these features). Visualizing these high-correlating pairs through 
scatterplots identifies the most meaningful relation, as shown in Fig. 8.

From Fig. 8, we derive a functional relationship

establishing an upper limit. Here, x̂ denotes the absolute maximum of the time series. 
Although most time series are near this line, deviations down to zero are possible. Exact 
quantiles can be read directly from the figure.

For practitioners, this translates to the following actionable insights: if the normal-
ized mean of the application is high, considering a HESS is unwarranted and the anal-
ysis can be aborted at this early stage. Conversely, if it is low, investigating a HESS 
further is worthwhile, with a high probability of identifying a suitable HESS configu-
ration for successful implementation.

Exercise caution when making quantitative assertions: For instance, the assertion 
that 50% of the time series deviate by only 10% from the established upper limit in 
Equation (5) holds true only for the chosen data set that covers a large volume in 
feature space. An application-specific data set covering only a fraction of the feature 
space may exhibit different behavior. Nonetheless, the upper limit itself appears to be 
a relatively safe assumption, irrespective of the data set in question. This assertion is 
by no means a proof from a mathematical standpoint but an acceptable axiom from 
an engineering perspective.

(5)P ≤ 1− x/x̂ ∀ x(t) ∈ n4096set ,

Fig. 8 Mapping the target feature hybridisation potential P to the time series feature normalized mean x/x̂ in 
a scatterplot for each time series in the n4096set. A strong correlation is evident with P ∼ 1− x/x̂
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Various approaches for advancing this analysis exist but are outside the scope of this 
work. One possible path is to identify a second influencing variable that explains devia-
tions from the threshold. This could be accomplished by manually inspecting further 
strong correlating features or outliers within the time domain to derive the underlying 
reasons and influences for deviations from the threshold. The search for further influ-
encing variables could also include classic machine learning methods, such as linear 
and nonlinear classifiers, including linear regression, elastic net, Bayesian regressors, or 
generalized linear models models (Hastie et al. 2009). Feature selection and elimination 
techniques can also be employed (Hastie et al. 2009).

A question remains about the necessity of employing a specialized data set for the 
analysis instead of using a randomly selected one. Figure 9 displays the same scatterplot 
as in Fig.  8 but contrasts the declustered n64set (Fig.  9a), a random selection of 64 
time series from the initial set (Fig.  9b), and a random selection of 64,000 time series 
from the manifold set (Fig. 9c).

The relationship in Equation (5) depicted in Fig. 8 and derived from the n4096set 
is also reasonably represented by the n64set in Fig. 9a. The initial set in Fig. 9b still 
reveals the correlation, albeit with increased uncertainty due to empty or unknown 
regions. Due to the curtailed boundaries, deriving the upper limit and functional rela-
tionship is difficult. It should be noted that the visibility of the correlation in Fig. 9b is 
coincidental, stemming from the strong correlation between hybridisation potential P 
and normalized mean x/x̂ , and the reasonably-distributed nature of the mean-dimen-
sion in the initial set, as opposed to many other dimensions, cp. Fig. 6. Figure 9c shows 
that the large data set yields the same relationship as the n4096set, albeit at a higher 
computational cost, which may not be feasible for many analyses. Furthermore, this 
amount of data is likely unavailable in most studies.

Another operational guideline can be inferred: for one’s study, employ the largest 
declustered data set that is computationally feasible. Initial explorations might begin 
with the smallest set, with the results being refined using larger data sets in subsequent 
stages.

Hydrogen production system

To demonstrate the data set’s applicability to another technical application, we use 
the optimization model presented by Brandt et  al. 2023. This model minimizes the 

Fig. 9 Scatterplots that show hybridisation potential vs. normalized mean for different sets: a the declustered 
n64set; b a random 64‑point subset of the initial set; c a random 64,000‑point subset of the manifold set
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onsite hydrogen supply cost (OHSC) C to meet a given hydrogen demand and opti-
mizes the design and operation of a hydrogen production system for this purpose. 
The system includes various power sources such as utility-scale photovoltaic, wind 
turbines and a connection to the electricity grid, and an electrolysis system, compres-
sor, and pressure tank for hydrogen storage. In this analysis, we reassess the impact 
of demand characteristics. To achieve this, we adapt the original model by selecting 
2048 time series, characterized by exclusively negative values, from the declustered 
n4096set. This selection mirrors the exclusive demand nature of the problem. These 
profiles span a year, have hourly resolution, and are normalized to an average demand 
of 10tH2/day.

Generally, it is possible to rescale the time series along the x- and t- axes to meet 
the specific requirements. Upscaling in time domain is generally unproblematic; how-
ever, exercise caution when downscaling: Reducing the scale could result in informa-
tion loss, potentially altering time series characteristics and features. Downscaling by 
a factor of two is generally acceptable for the presented sets without introducing sig-
nificant errors; higher levels of downscaling are discouraged.

In Brandt et  al.  2023, a variable importance analysis (VIA) was used to deter-
mine the most impactful uncertain input parameters on the OHSC. These included, 
among others, fluctuating electricity prices, renewable energy availability, and varying 
demand profiles. The uncertainty of demand profiles in the original study was limited 
to constant, daily, and weekly variations. Figure 10a reveals that the influence of their 
uncertainty on the OHSC was minimal compared to other parameters. The first-order 
Sobol’ index in the figure indicates the individual impact of each uncertain parameter, 
while the total Sobol’ index considers combinatorial effects with other parameters.

Fig. 10 Results of the VIA on the OHSC. a Original VIA results featuring constant, daily and weekly changing 
time series  (Brandt et al.  2023). b Updated results utilizing the declustered set of time series. The first‑order 
Sobol’ index measures individual parameter impact on model output, while the total index additionally 
considers combinatorial effects with other uncertain input parameters. The error bars represent bootstrap 
confidence intervals with a confidence level of 95%. A comparison of a, b shows a significant increase in 
the impact of demand profile uncertainty on the OHSC due to the increased diversification of demand 
characteristics
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When the VIA is rerun using the newly generated set of more declustered demand 
profiles, Fig. 10b shows a notable increase in the impact of the uncertainty in demand 
profiles on the resulting OHSC. The broader range of demand characteristics leads to 
a greater dependency of supply cost on these profiles. Thus, demand profiles that dif-
fer from constant or periodic patterns can significantly vary the resulting OHSC.

To investigate which features of the demand profiles contribute to the increased 
variability in OHSC, we conducted optimizations for all 2048 profiles of the declus-
tered set. All other uncertain input parameters were held constant, based on the val-
ues defined in the parameter studies by Brandt et al.  2023.

Figure 11 reveals that the normalized mean x/x̂ strongly influences the variability in 
OHSC of the respective demand profile. Specifically, the dispersion increases expo-
nentially with a decreasing normalized mean  x/x̂ value, indicating that the uncer-
tainty in OHSC also rises with a decreasing normalized mean x/x̂ value. Practically 
speaking, if the normalized mean x/x̂ value of a specific demand profile is higher than 
0.6, the resulting OHSC will not exceed 8.5€/kg. However, for normalized mean x/x̂ 
values between 0.2 and 0.4, the cost can rise to 13€/kg and even reach 37€/kg for 
lower normalized mean x/x̂ values.

Additionally, a clear trend emerges: the higher the necessity for grid electricity inte-
gration, the higher the resulting supply cost (cp. color-coding of Fig. 11). This trend 
implies that if the demand profile does not correlate well with available renewable 
energy, the deficit must be balanced by comparably expensive grid electricity. Another 
practical observation from the plot indicates that, irrespective of how low the nor-
malized mean x/x̂ of the demand profile is, achieving a supply cost lower than 6.3€/kg 
is not realizable within the boundaries of the model and its chosen parameters. Note 
that the mean was intentionally selected as a feature for simplicity. While other cor-
relations and insights are present in the data, they fall outside the scope of the current 
discussion.

Fig. 11 Optimization results for 2048 declustered time series showing OHSC vs. normalized mean x/x̂ as 
a scatterplot. The color of each point encodes the energy drawn from the grid besides that from optimized 
renewable energy sources, to meet the given hydrogen demand. An exponential increase in OHSC variability 
with decreasing normalized mean x/x̂ of the demand profiles is evident
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Summary
The objective of this paper was to create a set of application-independent load pro-
files or time series, specifically within the context of energy systems and based on real-
world data. The creation involved two principal stages: (a) manifolding the initial data to 
increase the diversity and heterogeneity of the data using signal processors like expand-
ers, compressors, and limiters; and (b) subsequently declustering this data by eliminating 
redundant points in densely clustered regions through a genetic optimization algorithm 
aimed at minimizing set discrepancy. The study employed standard feature engineer-
ing and machine learning techniques: (a) transforming the time series into a normalized 
feature space, (b) executing dimensionality reduction via hierarchical clustering, and (c) 
performing optimization in this reduced feature space.

The outcome of this research is a set of load profiles or time series that is approxi-
mately uniformly distributed across each dimension of the feature space by simultane-
ously retaining typical time and frequency domain characteristics commonly found in 
energy system time series. These generated time series serve multiple purposes: they can 
be used standalone for method and algorithm exploration, enable the identification of 
correlations and functional relationships to time series features, facilitate the training 
of machine learning models with an unbiased dataset, and act as supplementary data to 
yield additional, more profound insights into specific problems.

Two examples substantiate the utility of these time series. The first involved a method 
to classify the suitability of a hybrid energy storage system for an application, revealing a 
strong correlation to the mean of a time series and a corresponding upper limit. The sec-
ond example provided an uncertainty quantification optimization model used to mini-
mize the onsite hydrogen supply cost to meet a predefined demand time series. Utilising 
the created set of time series refined previous results by attributing greater weight to the 
influence of the time series on onsite hydrogen supply cost and showed that the variance 
is highly dependent on the mean of the time series.

Both the manifold and the decluster algorithms presented in this paper have broader 
applicability; they can be customized and applied to various other problems. The declus-
ter algorithm, while serving as a means to an end in this research, has inherent scientific 
merit worthy of independent investigation. We anticipate significant improvements in 
the speed and quality of this algorithm. The declustered dataset produced in this work 
could be enhanced through (a) hyperparameter optimizations, (b) incorporation of a 
more extensive and diverse input dataset, and (c) refining the utilized feature set. More-
over, the methodology for creating declustered datasets is generally applicable across 
domains beyond energy systems.

This work also provides smaller subsets of the dataset to facilitate computationally 
intensive studies, thereby offering a trade-off between accuracy and computational 
speed. Researchers are relieved from curating individual databases as the dataset and 
generating source code are openly accessible, promoting potential comparability with 
future and past studies.
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catch22  Canonical time‑series characteristics
DC  Direct current
feasts  Feature extraction and statistics for time series
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HESS  Hybrid energy storage system
hctsa  Highly comparative time‑series analysis
n64set  Declustered set comprising 64 points
n256set  Declustered set comprising 256 points
n1024set  Declustered set comprising 1024 points
n4096set  Declustered set comprising 4096 points
OHSC  Onsite hydrogren supply cost
theft  Tools for handling extraction of features from time series
tsfeatures  Time series feature extraction
tsfresh  Time series feature extraction based on scalable hypothesis tests
VIA  Variable importance analysis
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