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Abstract 

This study focuses on forecasting German generation-based  CO2 emission factors 
to develop accurate prediction models, which help to shift flexible loads in time 
with low emissions. While most existing research relies on point forecasts to predict 
 CO2 emission factors, the presented methods are utilized to perform interval forecasts. 
In addition, compared to other studies, recent data that extends over a long period 
is used. The study describes the used data and discusses the concept of walk-forward 
validation. Further, various models are employed and tuned to forecast the emis-
sion factors, including benchmark, parametric (e.g., SARIMAX), and non-parametric 
(bagging, random forest, gradient boosting, CNN, LSTM, MLP) models. The study 
reveals that all applied parametric and non-parametric models yield better results 
than the benchmark models, while the gradient boosting model has the lowest mean 
absolute error with 40.66  gCO2/kWh, the lowest mean absolute percentage error 
8.17%, and the random forest has the lowest root mean square error with 57.61  gCO2/
kWh. However, the potential of the deep learning models was not fully exploited. In 
a live application, the implementation effort should be evaluated against the benefit 
of better prediction.

Keywords: CO2 emission factor, Forecasting, Short-term, Time series model, 
Parametric, Non-parametric, Machine learning, Deep learning

Introduction
One substantial risk to humanity is global warming, which already impacts our soci-
ety, the economy, and the environment by causing environmental disasters, including 
escalating sea levels, floods, and droughts (Hosseini et al. 2019). Carbon dioxide  (CO2) 
released into the atmosphere is one of global warming’s primary drivers (Hosseini et al. 
2019). From 1880 to 2020, the earth’s average surface temperature grew by 1.2 degrees 
Celsius, and by the end of the twenty-first century, it is expected to rise by 5.7 degrees 
Celsius (Umweltbundesamt. 2023). Thus, the only way to stop the temperature from 
increasing between 1.4 and 2.4 degrees Celsius is to minimize  CO2 and other greenhouse 
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gas (GHG) emissions through ambitious climate protection policies (Umweltbundesamt. 
2023). The Paris Agreement aspires to restrict global warming below 2 degrees Celsius, 
ideally to 1.5 degrees Celsius, relative to pre-industrial levels. The European Union (EU) 
intends to achieve climate neutrality by 2050 (United Nations 2015). Therefore, the EU 
must invest in green technologies while improving energy efficiency. Compared to 1990, 
the European electrical sector’s emissions decreased by 39% in 2019 (European Environ-
ment Agency 2023). Yet, generating power only from renewable sources would not be 
enough to meet the objective of climate neutrality. Due to their intermittency, location-
specific output, uncertainty, and constraints in prediction, a significant percentage of 
variable renewable energy (VRE: wind and photovoltaic—PV) presents several issues for 
the energy system (Denholm and Hand 2011; Bistline 2017; Bird et al. 2016; Guerra et al. 
2022). The energy system must be flexible to move demand into periods of high renewa-
ble energy generation to guarantee supply security, jeopardized by integrating significant 
shares of renewable energies. By combining the energy-consuming sectors of industry, 
buildings (heating and cooling), and transportation with the energy-producing sector, 
sector coupling is required to achieve flexibility, significant GHG emission reduction, 
and climate neutrality (Duscha et al. 2019; European Environment Agency 2023; Bieker 
2023). It is important to note that  CO2 emissions in the following refer to  CO2 equivalent 
emissions and thus include all greenhouse gas emissions. To minimize  CO2 emissions, 
flexible consumers (e.g., fuel cells, batteries, heat pumps, electric vehicles, industrial pro-
cesses) should schedule in times with low  CO2 emission factors of the electricity mix. 
Therefore, implementing minimal  CO2 emissions flexibility demand schedules requires 
precise short-term estimates and forecasts of  CO2 emissions factors.

Related research

Many prediction techniques have been developed, as time series forecasting has been a 
popular study topic. Forecasting methods are often described as statistical or machine 
learning-based. However, most machine learning algorithms are also statistical since 
they are based on maximum likelihood estimators (Srivastava et  al. 2014). Barker 
writes that both terms still need to be defined and introduces the terms structured and 
unstructured (Barker 2020). Further, Athiyarath et  al. suggest four distinct forecasting 
methodologies (Athiyarath et  al. 2020): Regression techniques, stochastic approaches, 
soft computing strategies, and fuzzy logic forecasting. Stochastic methods demand prior 
knowledge of the forecast’s target characteristics. Regression approaches, such as Linear 
Regression (LR), soft computing methods, such as support vector regression (SVR) and 
neural networks (NN), and fuzzy logic forecasting, on the other hand, do not call on 
previous knowledge of the time series and are more data-driven. With increasing data 
availability and cheaper computing power, these time series forecasting models have 
become more widespread (Lim and Zohren 2021). Souza et  al. categorize the various 
forecasting techniques as follows: They refer to models that need prior knowledge of the 
times series as parametric, whereas models that do not require previous knowledge of 
the data distribution are non-parametric (Parmezan et al. 2019). To distinguish between 
the various models, we follow the definition of Souza et al. (Parmezan et al. 2019). Sta-
tistical approaches like exponential smoothing (ES) and autoregressive integrated mov-
ing average (ARIMA) are examples of parametric models. Examples of non-parametric 
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models are machine learning techniques like a random forest (RF) or a deep learning 
multi-layer perceptron (MLP). Deep learning models can learn complex data structures 
without manually engineering features and designing the model (Lim and Zohren 2021; 
Bengio et al. 2013). Numerous studies applied these methods to forecast  CO2 emissions.

Regarding long-term forecasting, Amarpuri et al. predicted long-term  CO2 emissions 
in India by applying a deep learning hybrid model of convolution NN and extended 
short-term memory network (CNN-LSTM) and comparing the results with ES (Twelfth 
International Conference 2019). Additionally, the proposed approach can predict other 
pollutant levels, although the model performance can be further increased by consid-
ering more parameters in the training set. Hosseini et  al. used multiple linear regres-
sion (MLR) and multiple polynomial regression (MPR) to predict Iran’s  CO2 emissions 
in 2030 under the assumptions of two scenarios. Both models achieve a coefficient of 
determination above 0.99, while the residual sum of squares of the MPR is lower. There-
fore, the model is more accurate compared to the MLR. Their findings suggest Iran most 
likely misses its commitment to the Paris Agreement under their business-as-usual 
assumptions. Ameyaw and Yao forecasted Africa’s total  CO2 emissions and West African 
states with a non-assumption-driven bidirectional LSTM (BiLSTM) model (Ameyaw 
and Yao 2018). Their proposed technique significantly improved compared to previous 
International Energy Outlook projections, resulting in a MAPE accuracy for the West 
African countries above 90%.

The subsequent studies focused on short-term  CO2 emission factors forecasting. 
Lowry employed a feed-forward NN and a seasonal autoregressive moving average 
(SARMA) model to forecast day-ahead  CO2 emission factors of the UK power grid 
(Lowry 2018). The models used by Lowry have the advantage that they are not depend-
ent on collecting multiple exogenous data sets. He points out that either linear autore-
gressive or non-linear NN models can predict half-hour periods of high carbon intensity. 
However, in his study, the daily seasonal autoregressive model provided a 20% improve-
ment in carbon reduction. A recent survey from Bodke et al. proposed two decompo-
sition approaches to predict the  CO2 emission of electricity (Bodke et  al. 2021). The 
forecast of the next 48  h enables the scheduling of flexible electricity consumption to 
minimize  CO2 emissions. They forecasted each time series component separately using 
either statistical or machine learning models, then merged the predictions for the overall 
projection. The authors’ forecast approach was applied to several European states. The 
composition of the time series by statistical means into three components leads to the 
most accurate results for most countries. For France, their novel technique had a 25% 
lower MAPE than the compared top-performing state-of-the-art model. Leerbeck et al. 
employed a probabilistic day-ahead model to predict the Danish power grid’s average 
and marginal  CO2 emission factors (Huber et al. 2021). First, they used both a forward 
selection algorithm and a penalized LR analysis to reduce more than 400 explanatory 
variables of their dataset to less than 30. The authors combined three LR models into a 
final model using Softmax weighted average and used an ARIMA for residual correction. 
Their final ARIMAX model resulted in forecast errors between 0.095 and 0.183 normal-
ized root mean squared error (NRMSE) for the average emissions and 0.029–0.160 for 
the marginals depending on the forecast horizon (1–24  h). Further, their compound 
model results in an RMSE of 52.0 for the 24-h forecast on the average emission factor. 
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A recent study by Huber et al. first derived and forecasted marginal emission factors in 
Germany for 2017 (Huber et al. 2021). They followed the approach of Hong by employ-
ing a three-layer feed-forward MLP to predict the short-term marginal emission fac-
tors (Hong xxxx). Since the authors focused on carbon-efficient smart charging, they 
decided to use an eighth-hour forecast horizon, which covers the average duration of a 
parking event. The MLP outperformed the naive benchmark models and had a MAPE of 
3.23% for a forecast horizon of 2 h on the test set. However, the performance of the MLP 
approached the naïve models with increasing forecast horizon and resulted in a MAPE 
of 4.57% for a forecast horizon of 8 h (Hong xxxx).

Motivation and objectives

This section points out some of the problems encountered in the extant research. Pre-
vious studies on forecasting  CO2 emission factors have almost exclusively focused on 
point forecasts. Probabilistic or quantile-based studies on  CO2 emission factors fore-
casting remain limited. Further, most studies do not include hyperparameter tuning 
based on walk-forward validation and compare only a few models. Another identified 
shortcoming is that most studies often use time-limited older data sets. E.g., Huber et al. 
only cover 1 year of data from 2017 (Huber et al. 2021). However, German energy gener-
ation is subjected to a significant transformation towards fluctuating renewable energy, 
directly affecting the  CO2 emission factors. While Huber et al. point out the advantages 
of using marginal-based  CO2 emission factors, we use freely available generation-based 
ones to encourage other researchers to validate and build on our results. To fill this lit-
erature gap, we use 3 years of recent and freely available data for Germany in this paper, 
perform correlation analysis, apply various parametric and non-parametric probabilistic 
forecast models, and compare the results based on diverse metrics.

Methods
This chapter describes the methodology of how to obtain the ex-ante hourly genera-
tion-based emission factors and perform point and quantile forecasts to predict the 
next 24 h via various models. The historic generation-based emissions factors are cal-
culated according to “CO2 emission factor” section. Real-time market data for differ-
ent production kinds, day-ahead estimates for specific product types, and other market 
data are accessible for all European Union nations and bidding zones at the ENTSO-E 
Transparency Platform (ENTSO-E. 2023). Further, the calculated ex-post emission fac-
tors can be accessed on the FfE open data platform (Munich 2023). Furthermore, data 
analysis and feature correlation analysis are performed to select features. The results are 
described in “Results” section. Afterward, the data is divided into 70% training, 20% vali-
dation, and 10% test sets. The train and validation sets are used for a walk-forward grid 
search to perform hyperparameter tuning. “Walk-forward validation and testing” sec-
tion describes this process in detail. Figure 1 shows the approach to obtaining ex-ante 
generation-based  CO2 emission factors.

Table 1 lists the data to calculate Germany’s ex-post generation-based emission factors 
and perform the forecasts. For this study, we used data starting from 01.01.2019 until 
31.12.2022. The final features used for the models are presented in “Results” section.
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Since the generation-based emission factors are hourly-based, the remaining data is 
adjusted to the hourly resolution.

CO2 emission factor

Energy systems without 100% renewable energy produce  CO2 emissions while gener-
ating electricity.  CO2 emission factors express the number of emissions in  gCO2/kWh 
emitted during electricity generation or consumption of an energy unit (Zheng et  al. 
2015). Fattler describes several ways to calculate  CO2 emissions factors. Besides the 
marginal emission factors used by Huber et al., two main methods are generation-based 
and consumption-based (Huber et al. 2021; Fattler 2021). Since we use generation-based 
emission factors, the following focuses on this method. Marginal emissions are calcu-
lated by coupling the day-ahead price with the marginal pricing of all German power 
plants, allowing the marginal power plant to be selected. This procedure frequently 
yields a so-called merit order curve. After identifying the marginal power plant, the 
marginal emission factor may be determined as the ratio of its stoichiometric emission 
factor to its electric efficiency (Fattler 2021). The consumption-based emission factor 
considers the demand for power consumption and energy generation (Tranberg et  al. 
2018). The objective is to factor in national power generation, electricity flow between 
countries, and age in adjacent countries. A linear system of equations is developed 

Fig. 1 Methodology for ex-post calculation and ex-ante forecast of generation-based emission factors based 
on (Fattler 2021)

Table 1 Overview of data and their source

Data Availability Source Resolution

Generation-based emission factors Real-time; uploaded ex-post to 
FfE-Platform

FfE Hourly

Generation per production type Real-time ENTSO-E 15 min

Day-ahead aggregated generation One day ahead, at 6 pm ENTSO-E Hourly

Day-ahead price One day ahead, at 6 pm ENTSO-E Hourly

Day-ahead load One day ahead, at 6 pm ENTSO-E 15 min

Day-ahead wind and solar generation One day ahead, at 6 pm ENTSO-E 15 min

Schedule exchange imports and exports One day ahead, at 6 pm ENTSO-E Hourly
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here, considering electricity output by energy carriers, storage charge and discharge of 
pumped hydro storage plants, electric load, and energy exports and imports. The linear 
equation system yields a consumption-based proportion of each production type, result-
ing in an emission factor based on average consumption (Munich 2023). The genera-
tion-based emission factor encompasses the national gross power generation by energy 
carrier Wec and the related fuel-specific emission factor emfecd (Fattler 2021). Therefore, 
the share of each product type of the overall electricity generation qgen,ec is calculated for 
each point in time by Fattler 2021:

According to Eq.  (2) the average generation-based emission factor emfel,ge,avg can be 
calculated on an hourly basis by multiplying the share of each production per m energy 
carriers qgen,ec by its specific emission factor emfec:

One limitation is that generation-based emission factors ignore the imported emis-
sions from and exported emissions to neighboring countries resulting from cross-border 
trades. Additionally, grid losses are not accounted for.

Walk‑forward validation and testing

The capacity of a model to generalize or perform effectively on anonymous data is criti-
cal in the model selection and validation processes. To evaluate the performance of a 
model, data is usually split into train and test sets. This allows for preparing the param-
eter estimation for the model with the train data and comparing the forecasting results 
against unseen or out-of-sample data based on the test set (Hyndman and Athanaso-
poulos 2021). Therefore, these predictions will be a reliable proxy for the model’s perfor-
mance in real-world applications. However, Hyndman and Fan outline several remaining 
issues with this methodology (Ngoc and Phuc 2021). On the test data, for instance, over-
fitting might still happen. Overfitting may occur if the model is modified to work well on 
a particular test set but fails to make reliable predictions on additional unobserved data. 
A third data split, the so-called validation set, is often included to address this problem. 
In this case, the validation set is evaluated after the models have already been trained 
on the training set. The validation phase evaluates the generalization capabilities of the 
various forecasting models in preparation for model optimization and hyperparameter 
adjustment. A final assessment of the test set is performed following the appearance of 
success in the experiments. E.g., k-fold cross-validation is well-known and frequently 
used for validating regression models (Fushiki 2011). K-fold cross-validation divides 
the available training data into k subsets of about equal size (Geisser 1975). Each set is 
a validation set for a model trained on the remaining k-1 subsets. Each group is given 
a chance to be held out. This validation approach is called random cross-validation 
because the observations in these subgroups are picked randomly without replacements. 
With time series forecasting, where future timestamp information cannot be used to 

(1)qgen,ec (t) =
Wec (t)∑m

ec=1 Wec (t)

(2)emfel,gen,avg (t) =

m

ec=1

qgen,ec (t) ∗ emfec
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predict the past, the split cannot happen randomly. Therefore, Snijders suggests using 
continuous sections of time series as validation sets (Snijders xxxx). When applied to 
cross-validation, this implies that instead of randomly picking any k subsets of identi-
cal size, the data is divided into k time-continuous blocks of observations (Schnaubelt 
2019). Further, two approaches can be distinguished in walk-forward cross-validation: 
sliding and expanding windows. One uses a fixed size for sliding windows as training 
and validation data. Training is done on n-data points and prediction validation on the 
following n-data points, moving or sliding forward the 2n training and validation win-
dow in time for the next step. At the same time, expanding windows adds an observation 
from the future validation set to the training set. It retrains the model after each transfer 
until all the validation data is part of the training set (Schnaubelt 2019). However, since 
we want to include all available data in our model and the validation is iterated many 
times for various models to obtain optimal hyperparameter settings, retraining and vali-
dating for every 24-h block would result in high computational costs (Schnaubelt 2019). 
Therefore, the validation data is split into eight consecutive sets of the validation data 
size during the validation phase. Afterward, according to the walk-forward methodol-
ogy, the model is refitted after each prediction. On the other hand, the evaluation on 
the test set is intended to be utilized just once for each model once it has been tuned, 
reducing computation costs. Using a forecast horizon of 24 h for the test sets allows for 
an evaluation of the actual model behavior on unseen data, replicating how the model 
would behave in a practical application and providing a good indicator of the model’s 
accuracy and uncertainty behavior. Figure 2 displays the walk-forward validation, testing 
method, and the corresponding split ratios.

Forecasting models

The following section describes the various forecasting models for  CO2 emission factors. 
First, the benchmark models are briefly described, following the parametric and non-
parametric models.

Benchmark models

It is common to compare the performance of forecasting models against baseline or 
benchmark models (Hyndman and Athanasopoulos 2021; Ahmed et al. 2010). Hyndman 
and Athanasopoulos recommend several simple models as a baseline (Hyndman and 

Fig. 2 Modified Walk-forward training, validation, and test phase
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Athanasopoulos 2021). We use average, simple moving average, naive, and MLR for our 
analysis. The average model takes the average of the training as its forecast; therefore, 
the average forecast yavg,t+i for a forecast horizon of 24 h with i = 1,2,…,24 is defined as 
(Hyndman and Athanasopoulos 2021):

with n is equal to the number of training data observations. The simple moving average 
is obtained by the mean of the previous m data points. Iterative testing derives optimal 
m, which resulted in m = 12. Equation 4 defines the simple moving average ysma,t+i with 
i = 1,2,…,24 as:

The naïve model ynaive,t+i with i = 1,2,…,24 is equal to the last 24 observation:

whereas h = 24.

Parametric models

Souza et  al. state that parametric methods oblige prior information about the data to 
develop these models (Parmezan et al. 2019). The individual models depend on a set of 
parameters that, in turn, rely on the characteristics of a given time series. Methods that 
employ this strategy utilize statistical techniques. Exponential smoothing techniques 
and linear and non-linear Autoregressive (AR) models are standard statistical forecast-
ing models. Typical examples of statistical forecasting models include linear and non-
linear Autoregressive (AR) models and exponential smoothing methods.

Exponential smoothing The exponential smoothing approach has been extensively stud-
ied in literature as a stochastic forecasting model. Initially introduced by Brown (Brown 
and Meyer 1961), the central concept behind the exponential smoothing method is to 
reduce the noise in past observations of the original time series and use this adjusted time 
series to make predictions about future values. This approach enables the generation of 
improved forecasts by smoothing out irregularities such as long-term trends and random 
fluctuations within the time series. Therefore, Souza et al. define exponential smoothing 
for time series with n observations y1,…,yn without trend and seasonality, where α is the 
smoothing weight for each observation in time can be defined as:

Lt refers to an exponential smoothed value at the time t, also known as the current 
level. The exponential smoothing method can be modified for time series with trend 
and seasonality components. The Holt-Winters Exponential Smoothing (HWES) tech-
nique expands the original exponential smoothing that adds three unique smooth-
ing constants related to the makeup of the time series (Winters 1960). The approach 

(3)yavg ,t+i = y =
1

n

n∑

j=1

yi

(4)ysma,t+i =

∑m−1
j=0 yt−j

m

(5)

ynaive,t+i = yt−h+1

(6)Lt =∝ yt + (1− ∝) Lt−1
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can be divided into a multiplicative and an additive algorithm, like the time series 
decomposition. We apply the statespace formulation by Hyndman et al. for HWES to 
produce a probabilistic forecast with appropriate prediction intervals (Hyndman et al. 
2002). The prediction interval is 95% for this forecast and all ensuing ones. Using the 
statespace formulation, the model generates a thousand predictions for each forecast 
period. The prediction interval of 95% is obtained using the corresponding quantiles 
of 0.025 and 0.975.

Autoregressive methods The so-called Box Jenkins methodology, created in 1970 by 
Box and Jenkins, uses statistical models for time series research, such as forecasting 
future values of the time-dependent data (Cipra 2020). The autocorrelation analysis to 
ascertain the characteristics of the time series is one of the primary tools of this meth-
odology. The linear forecasting method based on the Autoregressive Moving Average 
(ARMA) process is one of the most well-liked models of the Box Jenkins methodol-
ogy (Brockwell and Davis 2016). The Moving Average (MA) and the AR components 
of ARMA models are used to model linear and stationary time series (Brockwell and 
Davis 2016). Cipra defines the MA as the following (Cipra 2020):

Here, the value of a time series at time t is described as a linear combination of the 
white noise ε of its present and past q observation (Montgomery et al. 2016). Addi-
tionally, θ is the q weights with values between 0 and 1, which are applied to each 
previous random error value ε . B denotes the backward shift operator and is defined 
as Byt = yt-1. Cipra (Cipra 2020) states that an MA model can only be used with linear 
and stationary time series. The same is true of the AR procedure. The observation is 
treated here as a linear mixture of its p-lagged values at time t:

that is:

The weights ϕ given to the lagged values of the AR model of order p are comparable 
to those used in the MA process. The autoregressive technique is also rewritten more 
compactly using the backward shift operator. To generate a mixed ARMA(p, q) model 
of order (p, q), the AR(p) and MA(q) processes are frequently coupled. The ARMA 
model can be defined as follows, according to Cipra (Cipra 2020):

that is:

The weights θ and ϕ are assigned to both p lagged values yt and q random errors 
values ε . The ARMA process is ideally suited to dealing with time series that are linear 
and stationary, but it cannot account for non-stationary phenomena (Brockwell and 

(7)yt = εt + θ1εt−1 + . . . + θqεt−q = θ (B) εt

(8)yt = ϕ1yt−1 + . . . + ϕpyt−p + εt

(9)yt − ϕ1yt−1 − . . . − ϕpyt−p = ϕ (B) yt = εt

(10)yt = ϕ1yt−1 + . . . + ϕpyt−p + εt + θ1εt−1 + .. + θqεt−q

(11)ϕ (B) yt = θ (B) εt
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Davis 2016). To cope with nonstationary time series induced by a trend in the dataset, 
time series differences are calculated until the differenced time series is proven sta-
tionary (Montgomery et al. 2016). The following yt – yt-1 = (1–B)yt defines the first dif-
ference of a time series, while higher order differences are defined as (1–B)dyt, where 
d establishes the number of differences. Repeating differencing to achieve stationar-
ity is called integration and, in combination with the AR and MA models, leads to 
an Autoregressive Integrated Moving Average (ARIMA) model (Montgomery et  al. 
2016). According to Montgomery et al. (Montgomery et al. 2016), an ARIMA(p,d,q) 
model with an order of (p,d,q) is defined as:

The backward shift operator B summarises the lags of the differenced time series and 
its random error components. ARIMA models are capable of mapping non-stationary 
time series with an existing trend. However, they cannot capture any seasonality (Brock-
well and Davis 2016). To deal with seasonality, additional lagged and random error val-
ues of order P and Q are added to ARIMA models, depending on the season period of 
the time series s. Furthermore, adding a second differencing process (1–Bs)D, where D 
denotes the order of the seasonal differencing, gives a Seasonal Autoregressive Inte-
grated Moving Average (SARIMA) model. Montgomery et al. (Montgomery et al. 2016) 
define a SARIMA model as follows:

where Θ and Φ represent additional weights assigned to the seasonal lagged values and 
random errors; further, when taking n exogenous variables into account, defined at each 
time step t, denoted by xi

t for I ≤ n, with coefficients βi, the model is called SARIMAX. 
To find the optimal configuration of the autoregressive models, we use pmdarima’s 
autoarima function (Smith 2023). For the information criteria, we use Akaike’s informa-
tion criterion (AIC) with a seasonal period of 24. The best model without taking into 
account exogenous variables according to the autoarima function that minimized the 
AIC is ARIMA(3,0,1)(2,0,0)(ENTSO-E. 2023). Taking into account exogenous variables, 
the autoarima function minimized the AIC for ARIMA(2,0,1)(2,0,2)(ENTSO-E. 2023). 
However, adding exogenous variables increased the fitting time by approximately forty 
times. We use the statsmodels API to construct a distributed forecast that includes the 
upper and lower quantiles of the 95% prediction interval and the mean of the prediction 
(Seabold and Statsmodels 2010).

Linear regression LR investigates the relationship between an outcome or response 
variable y(t) and one or more given predictor variables x(t) = (x1(t), …, xp(t))T. Therefore, 
according to Olive (Olive 2017), the MLR is defined as:

where e is the error and b are the LR coefficients calculated by the least squares algo-
rithm (Olive 2017). LR is a simple algorithm that is easy to understand. It is, however, 
susceptible to outliers and performs poorly when the connection between independent 

(12)φ (B) (1 − B)d yt = θ (B) εt

(13)φ (B)�
(
Bs
)
(1 − B)d

(
1 − Bs

)D
yt = θ (B)�

(
Bs
)
εt

(14)y (t) = x (t) b + e
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and dependent variables is nonlinear. It also presupposes that the input characteristics 
are independent of one another. To produce a valid model, multicollinearity in input 
characteristics must be managed appropriately (Rebala et al. 2019). Like the benchmark 
models, the LR is trained on 90% of the data since the validation phase is skipped. The 
MLR is implemented using the scikit-learn API (Pedregosa et al. 2012).

Non‑parametric models

Machine learning techniques are regarded as non-parametric since they do not rely on 
parameters that depend on the statistical characteristics of the provided time series, in 
contrast to the parametric methods outlined in the preceding section (Parmezan et al. 
2019). Time series forecasting using machine learning algorithms has recently yielded 
encouraging results (Athiyarath et al. 2020; Parmezan et al. 2019).

Ensemble models A growing trend in machine learning is the use of ensemble learning 
methods. Ensemble learning’s fundamental premise is to mix several learning algorithms 
to improve the ensemble prediction’s overall accuracy (Bühlmann xxxx). These tech-
niques can lower the risk of overfitting by utilizing numerous base models. Overfitting 
is used to characterize a common issue with machine learning algorithms when a given 
model’s estimations predict outcomes well when applied to known data but fall short 
when applied to unseen data (Liu 2000).

Bagging ensemble Bootstrap aggregation, or bagging as it is commonly known, was 
first proposed by Breiman in 1996 (Breiman 1996). Bagging creates numerous resampled 
datasets by randomly selecting data points from a single dataset. Additionally, data points 
are drawn using bootstrapping with replacement, guaranteeing that the resampled data-
sets are the same size as the original dataset (Marriott et al. 1995). This is to separate data 
to achieve the most significant information gain or reduce impurity in data. Following 
that, the bootstrapped data are trained using the same essential learning method, which 
produces a set of distinct predictors based on the number of bootstraps. The predictions 
made by the many base learners are then combined to get the final ensemble estimate. The 
decision tree is the most common option for the bagging method’s underlying algorithm 
(Tsay and Chen 2019). A decision tree begins with a root node and progresses through a 
branched tree to a leaf node containing the algorithm’s prediction (Tsay and Chen 2019). 
Table 2 lists the hyperparameter used by the grid search during the validation phase and 
the final hyperparameter configuration.

The bagging model’s dispersed forecast is derived from the estimates of the sev-
eral models that make up the ensemble. The bagging ensemble’s estimators each offer 

Table 2 Hyperparameter for bagging ensemble grid search

Hyperparameter Space Final

Base model Decision tree Decision tree

Number of estimators 250, 500, 750, 1000 750

Maximal samples 0.75, 1.0 0.75

Bootstrapping True, False True
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a forecast for one forecast horizon. The average, upper, and lower quintiles are then 
determined.

Random forest A RF is an ensemble learning technique that, like the bagging method, 
bootstraps on the original dataset and employs decision trees as its foundational algo-
rithm (Breiman 2001). This bagging strategy and random feature selection are combined 
by RFs (Breiman 2001). Each tree is generated from the resampled data using random 
feature selection after the algorithm generates each training set from the original training 
data with replacement. To ensure that each decision tree is constructed from newly pro-
duced datasets of the same size, the number of randomly picked trees is fixed before the 
trees are grown (Breiman 2001). The idea behind employing a collection of trees for pre-
diction is to combine their predictions to reduce each tree’s instability problem. Table 3 
lists the hyperparameter used by the grid search during the validation phase and the final 
hyperparameter configuration.

As the RF performs best with estimators of 1000, the question arises if further increas-
ing the hyperparameter would improve the model performance. Therefore, we tried 
to increase the number of estimators to 1250 and 1500. However, the performance 
increased only marginally, but the computation time increased considerably, which is 
why we kept 1000. Further, increasing the number of estimators bears the risk of overfit-
ting. We did the same with the parameter minimal sample leafs, which did not improve 
performance.

Gradient boosting Boosting is another ensemble strategy that employs another way to 
achieve diversity from a single base learner. According to Freund and Schapire (Freund 
and Schapire xxxx), promoting is repeatedly running weak learning algorithms on dis-
tinct training data distributions and then merging the predictions made by each weak 
learner into a single prediction. A weak learner is a prediction method anticipated to 
generate inaccurate predictions. A decision tree with a modest depth, i.e., a small number 
of leaves, is an example of a poor learner, as explored by Freund and Schapire (Freund 
and Schapire xxxx). The boosting procedure is meant to minimize the mistakes generated 
by this type of model considerably. One well-known adaption of the boosting method is 
the Gradient Boosting (GradBoost) algorithm. Table 4 lists the hyperparameter used by 
the grid search during the validation phase and the final hyperparameter configuration. 
Additionally, we tried to vary the learning rate from 0.275 to 0.325 with increased estima-
tors from 400 to 450. Furthermore. We increased the learning rate to 0.5 with 500 and 
1,000 estimators. However, the first results showed that with these configurations, the 

Table 3 Hyperparameter for RF grid search

Hyperparameter Space Final

Maximal depth 50, 100 50

Number of estimators 500, 750, 1000 1000

Maximal features Sqrt, log2 Sqrt

Minimal sample leafs 1 1
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validation score increased, therefore, we should have included these values in the final 
grid search.

As opposed to the prior bagging and RF models, GradBoost sequentially builds deci-
sion trees to improve the error of the previous tree by using gradient descent (Fried-
man 2002). As a result, the mean and quantiles of the base estimators cannot be used to 
determine the forecast distribution of the model since they interact with one another. 
GradBoost is instead applied using Hatalis et  al.’s approach for probabilistic forecast-
ing of machine learning models (Hatalis et al. 2017). The authors propose using quan-
tile regression, where machine learning models are trained on a pinball loss function to 
generate probabilistic forecasts (see “Performance metrics” section). This strategy cre-
ates three models, each using the pinball loss as a loss function to estimate the forecast’s 
quantiles.

Deep learning models Deep learning models have resolved various issues, including 
speech recognition and photo object detection (Dahl et al. 2012; Wang and Raj 2017). 
However, because some deep learning models directly predict the sequence, designs like 
feedforward neural networks are not well-suited for forecasting a series sequentially. Such 
networks ignore the temporal relationships prevalent in time series issues and produce 
predictions based purely on the current input, regardless of any earlier inputs (Sehovac 
et al. 2019). Deep learning models consist of neurons where data x = x0,…,xn is linearly 
combined with weights w = w0,…,wn, and a bias b to account for missing or false infor-
mation. Afterward, a transformation function f is applied to the sum, and the result y is 
processed by the next neuron (Wang and Raj 2017). Wang and Raj define the process of a 
single neuron as follows (Wang and Raj 2017):

Various activation functions like sigmoid rectified linear unit (RELU) and hyperbolic 
tangent can be applied (Sharkawy 2020). A one-layer neural network is produced by 
stacking numerous perceptrons on top of one another. The MLP architecture is created 
by stacking many one-layer neural networks. One or more layers are concealed in an 
MLP. According to Wang and Raj, an MLP has the universal approximation property, 
which allows it to approximate any function (Wang and Raj 2017). This has a cost for 
an MLP with few hidden layers since it takes more neurons exponentially to satisfy the 
universal approximation requirement. Instead of employing arbitrary numbers of neu-
rons, the modern approach to that issue is to raise the depth, or the number of hidden 

(15)y = f
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n∑
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wixi + b

)

Table 4 Hyperparameter for gradient boosting grid search

Hyperparameter Space Final

Learning rate 0.3 0.3

Number of estimators 50, 100, 150, 200, 250, 300, 350 350

Maximal depth 3 3

Minimal sample split 2 2

Subsample 1.0 1.0
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layers, of an MLP for increasingly tricky matters. However, as Hippert et al. point out, 
smaller MLPs are more robust against overfitting (Hippert et al. 2001). For the MLP, we 
use the mean squared error as it strongly punishes outliers (see “Performance metrics” 
section). Further  L2 regularization is added to the loss, as described by Lewkowycz and 
Gur-Ari (Lewkowycz and Gur-Ari 2020), which prevents overfitting and reduces model 
complexity. Another regularization technique we used is a standard dropout layer. The 
standard dropout layer comes after the first dense layer and has a dropout rate of 0.2 
since this value performed best in reducing training and validation loss. Additionally, we 
use a second Monte Carlo (MC) dropout layer introduced by Gal and Ghahramani with 
a dropout rate of 0.6 (Gal and Ghahramani 2015). By using dropout during test time, 
the dropout layer calculates the uncertainty of the model. The dropout rate amount is 
directly related to the prediction interval’s size. The higher the dropout rate, the more 
neurons will be dropped randomly during testing. Since each prediction only uses a 
small, random portion of the network’s neurons, the model will become more uncertain 
if many neurons are removed. We use the ADAMX optimization introduced by Kingma 
and Ba (James et al. 2021) and a learning rate of 0.001 for the learning process. The MLP 
uses a batch size of 16 and a training duration of 100 epochs. The callback function can-
not be used to follow the test data because test data is designed to remain unknown 
during training. To track the model’s generalization capabilities using the keras callback 
function, the final 5% of each training set is not used to train the model. The callback 
further allows for the restoration of the weights. It applies early stopping, which follows 
the MSE loss of each validation set for each epoch. It stops training after a particular 
round of epochs if the validation MSE does not improve. The callback function is 25. 
Using the MC dropout, the MLP generates a distributed forecast for each prediction. It 
generates 75 forecasts for a single forecast. A prediction interval of 95% is obtained by 
averaging the 75 predictions and calculating the 0.025th and 0.975th quantiles.

The discipline of computer vision has typically employed convolutional neural net-
works (CNNs) to analyze picture datasets. They can also be applied to predict time 
series (Lim and Zohren 2021). The fundamental idea behind a CNN is to substitute 
convolutional layers for the fully connected ones mentioned before. The preceding 
layer is filtered using a kernel window by a convolutional layer, which lowers the mod-
el’s parameter count. Due to the model’s decreased computing complexity and storage 
demand, this technique is computationally beneficial. The CNN divides the training 
data into many batches with predetermined batch sizes, just like the MLP model. 
The convolutional filters then evaluate the features and smooth the data’s informa-
tion. With each convolutional layer, 128 filters are used. The first three convolutional 
layers’ kernel window is set at 3. The final convolutional layer uses a kernel window 
of 2. Batch normalization layers are added following each convolutional layer. Max-
pooling is done after each batch normalizing layer to minimize data dimensionality 
further. The data block for the max-pooling operations is set to 2, which means the 
maximum of a feature pair of 2 is calculated. This reduces the computational cost 
and avoids overfitting by halving the feature dimensionality after each convolutional 
layer (Lim and Zohren 2021). The last convolutional layer does not employ max-pool-
ing because the output’s feature dimensionality is already 1. The data is then changed 
back to having two dimensions using a flattened layer from Keras (2015). The dropout 
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layer is paired with the following four dense layers, each with a depth of 512, to allow 
for probabilistic predictions. The dimensionality of the  CO2 emission factor is deter-
mined by a final dense layer that employs a linear activation function. Convolutional 
and dense layers are subjected to  L2 regularization, and ADAM once more optimizes 
the MSE loss function with a learning rate of 0.001. Xavier initialization, or Glorot 
normal initialization as it is known in keras, is used to initialize the weights of the 
convolutional layers. The Xavier initialization did not enhance those layers’ predic-
tion performance on the validation set. Hence, their weights were initially distributed 
according to a standard normal distribution. RELU performed best on the validation 
set, the activation function of both the convolutional and dense layers. The dropout 
rate for the dropout layers is set at 0.5, and the callback function to 25 epochs. The 
model is trained for 200 epochs for each forecast, with a batch size of 12 for each 
training step during the walk-forward procedure. The model generates distributed 
forecasts by creating 75 predictions for a single forecast using the dropout layers.

Recurrent Neural Networks (RNN) are a subclass of neural networks where the con-
nections between the processing units form a directed circle. RNNs, instead of feed-for-
ward networks, may process inputs in any order using internal memory. By retaining 
the internal memory state, they account for past information. An RNN’s computational 
units each have changeable weights and real-valued activations that change over time. 
Therefore, historically, RNNs have been used for sequential time series data (Lim and 
Zohren 2021). However, RNNs encounter specific challenges. They are recognized for 
having problems with exploding and vanishing gradients and are restricted in their abil-
ity to store long-term information in the data (Lim and Zohren 2021). Long Short-Term 
Memory (LSTMs) attempt to overcome these constraints. LSTMs are a special kind of 
RNN introduced by Hochreiter and Schmidhuber in 1997 (Hochreiter and Schmidhu-
ber 1997). They address the fundamental issues with RNNs using LSTM cells instead 
of the typically hidden layers. Different gates that regulate the input flow comprise the 
cells: the input gate, cell state, forget gate, and output gate. Further, the sigmoid layer, 
the tanh layer, and the point-wise multiplication procedure are also included. The output 
of the LSTM is decided using the state components and enables long-term information 
storage. In our architecture, 1250 cells are applied to the input data by the LSTM layer. 
Following that, a dropout layer is paired with two dense layers that have linear activation 
functions. There are 32 layers in the first dense layer and 128 in the second. A non-linear 
activation of the dense layers leads to more computing expense and model complexity. 
However, it did not enhance the performance of the validation data. Once more, the 
dropout is utilized to both regularize the model and enable it to produce a distributed 
forecast. The output dimensionality is decreased to one using the final linear dense layer. 
Further, we used ADAM with a learning rate 0.001 for model optimization. The weights 
of both the LSTM and dense layers are initialized using Xavier initialization. Since the 
dropout rate is not applied to the LSTM layer but only to linear dense layers, the model 
architecture is robust to higher dropout rates than the MLP and CNN. Therefore, the 
dropout rate of the MC dropout layer is set to 0.8. Unlike the MLP and CNN, the LSTM 
had a less volatile learning behavior on the validation set. Therefore, the callback records 
the loss of the training data for early stopping. If the MSE does not improve during vali-
dation and testing, the callback terminates the training procedure after 15 epochs.
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Performance metrics

It is crucial to assess the predictive effectiveness of a chosen model. Forecasting mod-
els are often assessed by looking at how well the prediction algorithm works on unob-
served data, as Hyndman and Athanasopoulos note (Hyndman and Athanasopoulos 
2021). Generally, the error of a time series forecast can be defined as (Hyndman and 
Athanasopoulos 2021):

where h is the prediction horizon, yt+h defines the test part, and ŷt+h is the model’s pre-
diction. Based on the prediction error, the literature provides a variety of various evalu-
ation techniques (Hyndman and Athanasopoulos 2021). Scale-dependent errors fall 
within the first group of accuracy measurements (Hyndman and Athanasopoulos 2021). 
The Mean Absolute Error (MAE), one of the most often used error measurements, also 
is referred to as (Hyndman and Athanasopoulos 2021):

where n is the length of the forecast. it is simple to grasp and maintains the original 
unit of the prediction objective, the MAE is frequently used as an assessment metric. 
Another frequently used metric is the mean squared error (MSE). The MSE measures 
the average of the squares of the errors and is defined as (Ngoc and Phuc 2021):

The MSE is always positive, since it takes the square of the Euclidean distance and 
shifts towards zero with decreasing error. Taking the square root of the MSE yields the 
Root Mean Squared Error (RMSE) defined as (Hyndman and Athanasopoulos 2021):

The RMSE penalizes significant prediction mistakes more severely than the MAE 
(Hyndman and Athanasopoulos 2021). The square root of the MSE is computed to 
represent the original unit of the prediction target. The scale-dependent error metrics 
do not allow for a comparison of forecast performance across various datasets since 
they maintain the unit of the prediction. The solution to this issue is to use unit-free 
percentage errors. The Mean Average Percentage Error (MAPE) is one of the most 
popular options for percentage errors (Hyndman and Athanasopoulos 2021):

However, very large or even infinite values result for yi towards zero, and the metric 
is asymmetric since negative errors are penalized more than positive ones. Assessing 
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ŷi − yi

yi

∣∣∣∣ ∗ 100%



Page 17 of 28Ostermann et al. Energy Informatics             (2024) 7:2  

a time series prediction model’s goodness of fit is an additional method for evaluation. 
According to Witten et al. (James 2021), the ratio between the variance explained by 
the model and the total variance of the prediction target may be used to assess the 
quality of fit:

where ȳ is the mean of the target; this metric is called  R2 and will become 0 if the model 
forecasts the mean instead of its ideal value of 1. Until now, none of the metrics included 
how many additional features are used to make a prediction. Each new feature adds 
complexity to the model, which should be penalized if the predictions do not improve. 
The adjusted  Radj

2 addresses this issue (James 2021):

where k is the number of features.
Up to this point, only a point forecast’s accuracy and goodness of fit have been exam-

ined. The quantile estimates and the prediction interval that come with a probabilistic 
forecast must be evaluated. A statistic used to assess the precision of a quantile fore-
cast is the pinball loss function, often known as the quantile loss. An issue is determin-
ing how accurate a quantile forecast is. Regarding quantile predictions, the outcome is 
skewed on design, in contrast to conventional forecasts, where the aim is to make the 
forecast as near to the observed values as feasible. As a result, the naïve comparison 
of observations and projections is unsatisfactory. A metric that can be regarded as the 
precision of a quantile forecasting model is returned by the pinball loss (PL) function 
(Koenker and Machado 1999). Let τ be the target quantile and q̂i,τ the quantile forecast, 
then the PLτ which evaluates the upper and lower quantile separately, can be defined as:

The lower the PLτ score, the better the quantile prediction. Another metric to assess 
probability forecasts is the Interval Score (IS), which considers the width of the predic-
tion interval, also known as sharpness. The IS is typically used with the PLτ to assess the 
prediction model’s total predictive uncertainty because it cannot adequately characterize 
the dependability of the prediction interval on its own (Hatalis et al. 2017).

Results
This section briefly analyzes the  CO2 emission factor time series, followed by a feature 
correlation analysis. Finally, the results of the various models are presented.

Data analysis

For this study, we use hourly data from 01.01.2019 to 31.12.2022. Compared to pre-
vious work, this dataset includes several years. The calculated  CO2 emission factor, 
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according to “CO2 emission factor” section, over time is presented in Fig. 3. The  CO2 
emission factor ranges from around 200 to 800  gCO2/kWh.

First, we test if the time series consists of independent and identical distributed (iid) 
random variables using the BDS test (after the initials of W. A. Brock, W. Dechert, 
and J. Scheinkman), as suggested by Tsay and Chen (2019). The BDS statistic results 
in 35.78, and the p-value is 1.85 ×  10–280, indicating rejection of the null hypothesis 
since the p-value is close to zero. As a result, it implies that the generation-based  CO2 
emission factor is most likely non-linear and does not consist of iid random variables. 
Further, we test if the time series is stationary using the Augmented Dickey-Fuller 
(ADF) test. Greene suggests a significance level of 0.05 to evaluate the test statistic 
(Greene 2003). The ADF statistic equals −15.47, while the p-value is 2.63 ×  10–28. Fur-
ther, the critical values are −3.43, −2.86, and −2.57 for 1%, 5%, and 10% respectively. 
The p-value is considerably smaller than the suggested significance level, and the 
critical values are more significant than the test statistic. Therefore, the time series 
is most likely stationary. Next, the generation-based emission factor time series is 
examined to see if it includes a trend and seasonality component. It is possible to do 
both an additive and a multiplicative decomposition of a given time series. Figures 6, 
7, 8 in appendix A show the decomposition graphs. The trend component shows no 
rise or decrease over time, indicating that the mean and variance are constant, fur-
ther confirming the findings of the ADF test. The seasonal component shows a clear 
pattern that repeats over 24 h. The residue plot suggests that random or unforeseen 
events cause some of the time series. Additionally, we investigate the partial- and 
autocorrelation of the  CO2 emission factor time series. The perfect positive and nega-
tive correlations are denoted by autocorrelation values of 1 and −1, respectively. In 
contrast, the absence of any correlation between the lagged and current values is rep-
resented by a value of 0 (Brockwell and Davis 2016). In appendix A Figs.  9 and 10 
show the graphs for the autocorrelation and the partial autocorrelation for the past 
120 observations or five days. The autocorrelation between the present observation 
and the lagged value reduces the further in the past the lags are, and the most recent 
lags have the most substantial impact on the current observation. This conclusion is 
further supported by the autocorrelation of all lagged values, where the correlation 
between the observations slowly decreases to zero. As the partial autocorrelation 
rises noticeably during a repeating period of 24 h, the time series’ daily seasonality is 
further fostered. The partial autocorrelation also gets less the further back the lagged 

Fig. 3 German generation-based  CO2 emission factor between 01.01.2019 and 31.12.2022
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values are in time. The statistical models should have an autoregressive order of at 
least three, as the first three lagged data have the largest partial autocorrelation. The 
generation-based  CO2 emission factor time series demonstrates non-linear behavior, 
can be regarded as stationary, and displays seasonal activity, according to the statisti-
cal analysis carried out in this chapter.

Features and correlation analysis

As features, we use the data listed in Table 1. Additionally, we use several time features 
from the time stamps of the time series. Time features are weekday, the hour of the day, 
and the year. We use one-hot encoding for categorical weekday features to transform 
them into numerical features. Further, we apply cyclic feature encoding to account for 
periodic patterns in the time-based features hour of the day and hour of the year. This 
involves dividing a feature into a sine and cosine part. The problem with cyclical data for 
machine learning algorithms is the jump discontinuities. Mahajan et al. found that, e.g., 
LR benefits from using cyclic feature encoding and suffers when using ordinal encod-
ing (Mahajan et  al. 2021). Moreover, they discovered that regression trees suffer from 
the choice of one-hot encoding and might be more robust towards raw cyclical features. 
Since the offset of 24, 25, and 26 h has the highest autocorrelation of the  CO2 emission 
factor time series, we choose these three for the following correlation analysis. The best 
features for the forecasting models can be found with a correlation analysis between the 
various features and the target variable. A precise forecast will likely result from vari-
ables with a high positive or negative correlation with the prediction target (Edwards 
1977). The Pearson and Spearman coefficients are two popular methods for assessing the 
degree to which two variables, x and y, are associated (Van Dongen and Enright 2012). 
Figure 4 shows the Pearson and Spearman coefficients for each feature.

Figure  2 shows that the Pearson and Spearman correlations between the emission 
factor and the features are almost identical. As a result, the characteristics and the 

Fig. 4 Pearson and Spearman coefficients between the features and the  CO2 emission factor
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prediction target do not generally have any hidden non-linear correlations. Addition-
ally, Figure demonstrates a moderate to strong negative correlation between the forecast 
for renewable energy and the time series for the  CO2 emission factor. This is a highly 
reasonable outcome because renewable energy generation should decrease the  CO2 
emissions factor as they produce nearly no  CO2. Further, there is only little positive cor-
relation between the load forecast and the emission factor, which is also plausible: The 
load prediction refers to anticipated energy consumption, which needs to be considered 
when calculating the generation-based  CO2 emission factor. Next, Figure demonstrates 
a moderately negative correlation between the forecast of the aggregate generation and 
the  CO2 emission factor. Therefore, an increase in overall energy production is likely 
attributable to more renewable energy production, resulting in a drop in the  CO2 emis-
sion factor. The merit order in Germany explains the high correlation between the day-
ahead price and the  CO2 emission factor. Fossil fuel-based energy generation, such as 
coal and gas, has higher electricity generation costs than renewable energy sources. 
Therefore, with higher electricity prices, the  CO2 emission factor rises. The scheduled 
imports and exports from various European Union nations are also among the fea-
tures used for the correlation study. The highest correlation is found in the exports and 
imports between Germany and the Czech Republic and the German  CO2 emission fac-
tor. Increased renewable energy production in Germany leads to a low  CO2 emission 
factor, low prices, and more exports to other countries. On the other hand, low renew-
able energy production in Germany results in high prices and often more imports from 
other countries. Further, countries with a moderate to high correlation are Austria, Den-
mark, Luxembourg, Netherlands, Poland, and Switzerland. On the other hand, France 
shows almost no link with the  CO2 emission factor. We examine the correlation between 
the various features for the final feature selection. Leerbeck et al. state that a high cor-
relation between features can lead to co-linearity and poor model performance, e.g., for 
LR or SARMAX (Leerbeck et al. 2020). The feature correlation analysis reveals a sub-
stantial correlation between the lagged features. The lag of 25 has the highest correlation 
with the lags of 24 and 26 h, with a Spearman and Pearson coefficient of 0.99. Due to 
their linear dependence, two highly correlated variables can have nearly the same ability 
to predict the outcome value for an observation. Therefore, we discard the lags 24 and 
26. Finally, for the prediction models, all time-related characteristics are retained. The 
weekday features should be viewed as a single feature (Hyndman and Athanasopoulos 
2021). The final feature set consists of 32 features listed in appendix A in Table 6.

Model comparison

This section compares the results of the various forecasting models described in the 
previous sections. The presented results correspond to the model’s performance on the 
test set. The test set starts on 07.08.2022 at 22:00. It ends on 31.12.2022 at 23:00. The 
predictions are made at midnight with a 24 h horizon. Figure 5 shows the generation-
based CO2 emission factor expost (yellow), the prediction (ex-ante forecast, blue), and 
the interval (blue channel) of the RF model between 05.11.2022 and 08.11.2022, exem-
plarily. Initially, the real value decreases compared to the prediction and remains lower. 
In some points, the real value lies outside the confidence interval. On 06.11.2022, the 
model predicts two small peaks before and after midday, with the actual value running 
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in the opposite direction at the first peak and the trend only coinciding again after the 
second peak. From the morning of 07.11.2022 onwards, the courses of the actual value 
and the prediction match very well.

Table 5 shows the metrics of the different models. The value of the best-performing 
model per metric is highlighted in bold.

Looking at the MAE, MAPE, and RMSE, all applied models perform better than 
the three benchmark models: average, simple moving average, and the naïve forecast. 
According to Hyndman and Athanasopoulos, all models are worth further considera-
tion, as their increased complexity led to a performance improvement compared to the 
benchmark models (Hyndman and Athanasopoulos 2021). The HWES and SARMA 
models perform the poorest compared to the benchmark models. Since these two use 
only data from the time series itself, it can be said that the chosen features have a more 
remarkable ability to predict future values of the  CO2 emission factor than do the time 
series’ previous values alone. Otherwise, the R2 and adjusted R2 values are close for 
every model. This implies that the model’s capacity to explain variation in the depend-
ent variable beyond what is already captured by the basic model is not considerably 
improved by including new independent variables. Additionally, for models like HWES 

Fig. 5 Excerpts of the prediction on the test data for the RF model

Table 5 Overview of metrics per model

*in  gCO2/kWh, **in %

The value of the best-performing model per metric is highlighted in bold

Model MAE* MAPE** RMSE* PL lower 
quantile*

PL upper 
quantile*

IS* R2** Adjusted R2**

Avg 137.08 26.73 161.66 – – – −25.88 –

Mov. Avg 72.78 15.15 98.06 – – – 53.69 –

Naïve 108.45 23.18 141.81 – – – 3.14 –

LR 49.59 10.16 70.03 – – – 76.38 -

HWES 69.80 14.06 91.07 4.90 12.13 291.76 60.06 59.69

SARMA 65.03 13.12 93.69 5.68 6.20 360.68 57.72 57.72

SARMAX 48.02 9.16 63.64 3.40 6.02 176.43 80.49 80.31

Bagging 41.78 8.58 61.19 4.69 4.37 190.71 81.97 81.8

RF 42.70 8.62 57.61 4.29 3.16 259.66 84.01 83.87
GradBoost 40.66 8.17 62.10 5.05 5.32 165.13 81.43 81.26

MLP 51.15 10.06 72.10 6.19 19.95 126.22 74,96 74,73

CNN 42.40 8.70 64.08 7.48 9.86 129.41 80.22 80.04

LSTM 50.36 9.77 67.71 6.92 11.48 183.52 77.16 76.95
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and SARMA, the test data’s prediction horizon of 24 steps or 24 h is relatively high. They 
focus mainly on the most recent time series observations. The model’s performance 
declines if the prediction horizon is longer than the most recent data. Regarding the R2 
or goodness of fit, all models using exogenous variables have a significantly higher score 
than the ones that don’t. From the parametric models, the SARMAX performs best. The 
improvement of the SARMAX over the LR indicates that the residue adjustment was 
successful (Durbin and Koopman 2012). The MAPE and RMSE achieve better results 
than the best deep learning model, CNN. The CNN performs better from the three deep 
learning models than the MLP and the LSTM regarding the MAE, MAPE, and RMSE. 
CNN is the third-best model on the MAE, the fourth-best on the MAPE, and the fifth-
best on the RMSE. The GradBoost model performs best on the MAE and the MAPE 
with 40.66  gCO2/kWh and 8.17%, respectively. Huber et al. achieved a MAPE of 4.57% 
with their MLP model (Huber et  al. 2021). However, when comparing our results to 
those of these older studies, it must be pointed out that they used marginal emission 
factors, a forecast horizon of 8  h, and data from 2017. Therefore, the results are only 
comparable to a minimal degree. Regarding the RMSE, the RF has the best result, with 
57.61  gCO2/kWh. A similar results was reached by Leerbeck et al. as their compound 
model resulted in a RMSE of 52.0 for the 24-h forecast on the average emission factor 
(Leerbeck et al. 2020). Again, the results are only comparable to a limited extent since 
they use emission factors of the DK2 zone for 2017. Further, the RF model has the best 
score for the PL upper quantile, the R2, and the adj. R2 with 3.16  gCO2/kWh, 84.01% and 
83.87% respectively. Since the RMSE punishes outliers more strictly than the MAPE, the 
applied RF is better suited to deal with outliers. At the same time, the GradBoost per-
forms slightly better on average percentage deviation for the test data. The MLP, CNN, 
and GradBoost have the lowest IS or sharpest prediction interval. However, their PL is 
worse for the lower quantile than the other models. While the SARMAX, RF, and Bag-
ging have the lowest PL for the lower quantile, and the RF, Bagging, and GradBoost have 
the lowest PL for the higher quantile, their IS is worse than the one from the MLP. This 
shows that the uncertainty of a time series prediction interval depends on a compromise 
between the sharpness of the prediction interval and the quantile accuracy. Therefore, 
increasing model uncertainty leads to decreasing accuracy that, in turn, reduces the PL.

Discussion
This section discusses the potential limitations and directions for future work. First, 
the generation-based emission factor is a relatively simple approach to determining the 
 CO2 intensity of electricity generation, as described in “CO2 emission factor” section. 
Therefore, when implementing, e.g., a smart charging scheme for electric vehicles, one 
should consider using the marginal emission factor. However, using the generation-
based emission factor to forecast the time series is legit. Further, we used freely available 
data as input and our correlation analysis. When we started data collection, we did not 
find freely available recent weather data. However, the current approach and features 
allow a real-time prediction of the next 24 h. A representation of the recent forecast for 
the next 24 h can be found on the FfE website opendata.ffe.de (Ferstl 2023). The fore-
cast is generated at 00:00 for the following day using an RF model. Furthermore, the 
forecast and actual results can be downloaded. Additional data, such as recent weather 
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data, could further improve the performance of the models. This might be an issue for 
future research to explore. We are currently working on a certified method for calculat-
ing the CO2 emission factor hourly, which will be part of an exchange platform. The 
specified hourly emission factors will then be used as a basis for forecasting, particularly 
for greenhouse gas verification, as is necessary, for example, for green hydrogen pro-
duction. The feature correlation showed that the German day-ahead price forecast is a 
valuable feature for this prediction task. However, the course of the price and, thus, the 
forecast changed significantly towards the end of 2021 due to the effects of the Russian 
invasion of Ukraine. While the standard deviation of the German day-ahead price in €/
MWh (averaged over the year) was 9.0 in 2019 and 9.4 in 2020, it was already 24.5 in 
2021 and 57.3 in 2022 (ENTSO-E. 2023; Kern et al. 2022). Especially March, September, 
and December 2022 have recorded enormous price peaks of around 450, 500, and 700 €/
MWh (ENTSO-E. 2023; Kern et al. 2022). It is, therefore, plausible that different valida-
tion and test periods (e.g., without 2022) could lead to significantly different results in 
terms of performance. This may constitute the object of future studies. With increasing 
amounts of renewable energy, the correlation of electricity price and  CO2 emission fac-
tor will increase due to the merit order effect. Therefore, depending on the application 
and goal, it might be sufficient in the future to solely predict the price or use the price 
forecast to minimize emissions. Another factor to consider is the aleatoric uncertainty 
caused by errors in the features utilized for the prediction. If the models rely on (market) 
data forecasts such as wind and price forecasts, which are prone to inaccuracies, such 
errors will propagate to the final emission forecast. On the one hand, our adjusted walk-
forward helped us to decrease the computational costs. On the other hand, the models 
are tuned on different or longer prediction horizons than they are tested on. Adjusting 
the walk-forward length to the same as the test set could result in better model per-
formance. Additionally, we set the MSE for the loss function for the deep learning 
and the RMSE for the machine learning models. Taking another loss function for the 
deep learning models might improve performance on the presented metrics. Further, 
when implementing the three deep learning models, we only had data available until 
mid-2022. During this phase of our work tests, the LSTM, CNN, and MLP performed 
slightly poorer than the GradBoost. However, we could not repeatably adjust the deep 
learning architectures and kept the initial architecture due to limited computational 
resources. Therefore, the deep learning architectures could be further improved when 
tuned against the latest data. In conclusion, we do not state that the ensemble models 
are, per se, better at this task than the deep learning methods. Further investigating dif-
ferent deep learning architectures or state-of-the-art deep learning architecture, such as 
temporal fusion transformers, might prove critical in future work. In a real-world imple-
mentation of  CO2 prediction for a smart charging app, for example, we believe the fol-
lowing things should be considered: In our opinion, the machine learning methods are 
faster and easier to implement than deep learning methods. Furthermore, the computa-
tional effort is lower, but it can be assumed that deep learning architectures achieve bet-
ter results with careful implementation and tuning. The measure of implementing and 
maintaining more complex models should always be in proportion to the benefit of a 
better prediction.
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Appendix
See Figs. 6, 7, 8, 9, and 10 and Table 6.

Fig. 6 The multiplicative trend component of the  CO2 emission factor time series between 01.01.2019 and 
31.12.2022

Fig. 7 The multiplicative seasonal component of the  CO2 emission factor time series between 01.01.2022 
and 15.01.2022

Fig. 8 The multiplicative residue component of the  CO2 emission factor time series between 01.01.2019 and 
31.12.2022
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