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Introduction
Power system stability still becomes one of the main problems in the power system due 
to the power system complexity. Stability detection is one of the most emerging issues 
in the power system area. Stability systems are important to ensure the power system 
fulfilling reliability, security, and economic criteria. Power system stability is the power 
system ability to come back to the equilibrium after suffering from disturbance as pre-
sented in Kundur et  al. (2004). Stability in power system is classified as rotor angle 

Abstract 

Voltage stability detection is currently still becoming the main issue in the modern 
integrated renewable energy power systems. To assess the voltage stability, the clas-
sical methods based on continuation power flow (CPF) technique were used to show 
nose curve. However, the classical methods require complete model of power system 
and long computation time. Data driven analysis and synchronized real time measure-
ment technologies currently are developing in power systems monitoring, includ-
ing the stability detection. The detection method is built based on the historical event 
model and uses the real time measurement as an input. For that reason, the algorithm 
to detect the voltage instability and critical bus is proposed using the artificial neu-
ral network (ANN) technique to represent the historical event model using the PMU 
measurement data. The ANN model architecture for this application is developed 
by creating seven hidden layers consisting of one normalization, four rectifier linear 
unit, one softmax and one sigmoid layer. To warrant the accuracy, the k-fold cross-
validation is used. The algorithm is simulated on modified IEEE 14 test system which 
consider different loading scenario, line contingency, number of PMU and Photovoltaic 
(PV) integration. To mimic the actual historical data, the synthetic data is generated 
and labelled. The result shows that the proposed method can represent the complete 
power system model by giving high accuracy which for voltage stability detection 
is > 97% and critical buses detection is > 96% for all scenarios. Moreover, the required 
computation time is between 16 and 18 s per detection which makes the scalability 
to the real time detection is reasonable.

Keywords: Artificial neural network, Data driven model, Prediction accuracy, Voltage 
stability detection

Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

RESEARCH

Putranto and Azhar  Energy Informatics             (2024) 7:1  
https://doi.org/10.1186/s42162‑024‑00302‑w

Energy Informatics

*Correspondence:   
lesnanto@ugm.ac.id

1 Department of Electrical 
and Information Engineering, 
Engineering Faculty, Universitas 
Gadjah Mada, Jl. Grafika No 2 
Engineering Faculty Complex, 
Yogyakarta 55281, Indonesia
2 Center for Data and Information 
Technology, Secretariat General, 
Ministry of Transportation, 
Jakarta 10110, Indonesia

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s42162-024-00302-w&domain=pdf


Page 2 of 23Putranto and Azhar  Energy Informatics             (2024) 7:1 

stability, voltage stability and frequency stability (Kundur et  al. 2004). Commonly, to 
detect the stability two variables are required, voltage and frequency. Voltage stability 
problem occur because the power system operator tends to operate close to its limit 
(Putranto et al. 2017). Voltage stability is the ability of the power system to maintain the 
bus voltage in the permissible operation range after disturbance (Usman and Faruque 
2019). Classical voltage stability assessment based on the CPF calculates the maximum 
loading point and measure with the current operating point (Kundur 1994). CPF pro-
duces the nose curves to assess the voltage stability which requires the complete model 
of the power system. The classical method requires power system network, power sys-
tem operation point, line contingency status and the dynamic model of generating unit, 
load, and compensator. Furthermore, the model would be more complex if the preven-
tive action (Capitanescu et al. 2007), corrective action (Capitanescu and Wehenkel 2008) 
and optimal operation (Zabaiou et al. 2014) are considered in the operation, which result 
the high computation burden. On the contrary, the short-term voltage stability problem 
due to the system dynamic would occur within the short-time frame (in second). For 
that reason, calculating CPF is not feasible in real time application due to the computa-
tion burden and requirement of complete model of the electrical system network as pre-
sented in Nazari-Heris et al. (2021).

Traditional real time monitoring is based on supervisory and control data acquisition 
(SCADA) which is updated every 2–10 s. SCADA uses power, power flow and voltage 
magnitude measurement to monitor and estimate power system operation condition. In 
SCADA, the voltage angle is estimated based on the measurement which are not syn-
chronized as presented in Terzija et  al. (2011). The short-term voltage stability needs 
accurate voltage angles information which may insufficient if only supported by SCADA. 
Power system utility upgrade the monitoring system with synchronized real time meas-
urement using the phasor measurement unit (PMU) (Phadke 2002). PMU is not only 
able to measure the voltage angle but also has higher resolutions. This feature supports 
the real time monitoring in stability detection of power systems (Usman and Faruque 
2019).

High data resolution provides sufficient information to perform the statistical analysis 
of a power system. For voltage stability case, voltage magnitude and angle can be a signa-
ture for the instability condition. When the event was sufficient, it can be built as data-
base then the voltage stability detection based on the machine learning can be developed 
in a power system (Arghandeh and Zhou 2017). Using this kind of information, it is pos-
sible to perform early stability detection without requiring the complete model. The use 
of machine learning methods is generally divided into two steps; the first is generating 
and selecting features. The variable used as input for machine learning methods is the 
voltage phasor from the PMU. Second is the classification of the voltage stability margin 
(VSM) index (Alimi et al. 2020).

Voltage stability assessment using the line stability indexed was proposed in Yari 
and Khoshkhoo (2017). Four indexes there are line stability index (LSI), fast voltage 
stability indices (FVSI), line stability factor (LQP), and new voltage stability index 
(NVSI) were compared to give the assessment. For calculating the index, load flow 
analysis was simulated to generate the voltage magnitude information and power 
flow between lines. Simulation was executed in PowerFactory environment using the 
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DIgSILENT Programming Language. Simulation result showed that LSI and FVSI 
cannot provide accurate voltage stability status compared to LQP and NVSI.

One of the neural network methods is ANN (Haykin 1999). The use of ANN in 
voltage instability monitoring has been developed previously as presented in Zhou 
et  al. (2010). In this research, the steady-state voltage magnitude and angle of the 
substations were selected as the input. In this research, the performance of the ANN 
method produces a small error, mean error from 0.1205% to 0.6528% and a maxi-
mum error from 0.6566% to 2.2614% which depends on the number of PMUs used. 
In this research, the required number of PMU to perform the proposed ANN was 
also investigated. Simulation in IEEE 39 bus test system results in smaller errors when 
using a larger number of PMUs or adding other measurement variables such as volt-
age magnitude and reactive power as inputs to the ANN. Using neural networks in 
classification can help efficiently analyze non-linear relationships between power 
system operating parameters and VSM, which are learned through voltage stability 
analysis (Zhang et  al. 2013). Limitations of conventional methods are not consider-
ing the dynamic characteristics of electric power systems, requiring large amounts of 
computation, and not providing practical information about stability problems. The 
use of neural networks can deal with these limitations (Zhang et al. 2013).

Another ANN application was developed in Ashraf et al. (2017) to monitor voltage 
stability of power system using limited number of PMU. The network simplification 
was also used in this research. ANN predicted the maximum loading limit using the 
PMU measurement. Simulation was executed using IEEE 14 and 118 bus test system 
under MATLAB. There were internal and external area analysis from the sensitivity 
analysis to place where PMU should be located. The result showed that the maximum 
error of the ANN was between 0.055 until 0.4916%, showing that the simplification 
working well.

Random Forrest (RF) (Malbasa et  al. 2017) and Feed Forward Based Propagation 
(FFBP) (Rumelhart et  al. 1986) were simulated for voltage stability event classification 
on the simulated 10,147 operating point of WECC system. The offline training was simu-
lated using 9147 sample while the online testing using 1000 sample. The result shown 
that RF has best result with 90.01% accuracy as presented in Malbasa et al. (2017). Sup-
port vector machine (SVM) approach for voltage stability detection was developed in 
IEEE 14 and 30 bus test system. The pattern of voltage stability and SVM parameter were 
done in the preprocessing stage. In the evaluation the fivefold validation was used with 
the accuracy of the detection reached 99% as presented in Pérez-Londoño et al. (2017). 
The probabilistic Decision Tree (DT) (Salzberg 1993) was developed to detect the volt-
age stability with 300 different load variations of IEEE 30 bus test system, including 
active, reactive power and contingency variations. This method was effective enough 
with 94% accuracy as presented in Nandanwar et al. (2018).

Static voltage stability assessment based on enhanced online RF algorithm has been 
proposed in Su and Liu (2018). Voltage magnitude and voltage angle were selected as 
the input to perform this method. This method proposed a novel method to update the 
tree to make the previous method more efficient. Online bagging and lead node splitting 
control were proposed to update the trees to prevent overfitting. The result showed that 
the proposed method can increase performance by 98.4%.
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Real-time short-term voltage stability assessment was proposed in Pinzón and Colomé 
(2019) for the large disturbance. The proposed method was developed using data min-
ing and machine learning with the time series voltage magnitude data from PMU. The 
proposed method was able to classify the power system status in some categories using 
maximal Lyapunov exponent calculation and dynamic index. The proposed method was 
simulated using IEEE 39 bus test system. The classification categories consisted of nor-
mal, alert, emergency, dan unstable. The RF algorithm was used as the machine learn-
ing technique. Some machine learning algorithms for voltage stability assessment were 
compared as presented in Adhikari et  al. (2020). Gaussian Process Regression (GPR) 
(Williams and Rasmussen 1995), ANN (Haykin 1999), SVM (Pérez-Londoño et al. 2017; 
Vapnik 2000), and DT (Salzberg 1993) were compared in this research. The instanta-
neous steady-state voltage magnitude and angle from PMU data were used as input. 
Comparison was simulated under IEEE 39 bus test system which the GPR produces the 
highest accuracy.

Real time monitoring long term voltage stability assessment has been proposed in 
Dharmapala et al. (2020) using a voltage stability index. The proposed method predicted 
the loading margin to detect long term voltage stability. Power system operation data 
such as voltage, current and load flow from normal and contingency conditions were 
required in the data generation process. For generating the data CPF simulation was 
executed. The model was built for IEEE 14 and 118 buses test systems using RF regres-
sion. Voltage stability assessment using machine learning method which the data gener-
ation based on the CPF to calculate the VSM to determine the event is stable or not was 
presented in Mollaiee et al. (2021). DT, SVM, adaBoost (Freund and Schapire 1997), and 
bagged tree (Efron and Tibshirani 1986) are used for the computation algorithm. There 
is four data set combination there are voltage magnitude, voltage angle, active and reac-
tive power set which were simulated in IEEE 39 and 118 bus test systems.

Real-time short-term voltage stability assessment using 1D-convolutional neural net-
work (1D-CNN) with time series PMU data was proposed in Rizvi et al. (2021). There 
were two stages proposed in this method. The first stage detects fast voltage collapse 
based on 1D-CNN. The next stages then quantified the severity level of voltage instabil-
ity. The proposed method was simulated on IEEE 30 and 39 buses test system under 
python environment. The proposed method uses post disturbance voltage information. 
In this method, the pre-processing data was also required to detect the data loss and 
outlier from PMU measurement. The summary state of the art of the research is pre-
sented in Table 1.

Based on the previous research on voltage instability detection, the critical bus loca-
tion detection is added in the formulation. Some scenarios representing the normaliza-
tion effect, PMU number, selection of PMU location, and renewable energy existence 
are developed in the proposed voltage stability detection. To create the database, the 
simulated power system operating points and the labels are required. The power sys-
tem operating points are simulated using CPF in DIgSILENT PowerFactory under dif-
ferent scenarios to assess the system voltage static stability. The operating points then 
is labelled on voltage stability status and critical bus location. However, in the practical 
system, the collection of the operating points and labels database are recorded from the 
PMU measurement.



Page 5 of 23Putranto and Azhar  Energy Informatics             (2024) 7:1  

The detection is developed under the modified ANN model by creating seven hidden lay-
ers consisting of one normalization, four rectifier linear unit, one softmax and one sigmoid 
layer. To warrant accuracy, the k-fold cross-validation is used. As the input, instantaneous 
PMU data is required. The voltage angle and magnitude information are required from 
PMUs. The detection and classification are formulated based on ANN which are simulated 
under python environment. The accuracy of the proposed detection method is higher than 
96% as presented in Table 1.

Table 1 State of the art of voltage stability detection

References Year Method Stability 
detection

Critical Bus 
detection

PV 
Integration

Stability 
Type

input Test 
case

Performance

Yari and 
Khoshkhoo 
(2017)

2017 Lmn, FVSI, 
LQP and 
NVSI

✓ – – Long-Term 
Voltage

Z, X, 
P, Q, V, 
θ, δ

9 bus –

Zhou et al. 
(2010)

2010 ANN ✓ – – Long-Term 
Voltage

P, Q, 
V, θ

39 bus Mean error: 
0.1205–
0.6528%
Maximum 
error: 0.6566–
2.2614%

Ashraf et al. 
(2017)

2017 ANN ✓ – – Long-Term 
Voltage

P, Q 
and/or 
V, θ

14 bus, 
118 
bus

Maximum 
error: 0.055–
0.4916%

Pérez-Lon-
doño et al. 
(2017)

2017 SVM ✓ ✓ – Long-Term 
Voltage

V, P, Q 14 bus, 
and 30 
bus

Accuracy: 
99.9%

Nandanwar 
et al. (2018)

2018 PFDT and 
CBR

✓ – – Long-Term 
Voltage

P, Q 30 bus Accuracy: 94%

Su and Liu 
(2018)

2018 Random 
Forest

✓ – – Long-Term 
Voltage

P, Q, 
V, θ

57 bus, 
Taiwan 
Power 
System 
(1821 
bus)

Accuracy: 
94.8–99.9%

Pinzón and 
Colomé 
(2019)

2019 Random 
Forest

✓ – – Short-Term 
Voltage

V 39 bus Mean error: 
1.697–2.033%

Adhikari 
et al. (2020)

2020 Gaussian 
Process 
Regres-
sion, ANN, 
SVM, DT

✓ – – Long-Term 
Voltage

V, θ 39 bus MSE: 0.568–
14.37%

Dharmapala 
et al. (2020)

2020 Random 
Forest

✓ – – Long-Term 
Voltage

Z, P, Q, 
V, θ, δ

14 bus, 
118 
bus

RMSE: 
0.61–5.07%

Mollaiee 
et al. (2021)

2021 DT, SVM, 
AdaBoost, 
Bagged 
Tree

✓ – – Long-Term 
Voltage

P, Q, 
V, θ

39 bus, 
118 
bus

Accuracy: 
69–96.02%

Rizvi et al. 
(2021)

2021 1D-CNN ✓ ✓ – Short-Term 
Voltage

V 30 bus, 
39 bus, 
118 
bus

Accuracy: 
92–100%

Proposed 2023 ANN ✓ ✓ ✓ Long-Term 
Voltage

V, θ 14 bus Accu-
racy: > 96%



Page 6 of 23Putranto and Azhar  Energy Informatics             (2024) 7:1 

Materials and methods
The ANN detection method will use the PMU measurement data from the power sys-
tem. The IEEE 14 bus test systems is used as the test case with a different number of 
PMU, loading and contingency variations as presented in test case subsection. Those 
scenarios are simulated and considered as data generation, which will be used as histori-
cal data presented in data generation subsection. Each simulated data then labelled into 
stable or unstable condition, including the critical bus information. The mathematical 
ANN detection model to detect the voltage instability and critical bus is formulated in 
the model formulation subsection.

Test case

To demonstrate the effectiveness of the detection method, the model would be tested in 
modified IEEE 14 bus presented in Fig. 1. There are two topologies tested in the simula-
tion to show the effect of PV integration in the test systems. First, there is no PV gener-
ating unit in the test system and second there is PV generating unit in bus number 3.

In those test systems, there are 5 generating unit with the total capacity 700 MW, 11 
load center, 14 buses, 16 lines, 5 transformer and 1 shunt compensator. There are four 
voltages levels 132, 33, 11 and 1 kV. The system’s total load is 259 MW and 73.5 MVAR. 
The IEEE test system data were presented in DIgSILENT GmbH (2020). The PV generat-
ing unit is modeled as constant power with unity power factor with 50 MWp penetra-
tion which is 20% of system total load. There are some PMU installed in the test system 
with the number of PMU is vary to identify the effect on the accuracy.

Computer specification

The specifications of the computer used in this study to simulate data generation and 
build the deep learning model are shown in Table 2. In addition, the main software used 
in the simulation includes PowerFactory 2022 SP4, Python 3.9.12, and TensorFlow 2.10.

Fig. 1 Modified IEEE 14 Bus System Single Line Diagram (DIgSILENT GmbH 2020)
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Data generation

The data synthetic of power system operation is generated using power system analy-
sis especially the CPF. There are two main operation scenarios based on PV integration, 
without and with PV integration. The data generation for those two main scenarios are 
presented in Fig. 2. The nose curve is calculated by obtaining the critical node by increas-
ing the active power in the selected bus until the load flow calculation is not convergent 
as presented in Kundur (1994); DIgSILENT GmbH 2020). The output of this process is 
the set of nose curve data.

There are variations of load scaling, line contingency and number of PMUs for those 
two scenarios. The load scaling variations are simulated in the whole buses simultane-
ously and in an individual bus. In the whole buses, the load will proportionally increase 
up to the unstable condition while in an individual bus the load increment only occur in 
that respective bus.

In line contingency condition, the power system operation would be very different 
from the normal condition so that the operating data need to be generated for every 
single line contingency. Each operating condition in the nose curve trajectory would be 

Table 2 Computer specification

Specification Description

Processor 2.80 GHz

System type 64-
bit, × 64-based 
processor

Storage 512 GB

Memory 16.0 GB

Fig. 2 Generation of nose curve data based on the continuation power flow
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the raw data for the labelling process. The CPF would be executed for each scenario by 
increasing the load continuously so that the critical point (Karki 2009) would be reached 
and the power flow in that operating condition is not convergent. The critical point is 
also called nose curve which is used as the reference in the labelling process. The nose 
curve is also called P–V curve which shows the active power and the corresponding 
voltage during CPF.

To assess the voltage stability of the system, the stable and unstable region in the nose 
curve area should be defined as presented in Fig.  3. The stable operating condition is 
in the green color and the unstable condition is red color. Between the areas there is a 
vertical dashed line to limit the stability border which is set 90% distance from the nose 
curve. The blue dots reflect all the possible operating points in the trajectory to the col-
lapse point. In the real time application, the measured voltage operating point in high 
resolution is very important of which PMU is capable of.

The real unstable condition is in the nose curve which in this state the system has 
already collapse. However, in this study the unstable region is define in 90% from the 
critical point as presented in reference (Putranto et al. 2017), to give the system operator 
warning that the power system is going to collapse. The labelling process is presented 
in Fig. 4, which the stability margin and the critical buses are labeled. The stable condi-
tion is set up to 90% of nose curve and the critical buses is the lowest bus voltage close 
to the nose point. In this process, each operating point of all scenarios would be used as 
the input data with the nose curve of each scenario considered as the references. There 
would be two classes that are stable and unstable. Another information is the critical 
busses, it is the busses with the minimum voltage at the nose curve.

Model formulation

The data preparation, model formulation and stability detection are proposed in this sec-
tion. Generally, the workflow of the model formulation is presented in Fig. 5. There are 
three parts in the model formulation that are formulation of ANN architecture, hyper-
parameter tuning and cross-validation.

Fig. 3 Illustration of stable and unstable region of voltage stability (Putranto et al. 2017)
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Fig. 4 Voltage stability status data labelling

Fig. 5 Model formulation workflow
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ANN architecture is built by defining the input layer hidden layer and output layer. The 
shape of ANN architecture is presented in Fig.  6. In this research the input data is the 
1xn voltage magnitude vector with n is the bus number of the input data. Currently, the 
high resolution of buses voltage magnitude is measured by PMU. If the PMU is installed 
in all buses that would be ideal condition since all of buses can be measured at the time 
stamp. In this research, the number of PMU effect on the accuracy would also be investi-
gated. The output of the method would be two branches that are voltage stability detection 
and critical bus location. Critical bus detection includes the multiclass classification since 
there are more than two buses as the target. For that purpose, the bus locations need to be 
transformed for the calculation purpose. There is a technique called one-hot encoding to 
transform the class output into binary vector with 0 and 1 as presented in Al-Shehari and 
Alsowail (2021). One value would be the identity of the defined classes, otherwise zero.

There are seven layers used in the ANN architecture other than input and output. The 
first layer is the normalization layer which is useful for normalizing each data feature 
column. The robust scaler technique would cancel the median and scale the data based 
interquartile range. Interquartile range is the range between first and third quartile. This 
normalization is done to transform data in the different column feature so that it has the 
same scale and robust to the outlier. The normalization is done by reducing data with the 
first quartile from several samples divided by interquartile range sample in each column 
feature data. In this research, the effect on the stability detection dan critical bus location 
accuracy when the data normalization is done or not. The mathematical formulation is pre-
sented in the Eq. (1) (Ayub and El-Alfy 2020) as follow:

where xi,j is the data on the sample-i and feature- j , Q1j is the first quartile of feature- j , 
Q3j is the third quartile of feature- j , and xi,j′ is the normalized data. In the dense layer, 

(1)xi,j′ =
xi,j − Q1j

Q3j − Q1j

Fig. 6 Proposed ANN architecture
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the activation function would be operated which the mathematical formulation is shown 
in the Eq. (2) (Khan et al. 2018) as follow:

where W  is the weighted matrix, x is the vector input, b is the bias vector, factivation(•) is 
the activation function, and y is the output vector output dense layer. Activation func-
tion is used to produce the nonlinearity so that the classification can be done. In this 
research, dense layer uses the rectifier linear unit (ReLU) (Fukushima 1969). ReLU func-
tion will map the input to 0 if the value is negative and not change if positive. The math-
ematical formulation of the ReLU is in Eq. (3) (Khan et al. 2018) as follow:

The number of units in the first dense layer is determined by hyperparameter tun-
ing. Hyperparameter tuning is calculated using Bayesian Optimization with the 
Gaussian process which do the loss minimization. The next layer is the dense layer 
with the sigmoid and softmax activation function. Dense layer with the sigmoid acti-
vation function is used to map the input into binary value. While softmax is used 
to map the input into the Gaussian probability distribution in range 0 to 1. Sigmoid 
activation function is used to do binary classification, while softmax for multiclass 
classification. The mathematical formulation of those two functions are presented in 
Eqs. (4) (Von 2007) (Khan et al. 2018) and (5) (Dzulqarnain et al. 2019) as follows:

Moreover, for assessing the accuracy of the prediction, the loss function is used. 
There are two loss functions used in the detection method that are loss binary cross 
entropy and loss categorical cross entropy function. Loss binary cross entropy func-
tion is used to measure the binary classification while loss categorical cross entropy 
function is used for multiclass. The mathematical formulation of those two functions 
is presented in Eqs. (6) and (7) (Azhar et al. 2022) as follow:

where ti is the class target in the element-i , yi is the prediction output model in ele-
ment-i , and l is the bit number of the one-hot encoding result. To get the most accu-
rate ANN model, the minimization of the loss function in the training process can be 
done. In this research, the adaptive moment estimation (ADAM) is used (Kingma and 
Ba 2014). ADAM has advantages of a fast-learning rate and require less computation 

(2)y = factivation(W • x + b)

(3)fReLU (x) = max(0, x)

(4)fsigmoid(x) =
1

1+ e−x

(5)fsoftmax(x) =
exi

k
j=1e

xj
fori = 1, 2, . . . , k

(6)lossbinary = −tilog
(

yi
)

− (1− ti)log(1− yi)

(7)losscategorical = −

∑l

i=1
tilog

(

yi
)
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time. So that, ADAM is suitable for non-stationery and gradient which is very noisy and 
sparse (Soydaner 2020).

After the model architecture and hyperparameter value is formulated, the model is 
tested using cross-validation. Cross-validation is the data resampling method to assess 
the generalization capability and to avoid overfitting. In the k-fold cross-validation, the 
available training set learning is divided into k partition in the same size. Fold relates to 
the number of partitions which produced from the process as presented (Berrar 2019). 
The stratified k-fold cross-validation is used in the proposed method with the number of 
k is 10. The stratified random sampling which divides the class so that the proportion in 
the individual set reflects the proportion in the learning set is used in the cross valida-
tion. So that, each class label has the same number of proportions in each fold (Berrar 
2019; Prusty et al. 2022). The number of k is 10 which is the recommendation from the 
previous research as presented in Kohavi (1995).

Simulation results
In the section, the nose curve generation, data labelling, hyperparameter tuning and 
cross-validation are discussed. Moreover, the variation of line contingency, load scal-
ing, and data normalization on PV integration scenarios are formulated as presented in 
Table 3. There would be 51 variations for without PV and 52 variations for with PV inte-
gration which reflected the number of nose curve. The data generation of nose curve 
is simulated using DIgSILENT PowerFactory while Python is used to vary the scenario 
and run the process fully automatic. Then the proposed model is built under python 
environment.

Nose curves generation and data labelling

Some of nose curve data generations sample are presented in Figs. 7, 8, 9, 10. The fig-
ure shows the CPF result for each bus of modified IEEE 14 buses test system with the 
x axis tells the total capable system load that the network can handle, while the y axis is 
the voltage magnitude. Those figures show the nose curve area which shows the stability 
margin of the system operation. The green area shows the stable area which is up to 90% 
from the nose curve while red area shows the unstable region.

In that figures, load scaling in non-contingency condition without PV in Fig. 7, with 
PV in Fig. 8, load scaling in line 2–3 contingency condition without PV in Fig. 9 and 

Table 3 Variations of power system operating conditions

Parameter Scenarios

Without PV With PV

Load scaling Whole system, only Load 3, and only Load 
9

Whole system, only Load 3, and only 
Load 9

N-1 contingency Normal condition Normal condition

Each of the 16 lines Each of the 16 lines

– PV system in Bus 3

Variation number of PMUs 5, 7. 9 and 14 5, 7. 9 and 14

Normalization effect With and without normalization With and without normalization
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with PV in Fig. 10. The critical buses are in bus 5, bus 5, bus 4 and bus 4 with the nose 
point 1037.7, 1068.1, 588.5 and 671.1 for the scenario a, b, c and d, respectively. Inte-
gration of PV generating unit seem gives the positive impact to the system stability, 
if we compared the scenario Figs. 7, 8, 9, 10, which gives the PV integration topology 
better nose point.

The pair of 14 bus voltage on each operation loading condition would be used as 
the input data. For 51 without PV scenarios, there are 13,107 data rows of 14 buses. 
While for 52 with PV scenarios, there are 13,839 data rows of 14 buses. Each row is 
a 1 × 14 vector consisting of voltage magnitude data. Those data rows would also be 
labelled with the voltage stability status and critical bus location. They also provide 
many trajectories options to represent in which state the power system would operate 
for the near time step. The labelled 13,107 data rows for without PV and 13,839 data 
rows with PV are used for the data input in the proposed ANN model.

Fig. 7 Nose curve generation results in without PV system scenario with all loads scaling and no 
contingency

Fig. 8 Nose curve generation results in with PV System scenario with all load scaling and no contingency
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Hyperparameter tuning results

The hyperparameter tuning processes are done by trying some possible combina-
tion which has the minimum score of loss. The top 10 combination of the best trial 
result is presented in Table 4 and Table 5 for without and with PV scenario, respec-
tively. Generally, more unit in the layer will result in better ANN training. However, 
more units can also cause overfitting. One of the examples is in the rank 1 and rank 
6, which in the first dense in rank 1 is less than rank 6 but the loss score of rank 1 is 
better than rank 6. In that case, the rank 6 combination has suffered the overfitting. 
Based on the trial, the number of units in each dense layer of both PV scenario are 16, 
128, 128 and 96, respectively for first to fourth layer.

Fig. 9 Nose curve generation results in without PV system scenario with all loads scaling and contingency in 
line 2–3

Fig. 10 Nose curve generation results in with PV system scenario with all loads scaling and contingency in 
line 2–3
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Impact of normalization

The normalization effect in the pre-processing stage is presented in this section. The 
simulation uses 10 folds cross-validation to detect the stability status and critical bus 
location. The cross-validation result of without PV systems is presented in Table 6. In 
this scenario, the highest accuracy in the stability detection without normalization is 
97.25% in fold 10, while with normalization is 99.01% in fold 10. Moreover, for critical 
bus detection the highest accuracy without normalization is 90.16% in fold 2, while with 
normalization is 97.56% in fold 4. Furthermore, the mean value for stability detection is 
96.47 ± 0.70% (without normalization) and 98.04 ± 0.51% (with normalization) while for 
critical bus detection are 86.22 ± 3.85% (without normalization) and 96.90 ± 0.38% (with 
normalization). Normalization surely has a positive impact in the accuracy especially for 
critical bus detection. There is occur due to the outlier in the data set as presented in 
Fig. 11. With the robust scaler normalization in data pre-processing process, the outlier 
can be neglected.

On the other than, the cross-validation for with PV scenario is presented in 
Table  7. In this scenario, the highest accuracy in the stability detection without 
normalization is 97.18% in fold 4, while with normalization is 99.13% in fold 4. 

Table 4 Top 10 best trial results on the hyperparameter tuning process in without PV scenario

Rank number Layer Loss score

First dense Second dense Third dense Fourth dense

1 16 128 128 96 0.15455

2 16 64 128 96 0.15584

3 32 96 128 96 0.15728

4 64 64 128 96 0.15772

5 32 128 96 96 0.15829

6 64 128 128 96 0.15959

7 32 96 64 64 0.16183

8 16 64 64 96 0.16708

9 16 128 128 32 0.16812

10 64 64 64 32 0.17221

Table 5 The 10 best trial results on the hyperparameter tuning process in with PV scenario

Rank number Layer Loss score

First dense Second dense Third dense Fourth dense

1 16 128 128 96 0.159781

2 32 128 128 96 0.167234

3 32 128 96 96 0.168303

4 16 128 112 96 0.168811

5 16 128 128 32 0.173575

6 64 128 128 96 0.174498

7 16 128 128 80 0.176799

8 64 128 64 96 0.183777

9 32 96 64 64 0.185018

10 16 64 128 96 0.189285
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Moreover, for critical bus detection the highest accuracy without normalization is 
89.38% in fold 9, while with normalization is 97.69% in fold 10. Furthermore, the 
mean value for stability detection is 96.34 ± 0.59% (without normalization) and 
98.36 ± 0.36% (with normalization) while for critical bus detection are 86.05 ± 3.56% 
(without normalization) and 96.81 ± 0.48% (with normalization). The result on with 
PV scenario show the same trends as without PV scenario which the normalization 
can neglect the outliers in Fig. 12.

The required simulation time of normalization impact in each scenario is shown 
in Table 8. With PV scenario results in higher time simulation than without PV sce-
nario since with PV scenario has a larger number of data rows.

Table 6 Cross-validation results in without PV scenario for impact of normalization test

Fold number Accuracy (%)

Without normalization With normalization

Stability Critical Bus Stability Critical Bus

1 96.49 87.95 97.48 96.72

2 97.03 90.16 97.71 97.10

3 95.96 87.95 98.40 97.18

4 97.03 85.51 98.25 97.56

5 95.88 87.34 97.25 96.49

6 96.80 83.75 97.94 96.19

7 94.81 76.13 98.63 97.10

8 96.87 88.55 97.86 96.64

9 96.56 89.54 97.86 96.87

10 97.25 85.27 99.01 97.10

Mean 96.47 86.22 98.04 96.90

Standard deviation 0.70 3.85 0.51 0.38

Fig. 11 Boxplot of the dataset used in without PV system scenario
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Impact of the number of PMUs

In the real time application, PMU will be used to measure the real time bus voltage. 
However, the PMU investment cost is high so that for economic reasons the PMUs 
are only install in several buses. In the real time application, the direct voltage meas-
urement is taken from the PMU and run in the model in the data center every period. 
The period can be flexibly set since PMUs have high sampling resolution and synchro-
nized between each unit. In this part the effect on the accuracy under different num-
ber of PMUs are presented for with and without PV scenario.

The number of PMUs varies form 5, 7, 10 and 14 units. The model is simulated 
using cross-validation method with 10 folds. The cross-validation result of the PMU 
number variation is presented in Table 9. For 5 number of PMUs, the location is in 
buses 4, 5, 9, 11 and 13. For 7 number of PMUs, the location is in buses 4, 5, 9, 10, 11, 

Table 7 Cross-validation results in with PV scenario for impact of normalization test

Fold number Accuracy (%)

Without normalization With normalization

Stability Critical Bus Stability Critical Bus

1 95.74 84.03 98.63 96.89

2 95.38 82.30 98.48 96.53

3 95.66 88.37 98.05 97.25

4 97.18 89.02 99.13 96.32

5 96.89 88.95 97.76 96.97

6 96.60 89.23 98.48 97.04

7 96.68 85.98 98.48 97.04

8 96.17 78.03 97.98 96.46

9 96.10 89.38 98.27 95.95

10 97.04 85.25 98.34 97.69

Mean 96.34 86.05 98.36 96.81

Standard deviation 0.59 3.56 0.36 0.48

Fig. 12 Boxplot of the dataset used in with PV system scenario
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13 and 14. Then for 10 number of PMUs, the location is in buses 1, 4, 5, 7, 9, 10, 11, 
12, 13 and 14. From all possible combination scenarios, there are 7 variations of criti-
cal busses which are in buses 4, 5, 9, 10, 11, 13 and 14. The PMU location is intention-
ally located to cover those variations.

In this scenario, the highest accuracy of stability detection for 5 PMUs is 98.86% in fold 
5, 7 PMUs is 99.01% in fold 10, 10 PMUs is 98.70% in fold 7, and 14 PMUs is 98.78 in fold 
10. While for the critical bus location detection for 5 PMUs is 97.63% in fold 9, 7 PMUs 
is 97.56% in fold 4, 10 PMUs is 97.79% in fold 2 and 14 PMUs is 98.24% in fold 9. For 
mean and the standard deviation of the stability detection, for 5 PMUs is 98.23 ± 0.48%, 
7 PMUs is 98.04 ± 0.51%, 10 PMUs is 98.15 ± 0.59%, and 14 PMUs is 98.04 ± 0.40%. 

Table 8 The required simulation time of the normalization test

Fold number Time (s)

Without normalization With normalization

No PV PV No PV PV

1 16.37 17.93 17.17 17.81

2 16.59 17.44 16.51 17.23

3 16.98 17.43 16.75 17.67

4 16.95 17.29 16.78 16.85

5 16.02 17.52 16.22 17.88

6 16.89 17.56 15.82 17.62

7 16.91 17.64 16.42 17.38

8 15.62 17.33 16.68 17.57

9 16.84 17.84 16.89 17.47

10 16.79 17.85 16.33 16.58

Mean 16.60 17.58 16.56 17.41

Standard deviation 0.43 0.21 0.36 0.40

Total 165.96 175.82 165.58 174.07

Table 9 Cross-validation results in without PV scenario for impact of the number of PMUs test

Fold 
number

Accuracy (%)

5 PMUs 7 PMUs 10 PMUs 14 PMUs

Stability Critical Bus Stability Critical Bus Stability Critical Bus Stability Critical Bus

1 97.64 96.41 97.48 96.72 96.64 96.34 97.94 97.1

2 97.94 97.56 97.71 97.10 98.47 97.79 97.86 97.79

3 98.32 97.33 98.40 97.18 98.4 97.48 98.32 96.8

4 98.25 95.27 98.25 97.56 98.32 97.71 98.17 95.88

5 98.86 97.18 97.25 96.49 97.56 95.19 97.48 97.25

6 98.47 95.73 97.94 96.19 98.55 96.95 97.79 96.64

7 98.86 96.19 98.63 97.10 98.7 97.79 98.47 97.64

8 98.02 96.87 97.86 96.64 98.09 97.25 98.09 97.18

9 97.33 97.63 97.86 96.87 98.17 97.33 97.48 98.24

10 98.63 96.18 99.01 97.10 98.55 97.33 98.78 97.71

Mean 98.23 96.64 98.04 96.90 98.15 97.12 98.04 97.22

Standard 
deviation

0.48 0.76 0.51 0.38 0.59 0.76 0.40 0.64
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While for critical bus detection, for 5 PMUs is 96.64 ± 0.76%, 7 PMUs is 96.90 ± 0.38%, 
10 PMUs is 97.12 ± 0.76%, and 14 PMUs is 97.22 ± 0.64%. Based on the simulation, there 
are no significant difference in accuracy under different number of PMU.

The cross-validation simulation result of the PMU number effect with PV integration 
is presented in Table 10. The PMU location is the same as in the without PV scenario.

In this scenario, the highest accuracy of stability detection for 5 PMUs is 98.63% in 
fold 5, 7 PMUs is 99.13% in fold 4, 10 PMUs is 98.77% in fold 3 and 14 PMUs is 98.55 
in fold 2. While for the critical bus location detection for 5 PMUs is 97.25% in fold 3, 
7 PMUs is 97.69% in fold 10, 10 PMUs is 97.98% in fold 2, and 14 PMUs is 97.76% in 
fold 8. For mean and the standard deviation of the stability detection, for 5 PMUs is 
98.16 ± 0.61%, 7 PMUs is 98.36 ± 0.36%, 10 PMUs is 98.08 ± 0.37%, and 14 PMUs is 
98.10 ± 0.61%. While for critical bus detection, for 5 PMUs 95.76 ± 1.47%, 7 PMUs is 
96.81 ± 0.48%, 10 PMUs is 97.26 ± 0.52%, and 14 PMUs is 96.66 ± 0.86%. Based on the 
simulation, there are no significant differences in accuracy under different number 
of PMUs and the PV integration scenario. The required simulation time of different 
number of PMUs in each scenario is presented in Table 11.

Discussion
Voltage stability detection and monitoring application has been presented in previous 
research. However, most of the application is built based on network topology informa-
tion, power system operation condition, system dynamic model, state estimation and 
power system analysis which require complete model of the power system and high 
computation burden in near real time applications. Currently, the data driven analysis 
based on the historical data is also developed into many applications especially in system 
stability analysis. If the historical data can be formulated into the representative model, 
the application would represent the complete model of the power system.

Table 10 Cross-validation results in with PV scenario for impact of the number of PMUs test

Fold 
number

Accuracy (%)

5 PMUs 7 PMUs 10 PMUs 14 PMUs

Stability Critical Bus Stability Critical Bus Stability Critical Bus Stability Critical Bus

1 98.55 96.6 98.63 96.89 97.83 97.62 98.41 96.68

2 98.34 97.04 98.48 96.53 98.05 97.98 98.55 97.04

3 97.62 97.25 98.05 97.25 98.77 96.68 97.54 97.04

4 98.55 96.68 99.13 96.32 98.55 96.89 98.48 96.82

5 98.63 93.64 97.76 96.97 97.9 97.33 98.34 97.11

6 98.05 92.7 98.48 97.04 98.05 97.62 96.53 94.51

7 98.34 94.65 98.48 97.04 98.19 97.04 98.41 96.68

8 98.41 96.68 97.98 96.46 98.27 97.83 97.83 97.76

9 98.55 96.32 98.27 95.95 97.83 97.4 98.41 97.18

10 96.53 96.02 98.34 97.69 97.4 96.24 98.48 95.81

Mean 98.16 95.76 98.36 96.81 98.08 97.26 98.10 96.66

Standard 
deviation

0.61 1.47 0.36 0.48 0.37 0.52 0.61 0.86
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The data driven for power system application is supported by the existence the syn-
chronized measurement which can be provided by PMU. PMU has the capability to 
measure the voltage phasor in high resolution up to 60 data per minute. When the 
model exists, the data from the PMU is used as the main input. In this application, the 
instantaneous data from installed PMUs are used to predict the stability and critical 
bus location. From the simulations, it can give high accuracy of the detection which for 
every scenario is above 96%. In this case the proposed method can represent the com-
plete power system model.

For supporting the effectiveness of the proposed model, the set data operation to show 
the voltage stability status and the critical buses is needed. In this research, the historical 
data is provided by performing data synthetic procedure which the pair of voltage mag-
nitude, loading conditions and voltage stability status is needed. For that purpose, repre-
sentative operating condition is generated by varying the bus loading, network topology 
change and PV integration. The CPF is then simulated so that the pair of the operating 
point and stability status can be labelled. Furthermore, the variation of unstable voltage 
and critical bus location is well defined so that the information for PMU placement is 
clear. In the 5, 7 and 9 PMUs variations, the detections are still accurate since PMUs can 
cover critical bus and credible contingency.

For another perspective, when the location of critical bus information is unknown, the 
PMU placement needs to be considered before the implementation. In example, if the 
PMU location is randomly change, it will affect in the accuracy. For comparison, there 
are four set of PMU location for 5 PMUs. The original set (set 1) which is used in the 
main simulation, PMU are located at 4, 5, 9, 11 and 13. Other combinations are namely 
set 2, set 3 and set 4, where the PMUs at set 2 are located at 1, 4, 7, 11 and 14, set 3 at 2, 
5, 6, 10 and 13 and set 4 at 3, 6, 9, 10 and 14. Different combinations result in different 
detection accuracy as presented in cross-validation in Table 12.

Table 11 The required simulation time of the PMUs number variation

Fold number Accuracy (%)

5 PMUs 7 PMUs 10 PMUs 14 PMUs

No PV PV No PV PV No PV PV No PV PV

1 17.22 17.30 17.17 17.81 16.70 17.20 16.65 17.26

2 17.13 17.07 16.51 17.23 16.21 17.20 16.39 17.15

3 16.56 17.36 16.75 17.67 16.78 17.01 16.72 17.74

4 16.60 17.09 16.78 16.85 16.56 18.27 16.84 17.36

5 17.35 17.45 16.22 17.88 16.26 18.55 16.25 17.02

6 17.11 17.89 15.82 17.62 17.35 18.22 16.96 17.15

7 16.29 18.18 16.42 17.38 16.29 17.38 17.23 16.77

8 17.20 17.66 16.68 17.57 16.88 17.11 16.09 17.00

9 16.68 17.38 16.89 17.47 16.49 17.35 17.18 18.59

10 17.28 17.75 16.33 16.58 16.38 17.78 16.54 17.59

Mean 16.94 17.51 16.56 17.41 16.59 17.61 16.68 17.36

Standard deviation 0.35 0.34 0.36 0.40 0.33 0.53 0.36 0.49

Total 169.44 175.14 165.58 174.07 165.91 176.09 166.84 173.62
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The proposed detection method is built using the ANN model which has seven hid-
den layers which has been developed based on PMUs data. The model is successfully 
predicting the voltage stability and critical buses using synthetic data. The scalability 
to the larger system can be applied as long as the number of PMUs is sufficient to 
cover the critical buses, credible line contingency and load variations. Dealing with 
the actual cases is more challenging since the data may not ideal. In example, the data 
losses, communication losses and missing information might occur. Furthermore, 
when the power system grows, the ANN model should be reformulated.

Conclusions
The proposed method model is built based on the ANN which has seven hidden lay-
ers for the instantaneous voltage magnitude. The proposed method can detect volt-
age stability status and critical bus’s location with high accuracy without requiring 
the complete model of power systems. From the simulation result, the best accuracy 
can be obtained by the 14 PMUs measurement which has the accuracy > 97% for volt-
age stability detection and > 96% for critical bus detection. Those results show that 
for modified IEEE 14 bus test system, the proposed model can represent the com-
plete power system model with the given historical data. The proposed model can 
consider line contingency condition, loading scenario and load scaling condition so 
that system variation can also be represented. Integrating the PV as the renewable 
energy almost has no effect in the accuracy. Moreover, the PMU number and location 
will affect the accuracy of the critical bus detection. If the credible contingency are 
specific for a power system, it is not required to install all PMU in each bus. Further-
more, the model can be applied in real time prediction since the computational time 
are still reasonable compared to the classical method which the required computation 
time is between 16 and 18 s per detection.

Table 12 Cross-validation results in without PV scenario for impact of PMUs selection

Fold 
number

Accuracy (%)

Set 1 Set 2 Set 3 Set 4

Stability Critical Bus Stability Critical Bus Stability Critical Bus Stability Critical Bus

1 98.4 96.87 97.94 95.58 97.94 93.97 93.82 84.21

2 98.4 97.1 98.09 97.64 98.32 95.58 93.21 85.43

3 98.47 97.86 98.63 96.49 98.02 94.05 93.14 84.82

4 98.7 96.8 98.32 97.1 97.79 95.35 92.91 83.83

5 97.33 94.36 98.93 96.64 98.02 93.97 93.44 83.52

6 98.25 96.34 98.86 94.74 97.94 95.8 93.21 83.14

7 98.86 97.64 98.63 96.34 97.64 93.9 93.36 84.29

8 97.33 96.64 97.94 96.34 96.79 92.44 92.44 82.14

9 97.33 96.56 98.02 95.73 97.63 94.81 94.05 83.66

10 98.4 97.4 98.47 96.49 97.94 94.89 93.13 83.74

Mean 98.15 96.76 98.38 96.31 97.80 94.48 93.27 83.88

Standard 
deviation

0.56 0.92 0.36 0.77 0.39 0.96 0.43 0.86
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