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Introduction
In recent times, there has been considerable interest among government departments, 
scientists, building owners, and the public in renewable energy sources and their deploy-
ment and installation. This is mainly due to the optimism about the adoption of sus-
tainable technologies, the general feeling of good duty towards the planet, and the high 
visibility of merits. Among the several renewable energy technologies, photovoltaic (PV) 
systems score above the rest due to their translation of energy-saving potential into real-
istic outcomes and the easy availability of sunlight as a resource.  The declining cost of 
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solar power leaves more room for investments in the pairing of solar generation with 
electricity storage to address the variation challenges for grid integration (Lua et  al. 
2021). But the unpredictable and stochastic nature of solar energy brings forth an array 
of challenges to the planning, management, and operation of power grid systems, as the 
fluctuation in the output can lead to cost increases, difficulty in grid integration, and 
issues with control and reliability of the system (Karthika and Gomathi 2022). Battery 
storage systems can be suitably employed to enhance power quality, stability, and reli-
ability and to provide features such as voltage sag compensation and frequency regula-
tion. They are primarily used to store the energy over the medium term to support the 
grid in times of peak demand, thereby reducing cost of energy and help deferring infra-
structure upgrade.

Photovoltaic generation, together with localized loads, batteries and corresponding 
control circuits, constitutes a DC microgrid. Microgrids can be suitably controlled to 
operate either in grid-connected mode or standalone mode and can seamlessly switch 
between the two modes. In a defined area, these systems could help facilitate meeting 
an additional power demand or maintaining regular supply. Standalone mode is also 
referred to by many terms: autonomous, self-reliant, isolated, or islanded mode. For 
the sake of clarity and uniformity, we will use the term—islanded mode—throughout 
this paper. If the code permits, battery units can support islanded operation of the grid, 
in the event of a power outage. During islanded mode, both real and reactive power is 
generated within the microgrids, and the battery systems offer stability and reliability to 
local loads.

Shunt and series compensation are traditionally used for improving power quality in 
power grid network. Shunt-connected topologies typically improve all things related to 
current, such as power factor, power, and current harmonics, while series compensation 
aids in mitigating voltage harmonics, sag, swell, and load voltage fluctuations in Point 
of Common Coupling (PCC). Nonlinear loads connected to the PCC might introduce 
harmonic and power quality issues in the grid. A series active compensator, typically, is 
leveraged to keep the load profile voltage constant at one per unit. Unified power qual-
ity conditioner (UPQC) combines the advantages of series compensation with shunt-
connected topologies to offer power quality improvement, especially in grid-connected 
mode of operation. The UPQC device combines a shunt-active filter together with a 
series-active filter in a back-to-back configuration to simultaneously compensate the 
supply voltage and the load current (Monteiro et al. 2003; Devi et al. 2020). The main 
purpose of a UPQC is to compensate for voltage imbalance, reactive power, negative-
sequence current, and harmonics (Gu et al. 2002; Kinhal et al. 2011). When dealing with 
microgrid difficulties such as fluctuating power supply and demand, an energy manage-
ment system (EMS) is an essential ingredient for ensuring the grid’s safe, cost-effective, 
and methodical functioning (Jitender and Prasenjit 2020; Nikhita and Seethalekshmi 
2021; Senthil-Kumar et al. 2015; Vinod 2012). Intelligent control units or an energy man-
agement system (EMS) are responsible for its secure, economical, and systematic opera-
tion while addressing microgrid challenges, such as uncertainty in power generation and 
power demand (Md et al. 2019).

Hence, this paper proposes an Artificial Eco system Optimized Neural Network 
(AEONN) controller for PV and battery-powered UPQC for microgrid applications, 
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and the system’s capability to be able to deal with dynamic scenarios such as grid volt-
age changes, grid inaccessibility, variation in photovoltaic power output, and nonlinear 
load is assessed and validated. As we will see in the next section, though several works 
have used nature-inspired optimization techniques in DC microgrids, none involved 
UPQC system. We have adopted the control methodology explained in Sachin and Bhim 
(2021) for our design, but instead of the traditional PI controller, we have employed arti-
ficial ecosystem optimization in shunt and series compensation schemes to leverage its 
exploratory and exploitation capabilities in controller design. The following are the sali-
ent features of the system presented in this work:

1)	 Integration of the production of renewable energy with the improvement of power 
quality at the supply and load sides.

2)	 Maintaining a constant load voltage profile with a nearly sinusoidal grid current.
3)	 Adaptability to changes in irradiance and PV system output
4)	 Seamless, automatic transfer between standalone and grid-tied modes. This is highly 

beneficial when critical loads such as hospitals, data centers, and factories are on the 
network.

5)	 Control of UPQC using artificial eco system optimized neural network for ensuring 
effective functioning of the system for above-listed objectives.

The rest of the paper is organized as follows: the next section provides an overview of 
the literature on the related topics. Section Methodology provides a brief background 
on the controller design of the subsystems, such as shunt and series active compensa-
tors and bidirectional converter. Section AEONN control describes the methodology of 
the proposed controller, while section Results presents the significant results and corre-
sponding discussion, and section Conclusion draws the conclusions.

Related work
There are several studies in the literature that have reported linear control of microgrids, 
but the system exhibits nonlinear behavior due to dynamic scenarios present on the grid 
side as well as the load side. Linear control strategies are typically implemented with 
several feedback loops by proportional-integral (PI) controllers, while proportional-
integral-derivative (PID) controllers use high-pass filters to implement the derivative 
components.

Liping et  al. (2009) compared PI, PID, and fuzzy controllers based on design meth-
odology, implementation issues, and experimentally measured performance. A major 
drawback of the scheme, however, is that the PI controller increases the dimension of the 
closed-loop system (Chimaobi and Alexis 2010). Another drawback is that the constant 
power loads’ current and voltage experience overshoots during transients that may be 
undesirable in some applications (Chimaobi and Alexis 2010). Grant and Philip (2006), 
Axel et al. (2009), and Julian et al. (2007) explored a nonlinear control approach called 
boundary control to achieve more robustness and better transient performance at the 
cost of complexity in implementation. Vahid et al. (2008) attempted to tackle the issue 
of constant power load using a combination of linear and nonlinear control approaches. 
Sana et  al. (2023) opined that grid integration with the distribution network required 
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hierarchical control structures for maintaining stable operation and control, which is 
otherwise challenging due to several technical challenges related to the large-scale inte-
gration of inverter-based resources.

In recent times, advancements in nonlinear control approaches have given rise to 
more sophistication in microgrid control. These modern control techniques offer a val-
uable alternative to the conventional control techniques mentioned above in terms of 
improvement in control performance. Artificial Intelligence (AI) techniques aid in the 
modeling of controllers in microgrids when the number, type, and nature of renewable 
energy sources and consumer participation are increasing by the day, which in turn leads 
to more complexity and uncertainty.

Among the AI techniques, several works cited the use of fuzzy and neural network-
based strategies. While the fuzzy technique addresses the problems that arise due to 
uncertainty in the environment by embedding inference procedures that are akin to 
human reasoning, controllers implemented on neural network models leverage advan-
tages such as supervised learning to tackle nonlinearity and to deal with Maximum 
Power Point Tracking (MPPT), voltage and frequency control, and load sharing. Intel-
ligent controllers are notably suitable for these types of applications because they can 
adapt to uncertainties and be used when the exact model of a system is not available or is 
prone to changes (Tania et al. 2020). Navid et al. (2019) proposed an adaptive controller 
in a fuzzy-based model and applied it to a DC microgrid test bed that fed one constant 
power load, while Hiroaki et al. (2013) presented a new voltage control that combines 
fuzzy control with gain-scheduling techniques to accomplish both power sharing and 
energy management. Ahmed et al. (2022) presented an optimal adaptive fuzzy manage-
ment strategy designed for a DC microgrid based on a fuel cell system, photovoltaic 
array, and battery bank.

Artificial neural networks (ANN) have certain characteristics that make them advan-
tageous in the development of controllers in the different levels of control that micro-
grids must include to be economic, efficient, and able to satisfy the energy power quality 
and quantity requirements (Tania et al. 2020). ANN has been used for current and volt-
age control in microgrids, most popularly in tuning the parameters of the PI controller. 
Chettibi and Mellit (2018) presented a controller for MPPT tracking by implementing 
a neural network optimization for voltage reference for the PI controller. Marko et al. 
(2013) attempted to solve an optimization problem using neural networks to reduce 
energy imbalances between electric energy production and consumption. Michael et al. 
(2016) presented a neural network model to predict voltage in an environment with high 
penetration of renewable energy sources, using the well-known Levenberg–Marquardt 
algorithm for achieving the learning.

A few nature-inspired optimization techniques have been cited in the literature for 
DC microgrid control. Shehab et al. (2019) presented a fuzzy logic controller that was 
optimized using an artificial bee colony technique to increase the system’s energy-
saving efficiency, in which the microgrid consisted of solar PV, wind turbine, battery 
energy storage and fuel cell. Basma et al. (2022) used an African vulture optimization 
algorithm to demonstrate the stability of a DC bus through voltage control for a DC-
islanded microgrid. Farid et al. (2017) discussed the comparison of flower pollination 
algorithm, modified particle swarm optimization, and perturb and observe methods 
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in MPPT-coupled inductor sepic converters on a DC microgrid-isolated system, while 
Hany and Mahmoud (2018) discussed a water cycle algorithm for efficient operation 
of microgrid. Sathish et al. (2022) introduced an artificial gorilla troop optimizer for 
use in artificial neural networks that manage energy consumption in DC-AC hybrid 
distribution networks.

None of the above works that have reported the use of intelligent control and 
nature-inspired techniques have dealt with the UPQC system, and we identified this 
as the research gap to explore in our work. Of those works that dealt with UPQC 
technologies, different control design methods have been discussed. Palanisamy et al. 
(2013) proposed a method of power angle control via the use of UPQC for intercon-
necting PV modules with the grid, while Victor et  al. (2018) built a UPQC with a 
transformer-free model. Tey et al. (2002) detailed their study on the development of 
a UPQC for the correction of harmonics in a low AC voltage system with control 
provided by an ANN, and particularly, the inverter operation was managed by means 
of the Levenberg–Marquardt Back Propagation (LMBP) method. Hina et  al. (2022) 
focused their study on the controller implementation for a UPQC that was part of a 
microgrid in which ANN provided the basis for the controller. In both of these works, 
artificial neural network control was used for overall control, not particularly for 
compensation. The use of ANN for overall control with the Levenberg–Marquardt 
algorithm as its core has some disadvantages—it needs a large amount of input and 
output data pairs for training the neural network, and this algorithm is trapped into 
the local minima points for efficient convergence. Hence, the AEONN controller is 
proposed in this paper to leverage its exploratory and exploitation capabilities in opti-
mization and compensation and this controller utilizes the Artificial Ecosystem-based 
Optimization (AEO) algorithm which belongs to a class of meta-heuristic algorithms 
that were inspired by nature, and originally introduced by Weiguo et al. (2020).

Sachin and Bhim (2021) reported a fascinating study on control methodology 
for shunt and series compensators, and we have adopted this control methodology 
explained in Sachin and Bhim (2021) for our design, but instead of the traditional 
PI controller, we have employed artificial ecosystem optimization in shunt and series 
compensation schemes. The PI controller increases the dimension of the closed-loop 
system and increases search space. Traditional PI controller can compensate for a 
part of harmonic, which is not too fruitful (Sen et  al. 2018). Also, the appropriate 
selection of initial gains of PI controller, as done in Sachin and Bhim (2021) requires 
intuition and knowledge of the process, which can be eliminated by the proposed 
control design technique. When substituted for a traditional PI controller, the intel-
ligent routine implemented by the AEONN controller helps tune the parameters so 
that the optimal performance of the system can be reached when PV sources and bat-
tery systems are involved. It is shown that this would enhance the voltage profile and 
current harmonics, and the power fed to nonlinear loads can be optimized. This effi-
cient and reliable algorithm makes it possible to achieve a seamless transfer of power 
between islanded and grid-connected modes, which is otherwise a challenge with 
UPQC topologies. This feature is highly beneficial when critical loads, such as hospi-
tals, factories, and data centers, are on the distribution network.
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In this work, simulation-based experimentation is used to examine the system’s per-
formance in full detail. The system’s performance is assessed under a variety of dynamic 
scenarios that are commonly present in a contemporary distribution network, such as 
grid voltage changes, automated changeover, grid inaccessibility, variation in PV power 
output, and nonlinear load. When the system switches automatically from grid-con-
nected mode to standalone mode in the event of a grid fault or failure, the behavior of 
the system is also assessed.

Methodology
In this section, the basic control methodology for the battery and photovoltaic-pow-
ered UPQC for microgrid application is detailed. The overall circuit diagram with its 
three chief subsystems—the bidirectional converter, series, and shunt compensators—is 
shown in Fig. 1. The point of common coupling is via the switches SW1, SW2, and SW3, 
using which the microgrid is connected to the three-phase system. Under normal opera-
tions, the system is connected to the grid via these switches. During any grid disruption 
event, the system will be operated via the UPQC operating in its islanded mode. The 
dually powered UPQC system includes a battery and a solar PV array integrated with the 
series and shunt compensators in conjunction with the DC link between them. The volt-
age source converters that make up these active compensators are linked to the supply 
via the interfacing inductors. To reduce the harmonics generated by the high-frequency 
switching of these devices, ripple filters are installed, as shown in the circuit diagram in 
Fig. 1.

Firstly, the shunt compensator’s control logic is described in the following paragraph, fol-
lowed by that of the series compensator and the bidirectional converter, respectively. The 
shunt compensator of the dual-powered UPQC system operates in two modes, depend-
ing on whether it is operated in the grid-connected mode or islanded mode. When it is 
connected in the grid connected mode under normal operation, the compensator acts as a 

Fig. 1  Circuit diagram of dually powered UPQC for microgrid applications
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current regulator and while it is in the islanded mode under any grid disturbances, it acts as 
the voltage regulator. The fundamental purpose of the shunt compensator under islanded 
operation is to maintain a constant load voltage profile despite irradiance and load changes. 
The detailed control logic diagram of these modes is shown in Fig. 2.

In this work, we assume that the signal that distinguishes between the two modes is 
known by the symbol C_sig. When C_sig equals zero, the system operates in its islanded or 
standalone mode, whereas when C_sig equals one, the system is in its grid-connected mode. 
During grid-connected mode, the shunt compensator compensates for the load current and 
provides the PV electricity to the normal working grid. Whenever there is a load imbalance 
or little irradiance fluctuation, the shunt compensator is set up to provide power to the grid, 
and the battery bank provides the required extra power. In this way, the network’s stability 
is improved by pumping active power into the grid. As seen in Fig. 2, the gate pulses to con-
trol the Shunt Voltage Source Converter (SH-VSC) are generated using the reference cur-
rents received. When the system is operating in an isolated or islanded mode, the SH-VSC 
is structured to maintain a constant load voltage, regardless of fluctuations in the load cur-
rents and the solar irradiances. Here, a three-phase sine generator is used to generate the 
reference load voltages, which are then related to the measured load voltages for processing 
by the optimized AEONN controller to obtain the load reference current. Therefore, when 
the system is in standalone mode, the reference load currents are compared with the meas-
ured load currents, ahead of the generation of gate pulses for the SH-VSC. Depending upon 
the control logic signal, based on whether the system is operating in islanded or grid-linked 
mode, the corresponding gate pulses are delivered to the SH-VSC. As shown in Fig. 3, using 
the phase voltages, the voltages at the point of common coupling are obtained as follows:

(1)VIN = sqrt
2

3
V 2
in_a + V 2

in_b + V 2
in_c

(2)Vp_a =
Vin_a

VIN
.

Fig. 2  Shunt control schematics with AEONN controller
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Based on the preset grid reference power, the magnitude of the reference phase cur-
rent is calculated as given by Eq.  (5), and the instantaneous currents are given in Eqs. 
(6)–(8).

The control logic for the decision signal C_sig, is depicted in Fig. 4. This signal, C_sig, is 
used to distinguish between grid-connected mode of operation and islanded mode and 
enables the switches to connect during the former and detach from the grid during the lat-
ter. The main criteria that decide the output of the decision signal C_sig are the phase dif-
ferences, voltage magnitude differences, and frequency differences between the load and 
PCC voltages, along with the operating mode. As seen from Fig. 4, some conditions in the 
control logic include checking whether the phase difference and the frequency difference 
between the load and PCC voltages are less than 3° and 0.3 Hz, respectively. The same is 
true if the voltage magnitude difference is under 0.05 p.u. or above 0.3 p.u. All the criteria 
outputs are sent to two AND logic blocks, with one obtaining the output corresponding to 
standalone mode, that is when it is less than 0.05p.u., and the other corresponding to grid-
connected mode having an amplitude difference tolerance of up to 0.3p.u. The outputs of 

(3)Vp_b =
Vin_b

VIN
.

(4)Vp_c =
Vin_c

VIN
.

(5)Iin_r =

(

2

3

)(

Pgrid

VIN

)

(6)Iin_a = Iin_rVp_a

(7)Iin_b = Iin_rVp_b

(8)Iin_c = Iin_rVp_c

Fig. 3  PCC voltages
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the AND logic blocks are then sent to the OR logic gate to ultimately produce the decision 
control signal C_sig.

The series compensator’s control logic is given as follows: As shown in Fig. 5, the gate 
pulses for the series voltage source converter (SER-VSC) are generated using Pulse Width 
Modulation (PWM). The control logic for this is based on Park-Clark’s synchronized refer-
ence frame theory. During grid-connected mode, the SER-VSC regulates load voltages to 
eliminate PCC voltage swings, whereas during islanded mode, the SER-VSC is bypassed as 
the SH-VSC controls the voltage at the time of grid outages.

To maintain the load voltages and the PCC voltages in phase, SER-VSC injects the 
required voltage, and this is done by translating these voltages into their d-q reference 
frame. The voltage differences between the d-q axes’ load and source voltages yield the 
actual SER-VSC voltages, and the corresponding differences between the load refer-
ences and source voltages yield the reference SER-VSC voltages as given in the following 
equations.

(9)Vsec_d = VL_d − Vin_d

Fig. 4  Control logic diagram: C_sig generation
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The controllers receive the SER-VSC voltages in the d-q frame, and the necessary regula-
tor voltages are produced, which are translated back into their corresponding values in abc 
frame and sent to the switching logic generator to generate the output signals depending 
on the decision signal C_sig. The AEONN controller is used to generate the reference com-
pensating voltages for series compensation, as can be seen in Fig. 5. Using this control sig-
nal, the decision signal and the reference signal obtained from the load voltages, the switch 
logic determines the signal to be output to the PWM generator.

Finally, we describe the control logic for the bidirectional converter, which is responsible 
for keeping the system’s dc-link voltage constant throughout. To sustain the dc-link volt-
age of the SH-VSC and the SER-VSC systems, the duty cycle is generated via the proposed 
AEONN controller. The controller processes the MPPT voltage and the PV voltage error to 
obtain the duty cycle for the gate pulse generation as given by Eq. (13). Using the generated 
duty ratios, proper switching signals for the converter are produced via the PWM signal 
generator, as shown in Fig. 6.

(10)Vsec_q = VL_q − Vin_q

(11)Vsec_dr = VL_dr − Vin_d

(12)Vsec_qr = VL_qr − Vin_q

(13)Ddc =
∑

WiVerr + θi +
∑

WjVref + θj

Fig. 5  Series control schematics with AEONN controller

Fig. 6  Control logic diagram: Bidirectional converter
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AEONN control
The AEO algorithm offers particularly great optimization capabilities in microgrid appli-
cations for dealing with grid or load variations and typically requires only two param-
eters: the number of iterations and the population size. This feature, when combined 
with its simple structure, makes it a desirable candidate for problems requiring faster 
convergence. It neither imposes many tuning parameters nor a suitable range of values 
for these parameters. The computational complexity of this algorithm is further reduced 
due to its exploration and exploitation capabilities, which depend on a linearly decreas-
ing value in the search space.

Background

The AEO algorithm is based on a synthetic ecosystem having three operators: pro-
duction, consumption, and decomposition (Weiguo et al. 2020). For the first operator, 
increasing the exploration-to-exploitation ratio is of paramount importance. The sec-
ond operator typically improves the algorithm’s exploratory capabilities, while the third 
operator is used to enhance its exploitation. To find a solution, AEO typically adheres to 
the following guidelines, as depicted in Fig. 7: the population of the ecosystem is made 
up of three different types of organisms: producers, consumers, and decomposers. Con-
sumers make up the rest of a population, and they might be carnivores, herbivores, or 
omnivores. Each member of a population either contributes to the food chain or breaks 
it down.

Each person in the population has an energy level that their function aptness value 
quantifies. Since all individuals are arranged in decreasing order of function aptness value, 
greater values imply greater energy requirements for the minimization function. The worst 
person, x1, with the highest function aptness value, is a producer, whereas the best person, 

Fig. 7  Ecosystem structure in AEO (Weiguo et al. 2020)
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xn, with the least function aptness value, is a decomposer. Since the remaining xs are con-
sumers, we may safely assume that x2 and x5 are herbivores, x3 and x7 are omnivores, and 
x4 and x6 are carnivores. A producer in an ecosystem uses carbon dioxide, water, sunshine, 
and nutrients from the decomposer to make food energy. In AEO, the decomposer (the 
best individual) and the lower and higher bounds of the search area are used to update the 
producer, who is the poorest individual in a population, and the latter then instructs the 
rest of the population’s members, both herbivores and omnivores, to look in those regions. 
Using AEO, we can generate a new person to replace the present one at random, and it 
might be either the best person (xn) or a person generated at random from the search space 
(xrand). The following is a representation of the production operator’s mathematical model 
(Weiguo et al. 2020):

where n is the size of the population, T is the maximum number of epochs, L and U are 
the minimum and maximum bounds, respectively, r1 is an arbitrary number between 0 
and 1, r is a random vector between 0 and 1, a is a linear weight constant, and xrand is the 
position of a randomly generated distinct in the exploration space. Equation  (14) uses 
the weight coefficient a to linearly drift the person from an arbitrarily generated starting 
point near the optimal starting point as the number of repeats increases. Equation (14) 
shows that in the first few iterations, × 1(t + 1) may cause the other people to accomplish 
a broad search of the exploration space, while in the last few iterations, × 1(t + 1) can 
cause the other people to engage in a highly exploitative phase around xn. Using Eq. (14), 
we can reproduce this production operator in both 2D and 3D spaces. Suppose this pro-
duction behavior is carried out 20 times. The operator provided by Eq. (14), as seen in 
Fig. 7, progressively drives a randomly produced person in the direction of the ideal per-
son who achieves the position of the best person after 20 repetitions.

All consumers may engage in consumption operator once the producer completes pro-
duction operator. A consumer may get food energy by eating a creator or an arbitrarily 
chosen customer with less energy, or both. Levy flying is a scientific operator that mimics 
the foraging behaviors of several creatures, such as cuckoos, bumblebees, deer, and lions. 
Levy flight is a kind of arbitrary walk that can discover the global optimum since certain 
steps have higher lengths over time. As a result, levy flying was often included in algorithms 
as it was inspired by nature to improve their optimization efficiency. This straightforward, 
parameter-free random walk with the levy flying feature promotes computational search 
space reduction since it does not require tuning of parameters. Given below C is the con-
sumption factor (Weiguo et al. 2020):

(14)x1(t + 1) = (1− a)xn(t)+ axrand(t)

(15)a =

(

1−
t

T

)

r1

(16)xrand = r(U − L)+ L

(17)C =
1

2

v1

|v2|
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The standard distribution N(0,1) has a mean of 0 and a normal deviation of 1. It has 
been discovered that these arbitrary walks tend to congregate around a fundamental 
location and sometimes allow for lengthy jumps away from the starting position. It 
gives AEO the chance to avoid regional extremes and scan the full search area. There-
fore, although different consumer types use various consumption techniques, this 
consumption component may aid each consumer in their quest for food.

A consumer will only eat the producer if it is a randomly selected herbivore. Con-
sumers × 2 and × 5 are both herbivores who exclusively eat the manufacturer × 1, as 
seen in Fig. 7. Equation (19) quantitatively represents this herbivore eating pattern.

If a consumer is nominated at random to be a carnivore, it can only eat a customer 
arbitrarily who has a greater energy level. The consumer × 6 in Fig. 7 is a carnivore, 
so it must arbitrarily select a consumer from the group of people × 2 to × 5 with the 
highest energy level for food. The following equation represents a carnivore’s eating 
habits:

If a consumer is arbitrarily selected as an omnivore, it may devour both a producer and 
a consumer with a greater power level. The consumer × 7 in Fig. 7 is an omnivore; thus, 
it must devour both the producer × 1 and a customer arbitrarily nominated among the 
people × 2 to × 6 who have more energy than × 7. The following is the precise equiva-
lence that describes how an omnivore consumes food:

where r2 is a chance number that falls between [0, 1]. When using this consumption 
operator, AEO adjusts a search person’s position in relation to the worst or an arbitrarily 
selected distinct in a populace, or both. This performance favors examination and ena-
bles AEO to conduct a worldwide search.

For an ecosystem to work properly, decomposition is a very important process. It also 
supplies crucial nutrients for the producer’s development. When every member of the 
population passes away during decomposition, the decomposer’s remnants will deterio-
rate or undergo chemical breakdown. To quantify this behavior, we develop the decay 
factor D and the weight constants e and h. By adjusting D, e, and h, one may determine 
where the decomposer xn is relative to the location of the ith person xi in the popu-
lation. It partially demonstrates exploitation by allowing each person’s next position to 
circulate around the best person (the decomposer). The following equation accurately 
describes this breakdown behavior (Weiguo et al. 2020):

(18)v1 ∼ N(0, 1), v2 ∼ N(0, 1)

(19)xi(t + 1) = xi(t)+ C.(xi(t)− x1(t)), i ∈ [2 . . . .., n]

(20)xi(t + 1) = xi(t)+ C.
(

xi(t)− xj(t)
)

, i ∈ [3 . . . .., n]

(21)j = randi([2i − 1])

(22)
xi(t + 1) = xi(t)+ C.(r2(xi(t)− x1(t)),+(1− r2)

(

xi(t)− x1j(t)
)

, i ∈ [3 . . . .., n]

(23)j = randi([2i − 1])
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Equation 14 is applicable to extending the position to 2-D and 3-D spaces as well. As 
the gap between the current person xi and the person xn becomes larger, the sampled 
points become more sparsely distributed, where most of the sampled points randomly 
disperse in this range. According to this scenario, a few sampled points tend to randomly 
occupy certain places that are located far from the individual xn. This finding may be 
used to justify taking advantage of and avoiding the regional extreme. AEO creates a 
population at random to begin the optimization process. The primary exploration indi-
vidual changes its location as per Eq. (14) at each iteration, while the other people have 
the same chance of updating their positions based on Eqs. (20)–(23). If someone is pro-
vided a better function value, the algorithm will accept it and each person will adjust 
their position. During the updating process, if a person crosses the lower or higher 
bound, a random number will be created in the search space. Until the AEO algorithm 
meets a termination value, all updates are carried out iteratively. The finest parameter so 
far discovered has finally been returned.

In summary, the following observations are made in accordance with the procedure 
and the corresponding optimization results:

1.	 With a greater number of iterations, the production helps AEO build an applicant 
solution that drifts from an arbitrarily created location to the optimal location and 
will direct other people to conduct consumption operators throughout the consump-
tion process. The equilibrium between exploratory and manipulative search is sub-
stantially aided by this tendency.

2.	 The eating element motivates AEO to conduct a worldwide exploration. Each cus-
tomer is equally likely to be an herbivore, a carnivore, or an omnivore throughout the 
eating process.

3.	 Using three important factors, the decay permits AEO to modify each person’s posi-
tion depending on the best result in the populace. It could improve AEO exploration. 
The flowchart of the AEO procedure is shown in Fig. 8.

Neural network structure

Neural networks have the capability to organize themselves depending on the inputs 
they receive throughout the learning process and create and remember the mapping 
between the input–output pair. This capability is exploited in controller applications 
where a nonlinear relationship between the input and output data pairs exists. The valu-
able feature of the ANN controller is its ability to learn, adapt, calculate the mean square 

(24)xi(t + 1) = xn(t)+ D.(e.xn(t)− h.xi(t))i = [1 . . . .., n]

(25)D = 3u, u ∼ N(0, 1)

(26)e = r3.randi([12])− 1

(27)h = 2.r3 − 1
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error, and predict the corresponding output to reduce the error between input and out-
put. Figure 9 depicts the generalized black diagram of an ANN based controller.

The generic structure of the ANN controller with AEO optimization embedded makes 
it an ideal candidate for microgrid applications. The data-based approach of ANN, 
wherein knowledge is contained within and extracted from the data itself, is very appli-
cable to tuning the controller parameters so that the optimal performance of the sys-
tem can be reached when PV sources and battery systems are involved in the microgrid. 
More importantly, the AEONN controller uses the same method for training the shunt 
and series compensator as well as the bidirectional converter. For UPQC compensa-
tion, it is necessary that the controller response be fast and accurate. In the proposed 
AEONN controller, the generation of error between load voltage reference and sensed 
load voltage signals must be not only rapid and accurate but also consistent over a large 
operating range.

Fig. 8  Flowchart of AEO procedure

Fig. 9  Generalized blocks of ANN controller
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The AEONN model is built in the following ways: (1) load the data; (2) fix the tar-
gets and number of neurons; (3) create the feed-forward neural network; (4) calculate 
each neuron’s starting weight value and bias; (5) obtain the cost function to determine 
a neuron’s output; (6) run the AEO routine; and (7) get the AEONN weights and Mean 
Squared Error (MSE). This paves the way for the optimal network structure. The num-
ber of neurons was fixed at ten for a rapid response of the controller, and the feed-for-
ward network propagates from the input layer to the output layer in a forward direction 
through the hidden layer. Table  1 shows the parameters of the feed-forward network 
configured.

Figure 10 shows the snapshot of the program routine written for shunt compensation.
The above AEONN algorithm was tested for MPPT, shunt, and series compensators, 

and the optimal value of the fitness function in all these cases was examined. The con-
vergence plot corresponding to the shunt compensator is shown in Fig. 11 in which the 
best cost value of 0.635 was reached by the 67th iteration and stayed stable after that. 
Similarly, the MPPT algorithm produced 1.59 at the 100th iteration, while the series 
compensator had the best cost value of 2.56 at the 500th iteration.

AEONN controller schematics

A prototype of a three-phase, battery, and PV-powered UPQC is tested in MATLAB-
Simulink (R2021a) in a variety of dynamic settings, representative of both standalone 
and grid-connected modes of operation to assess the system’s performance in each set-
ting. Table 2 displays the specifications of the settings that were employed.

Table 1  Parameters of the neural network

Parameters Number

Neurons in hidden layer 10

Features 2

Input weights 20

Input biases 10

Output weights 10

Output bias 1

Total of weights plus biases 41

Fig. 10  Program routine for shunt compensator
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The overall implementation in Simulink is shown in Fig. 12, which shows the various 
subsystems such as the PV system, battery management system, MPPT control system, 
PWM generator, coupling inductor, and a nonlinear load, complete with the proposed 
AEONN controller.

Results
The simulation results for normal and dynamic irradiance conditions with grid-con-
nected mode as well as islanded mode operation at the time of grid fault conditions are 
presented in this section. We show the zoomed results for better clarity.

Grid connected mode

Firstly, the PV system was assumed to be operating under normal conditions, that is, the 
irradiance maintained at 1000 W/m2 and the temperature maintained at 25  °C under 

Fig. 11  Convergence curve for shunt compensator

Table 2  Specification of the test system

S. No Description Values Unit

1 PV voltage at maximum power point 194 V

2 PV current at maximum power point 11.4 A

3 PV power 2210 W

4 Battery nominal voltage 120 V

5 Battery rated capacity 70 Ah

6 DC link voltage 141 V

7 DC link capacitor 6668 µF

8 Battery side converter Inductor 4 mH

9 Grid voltage 110 Vrms

10 Grid frequency 50 Hz

11 Rectifier load R = 100
L = 0.15

Ω
mH

12 Shunt active filter Inductor 30 mH

13 Series active filter capacitor 100 µF
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grid-connected mode. The performance of the dually powered UPQC with the proposed 
controller was assessed under these normal test conditions.

Normal PV system condition

First, we describe the zoomed results of the normal test conditions. The proposed sys-
tem was simulated with a nonlinear load, and the magnitude of the load current var-
ies according to the number, type, and nature of the loads. It can be observed from the 
schematics in Fig. 12 that the load current is simply a branch current, and hence its peak 
value of approximately 2.5A is less than that of grid current (about 10A). The photovol-
taic and battery-powered UPQC system with the AEONN controller ensures a steady 
stream of supply in the grid at all times to be able to compensate for grid voltage changes, 
automatic changeover, and variation in PV power output. This is yet another reason for 
the grid current to be in excess of the load current in magnitude. The grid voltage was 
maintained at 1 p.u. at its nominal value of 110 V; Fig. 13 shows the corresponding peak 

Fig. 12  Overall schematics

Fig. 13  Voltages of normal PV system condition
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value of grid voltage, and that the controller is able to maintain a constant voltage across 
the nonlinear load satisfactorily. Figure 14 depicts the grid, load, and compensator cur-
rents, while from Fig.  15, it can be observed that the voltage of the battery is held at 
120 V and current is at 24 A, and the battery is constantly being charged by the normal 
conditions prevailing at the grid and load sides.

Voltage sag condition

Voltage fluctuations at the grid side are a scenario that is very much a possibility in 
a contemporary network, as the PCC may not be near the voltage-regulated supply 
node and hence voltage sag and swell conditions are validated for the proposed con-
troller in this subsection and the next. When a 0.2 p.u. voltage sag condition was cre-
ated at the grid side, the grid voltage reduced from a peak value of approximately 
155 V to 124 V for a duration of 0.3 s to 0.5 s, but the system was able to maintain 

Fig. 14  Currents of normal PV system condition

Fig. 15  Battery voltage and current of normal PV system condition
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the load voltage constant at 1 p.u. due to the injection of compensation voltage by 
the series active compensator, and the amount of voltage compensated was found to 
be exactly what was required in magnitude and phase, and the load voltage was sinu-
soidal, as can be observed in Figs. 16 and 17. The shape of waveforms for currents at 
grid, load, and compensator sides, respectively, are same as in Fig. 14 for the sag con-
dition as well. The AEONN controlled shunt converter supplies the current in a phase 
opposite to the harmonics present in load currents due to the combination of the sag 
condition and nonlinear loads, and so the grid currents were compensated accord-
ingly. Thus, the harmonics in grid currents were reduced, and the proposed controller 
was able to deliver very satisfactory results under sag the condition.

Fig. 16  Voltages for sag condition

Fig. 17  Sag condition-zoomed view of voltages
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Voltage swell condition

Under this scenario, the grid voltage was increased to 1.2 p.u. (186 Vp), mirroring 
under-loaded conditions that can prevail in a contemporary distribution network, 
and the results were analyzed. Figure  18 shows the grid, load, and compensated volt-
ages, while Fig. 19 shows the zoomed figures of the same. It can be observed that the 
AEONN controlled UPQC system efficiently compensates for the swelled voltage and 
helps sustain the sinusoidal load voltage waveform at 1 p.u. This is primarily due to the 
series converter, controlled by the AEONN, being aware of the instantaneous values of 
grid voltages, and was able to introduce out-of-phase voltages under the swell condi-
tion to maintain the load voltage sinusoidal, along with mitigating the harmonics at the 

Fig. 18  Voltages for swell condition

Fig. 19  Swell condition—zoomed view of voltages
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load side. The contribution by the controlled shunt compensator in reducing its reactive 
current drawn from the grid also assists the series compensator in injecting the correct 
voltages, in both magnitude and phase. Hence, here again, we see that the proposed con-
troller was able to maintain a constant load voltage with a sinusoidal waveform.

Dynamic change in irradiance

The simulation results with dynamic change in irradiance conditions (i.e., irradiance 
change from 1000 W/m2 to 500 W/m2 at 0.5 s and temperature maintained at 25 °C) are 
presented in this subsection. Figure 20 shows grid voltage reduced to 0.8 p.u. between 
time periods of 0.2 s to 0.4 s and increased to 1.2 p.u. between 0.6 s to 0.8 s and that 
the AEONN controller efficiently compensates both for the sag and swelled voltage 
and helps sustain the sinusoidal load voltage waveform at 1 p.u. It can be observed that 
under the dynamic change in irradiance condition, the amount of voltage compensated 
was found to be exactly what was required in magnitude and phase, and the load voltage 
was sinusoidal, as can be observed in Fig. 20.

As the primary function of a UPQC is to improve power quality by mitigating volt-
age sags, swells, and harmonics, the dually powered UPQC with the proposed controller 
injects compensating current into the grid, as can be seen in Fig. 21, with its magnitude 
and phase in accordance with the required degree of compensation. Under conditions 
of irradiance fluctuation, the AEONN controlled shunt compensator sets up to provide 
active power into the grid, and the battery bank supplies the required extra power. Dur-
ing the compensation process, any excess current flows into the grid, and hence the peak 
value of grid current is higher than that of load current. The AEONN controlled shunt 
converter, as shown in Fig.  21, injects accurate compensation current in the point of 
common coupling to make the grid current sinusoidal. The controller supplies the cur-
rent in a phase opposite to the harmonics present in load currents under the dynamic 
change in irradiance, and so the grid currents were compensated accordingly, and the 
proposed controller was able to deliver very satisfactory results under this scenario.

Fig. 20  Voltage waveforms due to dynamic change in irradiance
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Islanded mode

The simulation results with grid disturbance conditions when a grid fault occurs are 
presented in this subsection, and the system’s ability to maintain seamless operation 
from grid-connected mode to islanded mode and from islanded mode back to grid-
connected mode is investigated. With irradiance maintained at 1000 W/m2 and tem-
perature maintained at 25 °C, the grid is made unavailable between 0.3 to 0.5 s, as grid 
voltage is reduced to 0.2 p.u. during this period, as can be seen in Fig. 22, and it can 
be noted that a constant load voltage profile is adequately maintained by the shunt 
compensator as the series compensator does not have any role during this mode of 
operation. Here again, by maintaining the grid currents sufficiently higher than the 
load current, the controller was able to counteract voltage disturbances and maintain 
a stable voltage at the load side. The dually powered UPQC, controlled by AEONN, 

Fig. 21  Current waveforms for dynamic change in irradiance

Fig. 22  Voltages under islanded mode
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automatically switches to islanded mode, which can be noticed by the absence of grid 
current in Fig. 23, and prioritizes the resource to be available for critical loads. A con-
tinuous supply of power, though not at its nominal value, is provided by the battery 
system, as can be noticed in Fig. 24, as the battery is discharging at a fast rate to sup-
ply power to the critical load. Upon restoration to grid-connected mode, it can be 
noted from Fig. 22 that the phase voltages of the load are aligned with those of the 
grid voltages, and thus a seamless transition from islanded mode to normal operation 
is enabled by the proposed controller.

Total harmonic distortion

We investigated the waveforms of PCC grid currents and load voltages of AEONN con-
trolled UPQC system and calculated the total harmonic distortion (THD) percentages of 
fundamental components. Figure 25 shows the THD of the current of the grid at normal 
conditions is 3.67% while the THD of the load voltage is 0.02%. It was found that the 
PCC grid current THD and load voltage THD are both under 5%, satisfying the require-
ments of the IEEE-519 standard.

Fig. 23  Currents under islanded mode

Fig. 24  Battery system voltage and current under islanded mode
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We also simulated the UPQC system with just a traditional PI controller under nor-
mal condition, and obtained the waveforms of grid current and load voltages (Figs. 26 
and 27), and calculated THD percentages of fundamental components (Fig. 28). The 
THD of the grid current and load voltage with traditional PI control was found to be 
8.31% and 0.12%, respectively and the grid current THD is over the limit as per IEEE-
519 standards. On the other hand, the proposed AEONN controller, in comparison 
to the traditional PI controller, has been able to efficiently reduce the high amount of 

Fig. 25  THD percentages with AEONN controller under normal condition: grid current THD (left figure) and 
Load voltage THD (right figure)

Fig. 26  Grid current waveform with traditional PI control

Fig. 27  Load voltage waveform with traditional PI control
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THD in both the grid current and load voltage variables and bring it within the limits 
so as to obey the IEEE-519 standard as demonstrated in Fig. 25.

We investigated the waveforms of PCC grid currents and load voltages for all the sce-
narios discussed above and calculated the THD percentages of fundamental compo-
nents. The summary of what we found is presented in Table 3. As can be seen, the values 
pertaining to the proposed AEONN controller are within the limits as per IEEE-519 
standards.

Conclusion
This study detailed a new method for controlling the UPQC system that was dually 
powered by the battery and photovoltaic system, based on an artificial ecosystem opti-
mized neural network. AEO algorithms are a great choice as optimization routines in 
controller applications due to their simpler structure, enhanced exploration capability, 
and faster convergence, reduced complexity, and cost. The intelligent control algorithm 
was implemented in the shunt and series compensator of UPQC, both of which exhib-
ited excellent performance attributes both under normal and voltage fluctuation condi-
tions during grid-connected mode of operation when normal PV system behavior was 
established. The system was able to maintain a constant load voltage profile with a satis-
factory PCC grid current under all the stated conditions. The system was also assessed 
under dynamic conditions such as irradiance changes and fault occurrence, and the 
battery system was able to instantly start discharging the current to maintain a steady 
stream of power to the vital loads, while the overall system also ensured a quick and 

Fig. 28  THD percentages with traditional PI controller under normal condition: grid current THD (left figure) 
and Load voltage THD (right figure)

Table 3  THD percentages

S. No Parameters Grid current THD (%) Load 
voltage 
THD (%)

1 Normal PV system 3.67 0.02

2 Sag condition 3.02 0.13

3 Swell condition 3.74 0.12

4 Dynamic irradiance 3.72 0.13

5 Traditional PI 8.31 0.12
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seamless transition when normal operation was restored. The quality of power delivered 
also conformed to the standards of IEEE-519, as evidenced by the THD values of the 
point of common coupling currents. The system shows a lot of promise for real time 
implementation, as this would mean faster response of the controller due to the intelli-
gence embedded without compromising the accuracy of compensation. These modeling 
approaches can be employed to design, test, and commission dually powered UPQC sys-
tems in the microgrid and could aid in the systematic planning of the macrogrid as well. 
Our future research will focus on improving the speed and accuracy of the controller in 
combination with robust battery and inverter design strategies of PV system, along with 
the provision of electricity pricing.
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