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Abstract 

Renewable energy systems depend on the weather, and weather information, thus, 
plays a crucial role in forecasting time series within such renewable energy systems. 
However, while weather data are commonly used to improve forecast accuracy, it 
still has to be determined in which input shape this weather data benefits the fore-
casting models the most. In the present paper, we investigate how transformations 
for weather data inputs, i. e., station-based and grid-based weather data, influence 
the accuracy of energy time series forecasts. The selected weather data transformations 
are based on statistical features, dimensionality reduction, clustering, autoencoders, 
and interpolation. We evaluate the performance of these weather data transforma-
tions when forecasting three energy time series: electrical demand, solar power, 
and wind power. Additionally, we compare the best-performing weather data trans-
formations for station-based and grid-based weather data. We show that transforming 
station-based or grid-based weather data improves the forecast accuracy compared 
to using the raw weather data between 3.7 and 5.2%, depending on the target energy 
time series, where statistical and dimensionality reduction data transformations are 
among the best.
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Introduction
Renewable energy sources are essential to mitigate climate change (Clarke et al. 2022), 
and being able to forecast their supply is necessary to balance any energy system that 
includes them (González Ordiano et al. 2018). However, renewable energy sources and 
demand are weather dependent; thus, weather information plays a crucial role in renew-
able energy-related forecasting (Bloomfield et al. 2021; Harish et al. 2020; Vanting et al. 
2021). This weather information can come from various sources such as weather sta-
tions, e. g. (Vladislavleva et al. 2013; Hong et al. 2014; Gutierrez-Corea et al. 2016), maps 
from Numerical Weather Prediction (NWP) models, e. g. (Al-Yahyai et al. 2010), or both 
(e.g. Du 2019).

New advances in machine learning, for example, offer tools to better forecast renew-
able energy sources and demand given various weather input data. These approaches use 
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weather data in different formats like single time series, e. g. (Dahl et al. 2017; Hu et al. 
2021; Ren et al. 2022; Elizabeth Michael et al. 2022; Beichter et al. 2022), to grid-based 
data, e. g. (Feng et al. 2022; Kong et al. 2020; Si et al. 2021), or graphs, e. g. (Hu et al. 
2022; Simeunović et al. 2022).

While many research studies use data transformations on energy time series like wind 
power forecasting (Liu and Chen 2019) and it is known that using weather data improves 
the forecast accuracy of short-term renewable energy forecasts (Ludwig et al. 2023), it is 
yet unclear which weather data input shape is most beneficial. There are many options 
for how weather data can be used; for example, we can preprocess and transform the 
data or take it as it is. Additionally, some of the input data is often redundant, and, thus, 
some forecasting methods may perform better when using a reduced set of input fea-
tures. In theory, a deep-neural network learns the most important features on its own 
assuming a sufficient amount of data and an appropriate network architecture. In prac-
tice, however, the amount of data is often limited (Do and Cetin 2018) and the best net-
work architecture is hard to find (He et al. 2021; Wang et al. 2019). Hence, transforming 
the input data into a reduced-size data set can be beneficial. Furthermore, forecasts for 
energy consumption or production in large areas require weather data that cover the 
corresponding area which increases the complexity of the problem including data size 
and network architecture. While previous research already investigates which weather 
variables enhance the forecast accuracy, e.  g. (Cococcioni et  al. 2012; Lei et  al. 2009), 
how specific weather transformations improve the forecast accuracy, e.  g. (Andrade 
and Bessa 2017), and how transformations of input data generally impact the accuracy 
of neural networks (Neumann et al. 2021), there is currently no comprehensive under-
standing of whether transforming weather data improves forecast accuracy.

In the present paper, we investigate the role of transformations for station-based and 
grid-based weather data when forecasting renewable energy time series. We evaluate 
different weather data input transformations on historical energy data, including electri-
cal demand, solar, and wind time series data from one transmission system operator in 
Germany.

The remainder of the paper is structured as follows. “Weather data transformations” 
section introduces different weather data transformations. Given these transforma-
tions, we use the experimental setup described in “Experimental setup” section to evalu-
ate the forecast performance in “Results” section. We finally discuss the results and our 
approach in “Discussion” section  and conclude the paper in “Conclusion” section.

Weather data transformations
In the following, we introduce different transformations for weather data that we later 
evaluate concerning their influence on the accuracy of energy time series forecasts. 
We choose the transformation based on other existing transformations for energy time 
series (Liu and Chen 2019) to adapt them to weather data and also based on promis-
ing transformations from other domains like autoencoders for images. We consider eight 
transformations for station-based weather data, typically available as a vector, and grid-
based weather data, typically available as a matrix. While the vector only consists of 
temporal information, the matrix also contains explicit spatial information. All transfor-
mations reduce the dimensionality to reduce the complexity of the problem. Reducing 
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the complexity, of course, also reduces the information within the data (e.g. spatial 
resolution). However, the information is often redundant or not needed for accurate 
forecasts and makes it hard for the model to learn the underlying function. There are 
numerous possible transformations. So, we only choose a subset of all possible transfor-
mations that we consider as common (e. g. statistics), promising (e. g. autoencoder), or to 
ensure comparability between spatial and non-spatial weather data (selection and spatial 
statistics). Five of the transformations can be used for both station-based and grid-based 
data, namely the statistics, dimensionality reduction, clustering, and autoencoder and 
variational autoencoder transformations. We additionally consider the interpolation 
transformation for the station-based weather data and the selection and spatial statistics 
transformations for the grid-based weather data. For each weather data transformation, 
we describe its underlying concept before introducing the specific method we use for 
the transformation. We start with the transformations that can be used for both station-
based and grid-based weather data before describing the three transformations for only 
station-based or grid-based weather data. For all weather data transformations ft and 
forecasting time steps i, the weather data transformations are applied on each forecast 
horizon time step j of the forecast horizon H which leads to the formula Wi = {ft(wij)} , 
for i ∈ T  and j ∈ {1, . . . ,H} where Wi is the weather input for the forecasting time step i.

Statistics

To reduce the size of the input weather data features, we can apply the statistics trans-
formation. It describes the available weather data by a set of statistical measures such 
as mean or minimum. We evaluate three statistics transformations that differ in the 
included number of statistical measures. The statistics small transformation comprises 
just the mean, while the statistics medium transformation additionally consists of the 
standard deviation. The statistics large transformation also includes the minimum and 
maximum of the given weather data. Each statistical feature is applied to the whole sta-
tion-based or grid-based weather data.

Dimensionality reduction

Another way to reduce the size of the input weather data features is the Dimensional-
ity Reduction (DR) transformation. It transforms the weather data feature space into a 
smaller latent feature space, thereby helping to remove redundant and irrelevant data 
points. We evaluate three DR transformations using the Principal Component Analy-
sis (PCA) for dimensionality reduction. The PCA transforms the station-based or grid-
based weather data by changing the basis to the eigenspace of the covariance matrix and 
omits eigenvectors with low variance (Pearson 2022). We use all eigenvectors up to a 
variance of 90% for the DR 90 transformation, 95% for the DR 95 transformation, and 
98% for the DR 98 transformation.

Clustering

Since energy forecasts are weather-driven, weather conditions can be complex, and simi-
lar weather conditions lead to similar amounts of energy consumed or generated, the 
clustering transformation can be used to find similar weather data points. Clustering 
groups data points such that data points in one cluster are more similar to each other 
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than data points in other clusters. As clustering high-dimensional data is challenging 
due to the curse of dimensionality (Zimek et al. 2012), we reduce the dimensionality of 
the input weather data using PCA before we cluster the weather data points. We eval-
uate three clustering transformations that differ in the number of considered clusters. 
The clustering 5 transformation uses five, the clustering 8 transformation eight, and the 
clustering 12 transformation twelve clusters. To determine the clusters, we apply the 
k-Means clustering (Lloyd 1982) which is a centroid-based clustering algorithm that 
iteratively moves centroids based on their corresponding data points. If the centroids do 
not change after an iteration, the clusters are found. We apply the clustering approach to 
the station-based or grid-based weather data that results from the previously introduced 
PCA using all eigenvectors up to a variance of 98%.

Autoencoder and variational autoencoder

Another way to reduce the input weather data feature space is an Autoencoder transfor-
mation. It transforms a given large input feature space into a latent space using two neu-
ral networks: an encoder and a decoder. The encoder transforms the input data points 
into a latent space from which the decoder reconstructs the original data points. The 
latent space is optimized such that the difference between the original data points and 
their reconstructions is as small as possible (Rumelhart et al. 1986). If the latent space 
corresponds to parameters of a variational distribution (e. g.  a Gaussian distribution), 
it is called a Variational Autoencoder (VAE) (Kingma and Welling 2014). We refer to 
the related transformation as Variational Autoencoder transformation. We evaluate 
both the Autoencoder (AE) transformation and the VAE transformation with two dif-
ferent architectures for the encoder and decoder and latent space sizes of 16 and 32. 
The ully Connected Network (FCN) AE 16, FCN AE 32, FCN VAE 16, and FCN VAE 32 
transformations use a network with fully connected layers, whose input is a vector of 
station-based or grid-based weather data. The Convolutional Neural Network (CNN) AE 
16, CNN AE 32, CNN VAE 16, and CNN VAE 32 transformations apply a network with 
convolutional layers consisting of a fully connected layer in the latent space.

While the above-introduced transformations are applicable to both station-based and 
grid-based weather data, it may even be advantageous to convert station-based weather 
data into grid-based weather data or vice versa. Introducing transformations between 
station-based and grid-based weather data also increases comparability.

Interpolation

To convert station-based into grid-based weather data, we can use the interpola-
tion transformation. It derives grid-based data from the locations of the station-based 
weather data by interpolation between the related weather data points. We evalu-
ate the following three interpolation transformations that differ in the interpolation 
method applied to the non-spatial weather data: The bicubic interpolation transforma-
tion applies a cubic function to determine the interpolated weather data point of the 
16 nearest data points (Keys 1981). The bilinear interpolation transformation uses the 
distance-weighted average of the four nearest data points as interpolated weather data 
point (Bredies and Lorenz 2018). Finally, the nearest interpolation transformation selects 
the value of the nearest weather data point (Bredies and Lorenz 2018). While the first 
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two transformations can only interpolate within the convex hull of the locations, we can 
use the nearest interpolation transformation to extrapolate from the available locations.

Selection

To transform grid-based into station-based weather data, we can apply the selection 
transformation. It uses the locations of the weather stations in the station-based weather 
data and selects the corresponding nearest grid cell in the grid-based weather data. So, 
instead of the point measurements for station-based weather data, we get the corre-
sponding grid cells from the grid-based weather data which refers to the smallest area of 
the grid-based weather data. We evaluate the selection transformation using the weather 
stations available for the energy time series to be forecast.

Spatial statistics

Another way to transform grid-based data into station-based weather data is the spa-
tial statistics transformation. It determines statistical features for grid-based weather 
data over subareas of the input space. The subareas are equally distributed in all spa-
tial dimensions without overlap. This transformation keeps some of the spatial informa-
tion while lowering the spatial resolution and, thus, the computational complexity of the 
input weather data. We evaluate three spatial statistics transformations with the same 
numbers of statistical measures as for the statistics transformation, resulting in the spa-
tial statistics small, the spatial statistics medium, and the spatial statistics large trans-
formations. We calculate the related statistical measures on nine subareas for all three 
transformations by splitting the grid-based weather data into a 3× 3 grid.

Experimental setup
Before we present the results, we introduce the respectively used energy and weather 
data sets, the evaluated weather data transformations, the applied forecasting methods, 
and the metric to assess the forecasting results.

Energy data

The introduced transformations are evaluated on weather data concerning their influ-
ence on forecasting renewable energy time series. More specifically, we select electrical 
demand, solar power, and wind power generation as target forecast time series for our 
evaluation. As data, we use the corresponding energy time series for the German state 
of Baden-Württemberg provided by the corresponding transmission system operator 
TransnetBW and available via the Open Power System Data (OPSD) platform1 (Wiese 
et  al. 2019). We choose the hourly resolution of this data from the beginning of 2015 
to the end of 2019 for the evaluation (see Fig. 1 for example weeks). In the following, 
we refer to these energy time series as electrical demand, solar power, and wind power. 
We shift these time series by 1 h to align them to the selected weather data such that ti 
describes the mean between ti−1 and ti.

1 https:// open- power- system- data. org/.

https://open-power-system-data.org/
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In addition to the power measurements, we derive calendar information that the fore-
casting models can use as features. Using the timestamps of the energy time series, we 
calculate different sets of calendar features for electrical demand, solar, and wind power 
generation because useful calendar features vary between the three target energy time 
series. For example, holidays are helpful for electrical demand forecasting but not for 
solar and wind power generation forecasting. For electrical demand forecasting, we cal-
culate the summertime, public holidays, and weekends as one-hot encoded vectors as 
well as the hour of the day, the day of the week, and the month of the year as sine-cosine 
encoded variables, and the month of the year between 2015 and 2019 as a linear increas-
ing variable, which ranges between 0 and 1, enabling a forecasting method to learn con-
cept drifts. Regarding public holidays and weekends, we use the previous and following 
two days as well as the current day. Regarding solar and wind power generation forecast-
ing, we calculate sine and cosine encodings for the hour of the day and the day of the 
year, as well as the same linear feature as for the electrical demand forecasts.

Weather data

Since the presented transformations use station-based and grid-based weather data, 
we compare them on both data when forecasting the selected energy time series for the 
German state of Baden-Württemberg. We introduce the historical weather data sets we 
use in the following. An exemplary station-based and grid-based weather input for elec-
trical demand using temperature weather data can be seen in Fig. 2.

Fig. 1 Exemplary weeks of the used energy time series of the German state of Baden-Württemberg from July 
2018

Fig. 2 Exemplary station-based and grid-based weather input for the 1st June 2019. Only temperature as a 
weather variable is shown that is used to forecast the electrical demand
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The grid-based weather data we consider comes from NWP models as produced by 
the European Centre for Medium-Range Weather Forecasts (ECMWF). More spe-
cifically, we select ECMWF’s ERA5 Re-analysis data set2 from the beginning of 2015 
to the end of 2019 over a geographical area covering Baden-Württemberg, i. e.  47◦ to 
50◦ latitude and 7 ◦ to 11◦ longitude with a 0.25◦ resolution. This data set offers a broad 
range of weather variables,3 of which we use temperature 2  m above ground, surface 
net solar radiation (which includes both direct and diffuse solar radiation accumulated 
hourly), and the u and v components of wind ten meters above the ground. We then 
calculate the wind speed as the vector of the two wind components using the L2 norm, 
i. e.  |(u, v)|2 = (u2 + v2).

The station-based weather data used for the evaluation is the publicly available 
weather station data4 from the German meteorological service, the Deutscher Wetter-
dienst  (DWD). This weather station data includes the weather variables temperature 
two meters above ground, the hourly sum of global solar radiation (covering direct and 
diffuse solar radiation), and mean wind speed. Not all weather stations offer the same 
weather variables. Therefore, the number of available weather stations varies between 
the weather variables. From the available weather station data, we select weather sta-
tions for our evaluation based on three requirements. First, we only use weather sta-
tions with a maximum of 24 consecutive missing values. For these weather stations, we 
interpolate missing values using linear interpolation. Second, we only consider weather 
stations within the same area as the grid-based data described above. For comparison, 
Fig. 3 shows the locations of the overall used station-based weather data and the used 
area of the selected grid-based weather data. Third, we only consider the weather sta-
tions for each target energy time series with relevant weather variables available from 
the beginning of 2015 to the end of 2019. As a result, the number of considered weather 
stations varies across the three target energy time series (see the shape-encoded weather 
stations in Fig. 3a).

Fig. 3 Locations of the overall used station-based weather data and the used area of the selected grid-based 
weather data. For the station-based data, the marker shape encodes whether temperature (cross), solar 
radiation (plus), or wind speed (circle) is measured at that location. For the grid-based data, the circular 
markers indicate the center of the cells for which the numerical weather model offers weather variables

2 https:// www. ecmwf. int/ en/ forec asts/ datas et/ ecmwf- reana lysis- v5.
3 see https:// confl uence. ecmwf. int/ displ ay/ CKB/ ERA5% 3A+ data+ docum entat ion.
4 https:// opend ata. dwd. de/.

https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
https://confluence.ecmwf.int/display/CKB/ERA5%3A+data+documentation
https://opendata.dwd.de/
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Architectures for processing weather data

To evaluate the introduced weather data transformations, we use a neural network as 
a subnetwork to process the selected weather data (weather subnet). Since we consider 
the use of the weather data as it is as a baseline, which we call raw data baseline in the 
following, we examine three different architectures, namely a 2D CNN, a 3D CNN, and 
a FCN for this raw data baseline (see Fig. 4). The 2D CNN is applied along the spatial 
dimensions for each time step and has more parameters than the 3D CNN. The 3D CNN 
is applied along spatial and temporal dimensions and has the least parameters. The FCN 
is a weighted sum of all weather data points and has the most parameters. All architec-
tures are based on typical network architectures and the hyperparameters (e. g. number 
of filters, number of neurons, or number of layers) are evaluated in advance to get the 
best forecasting performance for each architecture. Since all other weather data trans-
formations have a vector as output, we use the FCN for them. We briefly describe all 
three architectures in the following. 

The 2D CNN processes the selected weather data using two 2D convolutional layers 
with ReLU activation and max pooling for each weather time step with two and four fea-
ture maps (see Fig. 4a). Instead of processing each weather time step separately, the 3D 
CNN uses 3D convolutional layers with ReLU activation and max pooling that process 

Fig. 4 The neural network architectures (weather subnet) used to process the station-based or grid-based 
weather data
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the weather time series for the forecast horizon as a whole using four and eight feature 
maps (see Fig. 4b). Both CNNs have a fully connected layer with 128 neurons after the 
convolutional layer to achieve a latent representation size of 128. In addition, the FCN 
includes 128 neurons, leading to a latent space representation of size 128 (see Fig. 4c).

Forecasting methods

We apply two forecasting methods to the selected energy time series to evaluate the 
introduced transformations on the chosen station-based and grid-based weather data. 
For this, we use PyTorch to implement a Deep Neural Network (DNN) as a state-
of-the-art method, Scikit-Learn to implement a Linear Regression (LR) as a baseline 
method, and pyWATTS5 (Heidrich et al. 2021) a framework for building graph-based 
pipelines that we use to automate training and evaluation.6 Both forecasting methods 
get three inputs: electrical demand, solar power generation, or wind power genera-
tion time series, station-based or grid-based weather data, and calendar information 
(see Tables 1 and 2 in “Appendix” for more details on the inputs). An overview of the 
proposed pipeline is shown in Fig. 5. We use this data from 2015 to 2017 for train-
ing, 2018 for validation, and 2019 for testing. We apply both forecasting methods to 

Fig. 5 Block diagram of the pipeline that is used to forecast the energy time series. It consists of an energy 
time series, weather data, and calendar features input, and an optional transformation block. The metric block 
only shows the MAEh because Skill Scoreh and Skill Score are calculated in a postprocessing step

Fig. 6 The architecture of the Deep Neural Network (DNN) used to forecast the selected target energy time 
series

5 https:// github. com/ KIT- IAI/ pyWAT TS.
6 The implementations are available at  https:// github. com/ KIT- IAI/ Weath er- Data- Trans forma tions- for- Energy- 
Time- Series- Forec asting.

https://github.com/KIT-IAI/pyWATTS
https://github.com/KIT-IAI/Weather-Data-Transformations-for-Energy-Time-Series-Forecasting
https://github.com/KIT-IAI/Weather-Data-Transformations-for-Energy-Time-Series-Forecasting
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obtain a multi-step 24 h-ahead forecast with a multiple output strategy. We introduce 
both forecasting methods concerning their architecture and training in the following. 

The Deep Neural Network (DNN) processes the three inputs with three parts (see 
Fig. 6). The first part processes the energy time series with two 1D convolutional lay-
ers with eight and four feature maps. A subsequent fully connected layer results in a 
latent representation with a size of 64. The second part processes the weather data 
using a neural network architecture suitable for the respective weather data trans-
formation described above and leads to a latent space representation of size 128. The 
third part directly passes the calendar information to the latent space representation 
of the energy time series. All three latent space representations are finally concate-
nated and processed with two fully connected layers with 128 and 64 neurons and 
ReLU activation. We train the networks using the Adam optimizer (Kingma and Ba 
2015) with a learning rate of 1e−4 and the mean absolute error as the loss function. 
We also apply an early stopping, interrupting the training process if the validation 
loss does not decrease in the last 20 epochs.

In this study, we choose Linear Regression (LR) as the selected baseline method 
which is a common baseline to validate if more complex models are well parameter-
ized. It gets the same input data as the DNN. For each forecast step, we train a sepa-
rate LR. All energy, weather, and calendar features are concatenated and passed to the 
LR method. It is defined as

where e ∈ E is the energy time series, w ∈ W  are the weather features with N weather 
features for a single time step, c ∈ C the calendar features with M features for a single 
time step, and h ∈ H the forecast step.

Evaluation metrics

In the evaluation, we make use of two metrics. First, to compare the forecasts of one 
transformation between station-based and grid-based weather data, we calculate the 
Mean Absolute Error (MAE) as the evaluation metric. We use a skill score based on 
the MAE to compare the forecasts of different introduced transformations.

The hourly MAE is defined as

where h ∈ H is the forecast step, t ∈ T  the time step, yt+h the true forecast value, and 
ŷt,h the forecast value. For the evaluation, we consider the average of the hourly MAEs.

Given the hourly MAE, the skill score then describes the error of the MAE com-
pared to a baseline forecast in percent. We calculate the hourly skill score with
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where h ∈ H is the forecast step, MAEh is the MAE of the forecasting method, and 
MAEbaseline

h  is the MAE of the baseline forecast. For the evaluation, we consider the aver-
age of the hourly skill scores.

Results
In this section, we present the evaluation of the different introduced weather data trans-
formations for the three target energy time series electrical demand, solar power, and 
wind power. We start with preliminary analyses to streamline the subsequent compari-
son of the weather data transformations, which includes three steps. First, we compare 
the forecasting performance of the weather data transformations on station-based and 
grid-based weather data. For each target energy time series, we compare all weather data 
transformations based on the mean skill score of their multi-step 24 h-ahead forecasts 
with a multiple output strategy. For the sake of clarity, we only show the best-performing 
version of each weather data transformation. Second, we select the three best-perform-
ing weather data transformations for station- and grid-based weather data and compare 
each on a 24-h forecast horizon. Third, we compare the best-performing weather data 
transformation for station-based and the best-performing weather data transformation 
for grid-based weather data to determine which data are most beneficial for a forecast. 
An illustration of the evaluation process can be seen in Fig. 7.

Preliminary analyses

Before we compare the different weather data transformations, we perform three pre-
liminary analyses that reduce the complexity of the final forecast comparisons. We 
first determine baseline models by selecting the best-performing weather process-
ing architectures for both station-based and grid-based weather data based on the raw 
data. Second, we determine which interpolation transformation performs best on the 
station-based weather data for each target energy time series. Lastly, we compare the 
DNN, which we use as the forecasting method in the evaluation, to the LR to verify its 
competitiveness.

Fig. 7 Depiction of the evaluation process split into a preliminary analysis to select the best-performing 
weather subnet architecture and interpolation and the final comparison of the weather data transformations
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Raw data baselines

The first preliminary analysis identifies the best weather data processing architectures 
for the raw data of the station-based and grid-based weather data, which we want to 
use as a baseline. To identify these baselines, we compare the forecast accuracy of the 
2D CNN, the 3D CNN, and the FCN for each station-based weather data and grid-
based weather data for all three target energy time series. The MAE for this analysis 
can be seen in Fig. 8.

Generally, the accuracy differences between the architectures are minor across the 
target energy time series. Concerning the station-based weather data, the 3D CNN 
performs best for electrical demand and the 2D CNN for solar and wind power. For 
the grid-based weather data, the FCN performs best for electrical demand and wind 
power, whereas the 3D CNN achieves the lowest MAE for solar power. We use these 
best-performing architectures as baselines for the respective weather data and target 
energy time series.

Fig. 8 Comparison of the forecast accuracy on the test data set of the three weather processing 
architectures for the three target energy time series. The bars indicate the average MAE and the black error 
lines the observed standard deviation across all runs on the test data set

Fig. 9 The forecast accuracy of the bicubic, bilinear, and nearest interpolation transformations using the 
station-based weather data for the three target energy time series. For each interpolation transformation, a 
bar indicates the average MAE and the black error bar the observed standard deviation across all runs on the 
test data set
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Best‑performing interpolation for station‑based weather data

The second preliminary analysis determines which interpolation transformation 
of the station-based weather data performs best for each target energy time series 
and thus should be used in the subsequent comparisons. For each target energy time 
series, we compare the forecast accuracy of the bicubic, bilinear, and nearest neighbor 
interpolation using the raw data of the station-based weather data for the three target 
energy time series.

As we can see in Fig. 9, no interpolation transformation outperforms all others for 
the three target energy time series. For electrical demand and wind power, the nearest 
interpolation has the lowest MAE, while the bilinear interpolation performs best for 
solar power. We select these best-performing interpolation transformations for the 
three target energy time series and refer to each of them as interpolation transforma-
tion in the following.

Competitiveness of DNN

In the third preliminary analysis, we verify the competitiveness of the DNN. For each 
target energy time series, we compare the forecast accuracy of the best-performing 
DNN to that of the LR as the benchmark forecasting method using the raw data of 
both station-based and grid-based weather data.

Figure 10 shows the MAEs of the DNN and the LR on the station-based and grid-
based weather data for the three target energy time series. We can see that the DNN 
provides a lower MAE than the LR for all three target energy time series, thus outper-
forming the LR.

Electrical demand forecast

Our preliminary analysis allows comparing the different weather data transforma-
tions for each target time series in the following. We start with the electrical demand. 
For the electrical demand forecast, the skill scores of all weather data transformations 
using the station-based and grid-based weather data are shown in Fig. 11. The skill is 

Fig. 10 The forecast accuracy of the best-performing DNN and the LR as benchmark method using the 
station-based and grid-based weather data for the three target energy time series. For each combination of 
forecasting method and weather data, a bar indicates the average MAE and the black error bar the observed 
standard deviation across all runs on the test data set
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compared to using the raw data baseline, and the three best-performing weather data 
transformations are highlighted in orange.

For the station-based data, we observe that six of the weather data transforma-
tions, namely the statistics small, PCA 90%, PCA clustering 8, interpolation statistics 
medium, interpolation PCA 90%, and interpolation PCA clustering 8 transformations, 
provide a considerable improvement in the forecast accuracy. While the interpolation 
and interpolation CNN VAE transformations show only a slight improvement, and 
the interpolation spatial statistics large and interpolation FCN AE transformations 
show no improvement over the baseline. The best-performing transformations are 
then the interpolation PCA 90%, interpolation PCA clustering 8, and statistics small.

Fig. 11 The skill scores of all weather data transformations using the station-based and grid-based 
weather data compared to the raw transformation in the electrical demand forecast. For each weather 
data transformation, a bar indicates the average improvement or deterioration compared to the raw 
transformation and the black error bar shows the observed standard deviation across all runs on the test data 
set. The three best-performing weather data transformations are additionally highlighted in orange

Fig. 12 The skill scores of the three best-performing weather data transformations evaluated on the test 
data set using the station-based and grid-based weather data on the 24-h forecast horizon in the electrical 
demand forecast
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For the grid-based weather data, all weather data transformations except for the statis-
tics medium, FCN VAE, and CNN AE transformations show a clear positive skill score. 
While the spatial statistics small transformation only achieves a slight improvement and 
the CNN AE transformations no improvement, the FCN VAE transformation results in 
a worse accuracy. The three best-performing weather data transformations are the selec-
tion, statistics medium, and selection statistics medium transformations.

Given these results using the mean scores, we now also compare the best three 
performing models for each weather data and target energy time series on the indi-
vidual time steps from 1 to 24 h. The corresponding skill scores are shown in Fig. 12. 
The weather data transformations for the station-based weather data show the largest 
improvements of up to 7% between 1 and 2 h and 19 to 24 h and improvements between 
1 and 4% in the remaining hours. The considered weather data transformations for the 
grid-based weather data provide a more constant improvement over the forecast hori-
zon of about 3 to 7%. Only the improvement provided by the selection transformation 
decreases below 3% starting at hour 19.

Solar power forecast

Concerning the solar power forecast, Fig. 13 shows the skill scores of all weather data 
transformations using the station-based and grid-based weather data compared to the 
raw data baseline. The three best-performing weather data transformations are again 
highlighted in orange.

For the station-based weather data, only the interpolation spatial statistics small 
transformation achieves a positive skill score and thus improves the forecast accuracy. 
The interpolation, interpolation FCN AE 16, and interpolation CNN AE 16 transforma-
tions have a skill score close to zero, and all other weather data transformations result in 
negative skill scores. Overall, the three best-performing weather data transformations 
are the interpolation spatial statistics small, interpolation, and interpolation FCN AE 16 
transformations.

Fig. 13 The skill scores of all weather data transformations using the station-based and grid-based weather 
data compared to the raw transformation in the solar power forecast. For each weather data transformation, 
a bar indicates the average improvement or deterioration compared to the raw transformation and the 
black error bar shows the observed standard deviation across all runs on the test data set. The three 
best-performing weather data transformations are additionally highlighted in orange
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For the grid-based weather data, four weather data transformations have a posi-
tive skill score, namely the statistics large, spatial statistics small, PCA 98%, and PCA 
clustering 8 transformations. The CNN AE 16 and selection transformations achieve 
skill scores close to zero, whereas the remaining weather data transformations have 
negative skill scores. For the grid-based weather data, the PCA 98%, statistics large, 
and spatial statistics small transformations are, therefore, the best weather data 
transformations.

Figure 14 shows the skill scores of the three best-performing weather data trans-
formations over each step of the 24-h forecast horizon. For the station-based 
weather data, the performance is very mixed, with all transformations having a nega-
tive trend starting from hour 18 and only the spatial statistics small transformation 

Fig. 14 The skill scores of the three best-performing weather data transformations evaluated on the test 
data set using the station-based and grid-based weather data on the 24-h forecast horizon in the solar power 
forecast

Fig. 15 The skill scores of all weather data transformations using the station-based and grid-based weather 
data compared to the raw transformation in the wind power forecast. For each weather data transformation, 
a bar indicates the average improvement or deterioration compared to the raw transformation and the 
black error bar shows the observed standard deviation across all runs on the test data set. The three 
best-performing weather data transformations are additionally highlighted in orange
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having a mostly positive skill score. For the grid-based weather data, the transfor-
mations provide relatively constant improvements up to around 6% over the whole 
forecast horizon and even show a positive trend at the end of the forecast horizon.

Wind power forecast

The last target energy time series is wind power, where Fig. 15 shows the skill scores 
of all weather data transformations using the station-based and grid-based weather 
data. The three best-performing weather data transformations are again highlighted 
in orange.

For the station-based weather data, we observe that only the interpolation and 
interpolation CNN VAE 32 transformation have a positive skill score and thus 
improve the forecast accuracy. All other weather data transformations provide nega-
tive skill scores, a few even below − 7.5%.

For the grid-based weather data, all evaluated weather data representations pro-
vide negative skill scores, and most are below or well below − 10%. Thus on average, 
over the forecast horizon, they do not improve the forecast accuracy over the raw 
data baseline.

These mostly negative results are slightly improved when looking at the errors per 
forecast step. Focusing on the three best-performing weather data transformations, 
Fig.  16 shows their skill scores for the station-based and grid-based weather data 
for the 24-h forecast horizon. Regarding the station-based data, the interpolation 
and interpolation spatial statistics large transformations start with highly negative 
skill scores at hour 1 but achieve positive skill scores starting from hour 4 or 8. They 
continue with positive skill scores until the end of the forecast horizon. In contrast 
to that, the interpolation CNN VAE 32 transformation shows positive skill scores 
over the complete forecast horizon. The observation is reversed for the grid-based 
weather data: The weather data representations have very high positive skill scores 
at hour 0, but the skill scores constantly decrease until hour 8. Starting from hour 3 
or 5, they become negative and stay negative until the end of the forecast horizon.

Fig. 16 The skill scores of the three best-performing weather data transformations evaluated on the test 
data set using the station-based and grid-based weather data on the 24-h forecast horizon in the wind power 
forecast
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Station‑based vs. grid‑based weather data

Finally, we compare the forecast accuracy of the best-performing weather data trans-
formation for station-based weather data with that of the best-performing weather data 
transformation for grid-based weather data to determine which data are most benefi-
cial for a forecast. We first compare them with their average MAE before we consider 
the MAE for the 24-h forecast horizon. Figure 17 shows the average MAE, with inter-
polation DR 90 (electrical demand), interpolation spatial statistics small (solar power), 
interpolation raw (wind power) as the best-performing station-based weather data 
transformation for demand, solar and wind respectively, and selection raw (electrical 
demand and wind power) and DR 98 (solar power) as the best-performing grid-based 
weather data transformation.

We observe that transforming the weather data for electrical demand yields a lower 
MAE, with the station-based transformation providing the lowest error. For solar power, 
transforming the weather data achieves a slightly better accuracy than the raw data. The 
station-based weather data transformation results in noticeably lower errors than the 
grid-based weather data transformation. For wind power, the best-performing weather 

Fig. 17 The forecast accuracy of the best-performing and raw transformations for the station-based and 
grid-based weather data and the three target energy time series. For each weather data transformation, a bar 
indicates the average MAE and the black error bar the observed standard deviation across all runs on the test 
data set

Fig. 18 The forecast accuracy of the best-performing transformations evaluated on the test data set using 
station-based and grid-based weather data compared to the raw transformation as a baseline
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data transformations have a lower MAE than the raw data for the station-based weather 
data but not for the grid-based weather data. Overall, the raw data for the grid-based 
weather data shows the best forecast accuracy for wind power.

This analysis for the average errors remains consistent for the individual steps of the 
24-h forecast horizon, as can be seen in Fig.  18. For electrical demand, the best-per-
forming station-based weather data transformation achieves a lower MAE than the raw 
data, especially for hours 1 to 3 and 16 to 24. The best-performing grid-based weather 
data transformation yields a lower MAE very constantly over the forecast horizon. With 
respect to solar power, the best-performing weather data transformation generally pro-
vides a lower MAE than the raw data over the forecast horizon. However, the difference 
is rather small for hours 1 to 4, and the raw data has a lower MAE at hour 22 for the sta-
tion-based weather data. Concerning the wind power the best-performing station-based 
weather data transformation achieves remarkably lower MAEs than the raw data at 
hours 5 to 24 but higher MAEs at hours 1 to 4. The best-performing grid-based weather 
data transformation reversely has a lower MAE than the raw data at hours 1 to 4 but 
higher MAEs at all remaining hours.

Discussion
Given our results section, we interpret the results, discuss limitations, and point out the 
benefits of weather data transformations for station-based and grid-based weather data 
in energy time series forecasting in this section.

Overall, we can see that the introduced weather data transformations can improve 
the forecast accuracy for all target energy time series compared to their respective raw 
data baselines. However, no single weather data transformation outperforms all others, 
and the impact of the transformation differs for the target energy time series. Nonethe-
less, we show that evaluating data transformations is beneficial, especially for electri-
cal demand and solar power where statistical and data reduction transformations are 
among the best. While several station-based and grid-based weather data transforma-
tions improve the forecasting accuracy of the electrical demand between 3.4 and 4.3%, 
the forecast accuracy of solar power is more consistently improved by grid-based 
weather data transformations with accuracy improvements between 1.2 and 3.7%. Lastly, 
for wind power, only one station-based weather data transformation improves the fore-
cast accuracy by 5.2%, but no grid-based transformation achieves an improvement. The 
reason why weather data transformations mostly reduce the wind power forecast accu-
racy could be the characteristic of the data set. While Baden-Württemberg’s popula-
tion is dense7 and many houses have solar power plants on the roof, wind power plants 
are mainly located in the northeast.8 So, reducing the spatial resolution hinders accu-
rate wind power forecasts. In addition, wind speeds vary more than solar radiation or 
temperature.

While we find that the most beneficial weather data transformation depends on 
the target energy time series and on the weather data, we also observe that the inter-
polation transformation or combinations with it represent the top three weather data 

7 https://www.deutschlandatlas.bund.de/DE/Karten/Wo-wir-leben/006-Bevoelkerungsdichte.html.
8 https://www.lubw.baden-wuerttemberg.de/erneuerbare-energien/karten.
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transformations for all three target energy time series when using station-based weather 
data. Analogously, the statistics transformation is part of the top three weather data 
transformations when using grid-based weather data.

This analysis is subject to a few limitations, which we discuss in the following. Besides 
the difference in the weather variables, we only use one weather variable to forecast each 
target energy time series. We select the temperature for electrical demand, solar radia-
tion for solar power, and wind speed for wind power. While these are the most influen-
tial weather variables for these energy time series, further investigations could evaluate 
whether using more weather variables in combination with weather data transforma-
tions changes the impact of transformations on the forecast accuracy.

Additionally, our evaluation uses actual historical station-based and grid-based 
weather data, thus providing an upper bound for the forecast accuracy that can be 
achieved as there is no forecast error noise in the weather variables. From a practical 
point of view, it could be helpful to extend the evaluation to forecast weather data such 
as ECMWF’s ERA5 High-Resolution NWP forecast data set.

Also, the presented evaluation covers a broad range of weather data transformations 
and their parameters. However, other weather data transformations and parameters are 
possible. To give an example, instead of using k-means for the clustering transformation, 
hierarchical-based or density-based clustering algorithms are also suitable. Similarly, the 
presented results are based on the selected neural networks for processing the weather 
data and forecasting the energy time series. Therefore, it could be of interest to extend 
the evaluation accordingly.

Lastly, we evaluate three different network architectures for the weather data sub-
network and only use one architecture for the energy time series. Other architectures 
are possible like Recurrent Neural Networks (RNNs) or Long Short-Term Memories 
(LSTMs). Nonetheless, more complex architectures are harder to train, need more time 
for training, and often require more data. We think, that data transformations also have 
a positive effect on more complex architectures. However, more research is needed.

Overall, the results indicate that smartly selecting weather data transformations for 
station-based or grid-based weather data improves the accuracy of energy time series 
forecasts where statistical or data reduction transformations are among the best.

Conclusion
In the present paper, we investigate how weather data transformations for station-based 
and grid-based weather data affect the accuracy of energy time series forecasts. We first 
identify the best-performing neural network architectures to process the weather data 
and determine the baselines for our evaluation. We then evaluate several weather data 
transformations in forecasting three energy time series: electrical demand, solar power, 
and wind power. Finally, we use a skill score for each energy time series to examine the 
effect of transforming weather data on forecast accuracy.

The results show that choosing a proper weather data transformation together with 
either station-based or grid-based weather data is beneficial for the forecast accuracy. 
For the electrical demand, using the best-performing weather data transformation 
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improves the forecast accuracy for both station-based and grid-based weather data 
compared to the baseline transformation. At the same time, neither station-based nor 
grid-based weather data has a clear advantage over the other. For solar power, the best-
performing weather data transformation yields better accuracy for both weather data 
sets, however, using grid-based weather data results in higher accuracy. For wind power, 
the best-performing weather data transformation can improve the forecast using sta-
tion-based weather data. However, while the best-performing weather data transforma-
tion has no positive effect when using grid-based weather data, the raw data leads to the 
comparatively highest accuracy. While the results differ for the considered energy time 
series, the interpolation transformation and combinations with it are beneficial for sta-
tion-based weather data and the statistics transformation for grid-based weather data.

In future work, we want to evaluate weather data transformations for energy time 
series forecasting using multiple weather variables and forecast weather data. Addition-
ally, we want to examine further weather data transformations, for example, combina-
tions of evaluated weather data transformations or more advanced autoencoders.

Appendix: Implementation details
See Tables 1 and 2.

Table 1 Overview of the inputs of the DNN, their shape, and their description when using the 
station-based weather data

Input Shape Description

Energy time series (E) E = 7 · 24 = 168 which belongs to 7 days with 24 h

Weather time series (T, N) T = 25 due to weather states for the time steps 
t = 0 to t = 24;
N = 58 weather stations for electrical demand, 
N = 4 weather stations for solar power, and N = 14 
weather stations for wind power

Calendar information (M) M = 17 for electrical demand and M = 5 for solar 
power and wind power due to different numbers of 
useful features

Table 2 Overview of the inputs of the DNN, their shape, and their description when using the grid-
based weather data

Input Shape Description

Energy time series (E) E = 7 · 24 = 168 which belongs to 7 days with 24 h

Weather time series (T, N, M) T = 25 due to weather states for the time steps 
t = 0 to t = 24;
N = ((50− 47)/0.25)+ 1 = 13 and 
M = ((11− 7)/0.25)+ 1 = 17 due to a grid resolu-
tion of 0.25 for the latitudes between 47◦ and 50◦ 
and longitudes between 7 ◦ and 11◦

Calendar information (M) M = 17 for electrical demand and M = 5 for solar 
power and wind power due to different numbers of 
useful features
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