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Introduction
The green transition of energy systems is vital in combatting climate change. It reduces 
CO2 emissions from conventional power plants through large-scale adoption of renew-
able energy technologies like wind and solar power. Such widespread adoption over a 
long period typically involves significant investments and societal changes. The complex 
and deeply interconnected nature of the energy ecosystem presents great challenges 
in exploring and implementing new technologies, regulatory frameworks, and busi-
ness models that would guide the energy ecosystem’s transition toward sustainability. 
The introduction of new technologies, especially system solutions, requires navigating 
a complex, multi-dimensional value chain, demanding robust engagement from all rel-
evant stakeholders. It is also essential to consider the environmental, climatic, societal, 
technological, economic, political, and regulatory contexts under which these systems 
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will operate. Comprehensive evaluations need to be conducted prior to their implemen-
tation. However, current methodologies are insufficient for this purpose.

The Energy Metaverse is defined in Ma (2023) as: “The Energy Metaverse is an exact 
digital replica of the physical energy system’s ecosystem, enabling stakeholders to explore 
the effects of changes to the ecosystem configuration.” By using data and information 
from smart energy meters, environment sensors, and information databases, the energy 
metaverse can capture the behaviors of stakeholders, infrastructure artifacts, environ-
mental factors, and energy flows, reflecting the impact of business models, regulations, 
and policies.

Moreover, the energy metaverse provides a virtual living lab of the energy ecosystem. It 
allows the stakeholders in the business ecosystem of the smart energy sector (Ma 2022) 
to experiment, evaluate, and optimize new technologies, regulatory framework condi-
tions, and business models before introducing them into the physical energy ecosys-
tem (European Commission and European strategy for data 2020). They can investigate 
potential risks associated with the adoption of new technologies by exploring "what-if" 
scenarios before these are introduced in the physical energy ecosystem in a cost-effi-
cient, environmentally friendly, and risk-avoided manner (Ma 2023).

Therefore, the energy metaverse can function as a digital energy ecosystem platform, 
facilitating the design, testing, and evaluation of technologies, business models, and 
value chains before they are adopted and implemented. Hence, evidence-based results 
can be generated, catering to local needs, aligning with political goals, and offering sub-
stantial environmental, health, climate, social, and economic benefits. These benefits 
include improved technological reliability, economic viability, and enhanced climate 
adaptation and mitigation potential.

To fulfill such a scope, the energy metaverse should employ multi-dimensional, multi-
scale, multi-criteria evaluations. These encompass environmental, climate, societal, 
technological, economic, political, and regulatory dimensions, spanning short, medium, 
and long-term scenarios. They also consider the preferences and constraints of indi-
vidual value chain stakeholders. Furthermore, the energy metaverse should enable a co-
design process, allowing participation from all stakeholders. However, realizing such an 
energy metaverse is a tremendous challenge. 

Ma 2023) states that the energy metaverse should be able to capture the interactions 
among stakeholders, tangible and intangible assets, policies, regulations, and business 
models. It should also predict the emergent behaviors associated with changes in the 
configuration of the energy ecosystems. To realize the energy metaverse, digital twin 
technology and Artificial Intelligent (AI) models need to be employed with the integra-
tion of multi-modeling and simulation methods. This is because the complexity of the 
energy ecosystem requires a comprehensive modeling and simulation approach. How-
ever, besides being able to digitally replicate the energy ecosystem and predict emer-
gent behaviors, the evaluation and co-design functions of the energy metaverse are also 
essential but not discussed in (Ma 2023).

Therefore, this paper proposes a conceptual framework of the energy metaverse with 
five critical elements. It then investigates related state-of-the-art (SotA) methods and 
technologies, identifying challenges in current SotA methodologies. Subsequently, this 
paper proposes methods and technologies that can potentially realize each of the five 



Page 3 of 35Ma ﻿Energy Informatics            (2023) 6:42 	

energy metaverse elements. Finally, this paper discusses the scientific and practical con-
tributions of the proposed approach, along with a recommendation for future works.

The conceptual framework of the energy metaverse

To realize the scope of allowing the design, testing, and evaluation of energy technolo-
gies, business models, and value chains across short, medium, and long-term scenarios, 
the energy metaverse should consist of the following five interconnected critical ele-
ments (as illustrated in Fig. 1):

•	 A versatile energy ecosystem data space, the foundation of the energy metaverse.
•	 An interoperable virtual ecosystem living lab, the infrastructure of the energy 

metaverse
•	 An energy system models and AI algorithms sandbox, the construction of the energy 

metaverse
•	 A circular value chain co-design toolbox, the landscape of the energy metaverse
•	 An ecosystem lifecycle evaluation software tool, the safeguard of the energy 

metaverse

Versatile energy ecosystem data space

The energy ecosystem data space forms the foundation of the energy metaverse. This 
data space should securely store and share data from multiple sources and of various 
types within the energy metaverse. It should also facilitate secure data exchange with 
third-party systems via Application Programming Interfaces (APIs). This data space 
ought to integrate several highly interconnected databases that aid the construction of 
the virtual ecosystem living lab relevant to the targeted physical energy ecosystem, sup-
port the development of energy models and algorithms, enable the design of business 
models and value chains, facilitate the running of what-if scenarios, and support the 
deployment of the ecosystem lifecycle evaluation software tool. Compliance with regu-
lations, especially with design principles, is a fundamental requirement for this energy 
ecosystem data space.

Fig. 1  Conceptual framework of the energy metaverse
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Interoperable virtual ecosystem living lab

The virtual ecosystem living lab serves as the infrastructure of the energy metaverse. This 
living lab should digitally replicate the predefined physical energy ecosystem, encapsu-
lating its conditions, dynamics, and trends. It should be able to allow a chosen combina-
tion of energy models and algorithms plug-and-play via well-established communication 
protocols and interoperability standards. It integrates the value chain co-design toolbox 
enabling individual users’ business model development and multi-users’ value chain 
co-design. By creating a dynamic virtual environment, the living lab enables the run-
ning of simulations to explore various hypothetical operating scenarios across different 
time scales. Importantly, it should be able to capture the consequences of operations and 
emerging behaviors resulting from the applications of energy models and algorithms, 
business models, and value chains. Furthermore, it integrates the ecosystem lifecycle 
evaluation software tool enabling the evaluation of the performance and effectiveness 
of energy solutions, business models, and value chains based on the simulation results.

Energy system models and algorithms sandbox

An energy solution, similar to the general concept of a product, is composed of three 
elements: need, technology, and form. The technological aspect can incorporate either 
physical components (such as hardware and facilities), cyber components (such as soft-
ware and algorithms), or both. A sandbox consisting of energy models and algorithms 
is the construction of the energy metaverse. This sandbox should encompass various 
energy system models and AI algorithms. The energy system models should be capa-
ble of representing the physical components of a given energy solution, while the AI 
algorithms should be able to represent its cyber elements. The sandbox should allow for 
easy configuration and combination of these models and algorithms, significantly reduc-
ing both the time and skill needed compared to developing such systems from scratch. 
Moreover, the sandbox should interface with the virtual energy ecosystem living lab, 
thereby enabling experimentation with the selected combination of energy models and 
algorithms.

Circular value chain co‑design toolbox

The successful deployment of energy solutions depends on coordinated efforts and well-
aligned business models among all stakeholders in the value chain. In this regard, the 
value chain co-design toolbox forms the landscape of the energy metaverse. This toolbox 
should encompass a business model development tool, a value chain mapping tool, and 
a collection of strategies and principles. The business model development tool enables 
individual stakeholders to formulate their business models, while the value chain map-
ping tool can visually map out the value chain, complete with individual stakeholders’ 
business models, and the flow of products, finance, information, and data. The collection 
of strategies and principles, which includes elements such as circular economy princi-
ples and climate mitigation and adaptation strategies, ensure that business models and 
value chains are sustainable, efficient, flexible, resilient, and affordable, thereby promot-
ing and enhancing the widespread adoption of energy solutions.
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Ecosystem lifecycle evaluation software tool

Evaluating the performance and efficacy of proposed energy solutions prior to the devel-
opment and implementation stage is vital. This evaluation serves to minimize risks, 
costs, and uncertainties during the development and implementation process, ensuring 
that designs meet predetermined objectives and are tailored to local needs and condi-
tions. An ecosystem lifecycle evaluation safeguards the energy metaverse, ensuring the 
successful adoption, implementation, and long-lasting impact of the proposed energy 
solutions. This ecosystem lifecycle evaluation should be holistic, encompassing all five 
CSTEP (Ma 2022) dimensions of the energy ecosystem: climate, environment, and geo-
graphic situation, societal culture and demographic environment, technology (infra-
structure, technological skills, technology readiness), economy and finance, Policies and 
regulation. Besides only assessing solutions, this evaluation should also consider the 
interests and constraints of all stakeholders in the value chain. Furthermore, it should 
evaluate the cumulative effect of the co-designed value chain. The insights from the eval-
uation should be feasible to feedback into the design process, ensuring that an optimal 
solution and a harmonized value chain can be realized.

Review of the state‑of‑the‑art methods and technologies

There are quite a few of SotA methods and technologies potentially related to each of 
the above five elements of the energy metaverse. They can be summarized as shown in 
Table 1.

Energy data space

The concept of a "data space" as defined by the European Union (EU) primarily denotes 
a decentralized infrastructure for trustworthy data sharing and exchange in data eco-
systems, based on commonly agreed principles (European Commission and European 

Table 1  Potential state-of-the-art methods and technologies related to the energy metaverse 
development

Focus SotA methods and technologies

Energy data space • Data space
• Data management system
• Machine Learning Operations (MLOps) platforms

Virtual energy ecosystem living lab • Digital twin technology
• Ontologies
• Interoperability and Communication standards
• Verification & validation testing, Model-Based 
Design (MBD), and In-the-Loop (ItL) testing

Energy system modeling and AI algorithms • Cyber-physical energy system
• Energy system modeling
• Deep learning algorithms

Circular value chain • Circular economy principle
• Circular supply chain
• Circular business model
• Climate mitigation and adaptation strategies

Lifecycle assessment • Lifecycle Assessment (LCA)
• Green computing
• Technology adoption
• Multi-criteria decision making (MCDM)
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strategy for data 2020). A European data space that interconnects different data spaces 
and aims to ensure extensive data sharing and usage while complying with EU values 
and regulations (Commission and Data Spaces 2023). The EU’s data strategy has set up 
nine initial Common European data spaces across different domains including energy 
(Commission and Shaping Europe’s digital future—A European Strategy for data 2023). 
Common European data spaces should follow specific design principles which include 
a common technical infrastructure and building blocks, as well as interconnection and 
interoperability (Commission and Data Spaces 2023). Data platform projects are run-
ning under the Big Data Value association (Association and BDVA 2023) to develop 
integrated technology solutions for energy data collection, sharing, integration, and 
exploitation, e.g., BD4NRG (BD4NRG 2023) and BD4OPEM (BD4OPEM 2023).

the SotA technology of cloud-based data management systems with microservices 
architectures and open APIs can support the development of an energy ecosystem data 
space. A cloud-based data management system refers to the utilization of platforms, 
tools, policies, and procedures that allow organizations to control their data in the cloud 
and hybrid setups (Ghosh 2023). Cloud data management platforms aim to manage data 
across various cloud ecosystems that are usually API-driven and delivered as microser-
vices (Informatica and Management: Understanding the Value 2023). Cloud databases 
are a part of the cloud data management system for managing engagement and applica-
tion data for massive networks of mobile users or remote devices (What and is a cloud 
database 2023).

Some commercial cloud-based data management systems support microservices 
architecture and open APIs, such as Microsoft Azure, Google Cloud, and Amazon Web 
Services. A number of open-source solutions provide similar functionalities, e.g., Apache 
Cassandra (2023), MongoDB (2023), OpenStack (primarily an infrastructure platform 
and does not support flexible data structure) (OpenStack 2023), Apache Kafka (2023) 
(event-based approachand does not support flexible data structure), and Apache Spark 
(2023) (but not directly support microservices architecture (Bouslama et al. 2017)). Both 
Apache Cassandra and MongoDB are powerful database technologies, and each has 
its unique strengths and limitations. Apache Cassandra is relatively complex to set up 
and manage, has limited support for aggregation, and is not so supportive if the project 
involves a lot of read operations. The main limitations of MongoDB are data size due 
to the BSON (Binary JSON (JavaScript Object Notation)) format and not transaction-
friendly to handle complex operations that involve multiple data items.

data management systems are not for storing or sharing models. Therefore, the uti-
lization of software development (DevOps) and machine learning operations (MLOps) 
platforms, e.g., GitLab (2023) and GitHub, for storing and sharing codes and models 
is necessary. Compared to GitHub, GitLab’s key strength lies in its built-in continuous 
integration/continuous delivery (CI/CD) and DevOps workflows (Vaughan-Nichols 
2023), is often seen as more secure and offers an open-source community edition reposi-
tory management platform (GeeksforGeeks 2023). Furthermore, there are tools available 
to facilitate integration between GitLab and MongoDB (Integrate.io 2023). However, 
there are some key limitations of using GitLab for storing and sharing machine learn-
ing models, e.g., Size Limits (GitLab 2023) and integration with machine learning tools 
(Mikl and Besser 2023).
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Virtual energy ecosystem living lab

According to the definition of a targeted ecosystem stated in Ma et  al. (2021), energy 
ecosystem is a completed business ecosystem within the energy domain including ele-
ments of actors (e.g., producer, transmission system operators, distribution system oper-
ators, consumers, etc.), roles, and interactions. Digital twins are often used to model, 
understand, and analyze complex systems where the system’s performance, reliability, 
and safety concerns are critical. Digital twin technology has been used in the energy 
domain, e.g., electricity distribution networks (Zhang et  al. 2020). However, there are 
few applications in the context of business ecosystems due to the intrinsic complexity of 
the ecosystems being twinned, and the twinning process is an extremely costly under-
taking requiring significant effort and time.

There are several digital twin frameworks proposed to model and simulate various 
systems with various methods and technologies, including production processes, infra-
structure systems, supply chains, etc. Multi-agent-based digital twin framework is one of 
the most promising methods that can provide a comprehensive, adaptable, and scalable 
solution for managing and optimizing complex systems (Nie et al. 2023).

To achieve a successful integration of the digital twin application in its deployment 
environment, it is important to ensure interoperability between the digital twin and 
existing systems (Ma et  al. submitted for publication). Interoperability is the ability of 
different systems and applications to communicate and share information effectively. 
The heterogeneity among energy systems makes the interoperability complex and par-
ticularly the issues of the use of different ontologies. Therefore, there is a need for full 
interoperability and open standards for the energy domain (Catterson et al. 2005).

An ontology is a formalized description of information, defining concepts, relation-
ships, and categories within a given domain and offering a foundation for shared under-
standing and communication (Ontology in Computer Science 2007). In the energy 
domain, there are some generic energy domain ontologies, e.g., Harmonized Electric-
ity Market Role Model (HRM) offering an abstract depiction of the European electricity 
market and the Smart Grid Architecture Model (SGAM) (Toolbox 2023) for the smart 
energy domain understanding. Ontologies can be categorized into three levels: upper 
ontologies, domain ontologies, and application ontology (Husáková and Bureš 2020). In 
the energy domain, ontologies for complex systems are often separated into a hierar-
chy consisting of an upper ontology that is connected to several lower-level ontologies 
representing specific subdomains (Azevedo et al. 2007). However, there is a lack of inte-
grated ontology design, including upper ontologies, domain ontologies, and application 
ontologies across multiple energy systems.

There are some available standard ontology languages with stable tools for the Seman-
tic Web community, e.g., the Resource Description Framework (RDF) (Miller 1998), 
RDF schema (RDFS), and the Ontology Web Language (OWL) (Christophides 2009). 
The OWL (Language and (OWL) 2023) is one of the most popular standard ontology 
languages and it is possible to be used in a variety of applications such as knowledge 
sharing and representation (Christophides 2009), semantic web (Kim 2007), information 
system (Tran et al. 2007), ontology-based reasoning (Wang et al. 2004), etc. Ontology 
development processes are a relatively new field of study, and there are tools for develop-
ing ontologies, e.g., Protégé (2023) and SWOOP (Kalyanpur et al. 2006). Protégé is well 
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established and used by a large user community, and it allows to save ontology in a vari-
ety of OWL formats (Starting and Protégé 2023).

Some standards in the power systems promote interoperability between devices within 
substations and open interfaces between energy management systems (McArthur et al. 
2007). The most widely applied standard in the power system is the IEC 61970 Common 
Information Model (CIM), and its distribution management extension IEC 61968 (San-
todomingo et al. 2023). Some reference models and frameworks are also popularly used 
to achieve coherent and advantageous cooperation between different power systems, 
e.g., SGAM, USEF (the Universal Smart Energy Framework) (USEF Foundation.Univer-
sal Smart Energy Framework 2023), SEAS (Smart Energy Aware Systems) knowledge 
model (Smart and Energy 2023), OpenADR (Open Automated Demand Response) (Alli-
ance and OpenADR. 2023) and energy@home (Energy@home. 2023). However, none of 
these standards cover the whole semantics involved in a flexible urban energy network 
on its own, and they are not formally aligned with each other (Hippolyte et al. 2016).

Digital twin interoperability can be designed using various methods, often leveraging 
specific standards and protocols to enable communication between different systems. 
The FIPA (Foundation for the Intelligent Physical Agent) provides different interoper-
ability standards which make it possible to integrate different Multi-Agent Systems 
(MASs) (Foundation for Intelligent Physical Agents 2000). However, it does not mean 
that agents belonging to different MASs can share any useful information if the MASs 
use different ontologies. Furthermore, this solution is difficult to be implemented due to 
the challenges of the system integration including between-ontology mapping, transla-
tion mappings, etc. (Catterson et al. 2005).

Digital twin technology has been popularly used for monitoring, simulation, optimiza-
tion, and control of the twinned physical system, but not for verification or validation. 
Verification and validation are usually achieved through Model-Based Design (MBD) 
which is an approach to designing and testing systems that are often used in production. 
Different types of In-the-loop testing, such as hardware-in-the-loop (HIL) and software-
in-the-loop (SIL), are typically used during model-based verification and validation, and 
these tests analyze and compare the code to the original model results to ensure that 
the implementation accurately represents the model (Erkkinen and Conrad 2008). HIL, 
e.g., Power-Hardware-in-the-Loop, is common for testing physical phenomena on vir-
tual models such as fault tolerance, active/reactive power, etc. However, HIL is not suit-
able for testing higher technological aggregation levels, e.g., economy or value chains, 
or higher levels of decision-making. SIL has been mainly used for testing and evalua-
tion of control strategies and for optimization by utilizing a composition of digital twins 
in co-simulations. However, integrated approaches for the verification and validation of 
highly interconnected energy systems are very limited (Strasser et al. 2018). Studies usu-
ally focus on validating certain aspects of an application instead of testing the complex 
behavior that emerges from integrating many applications.

Energy system modeling and AI algorithms

Energy system solutions combine digital technologies with physical components to 
optimize the efficiency, resilience, and integration of renewable energy sources into the 
power grid. In the energy domain, the "cyber" component refers to using information 
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technologies to manage and control energy systems, and the term "physical" refers to the 
elements of the energy infrastructure (like power generation, distribution, and end-use 
appliances). The optimal integration of "cyber" and "physical" elements promotes a more 
efficient overall performance than when concentrating solely on individual components. 
However, achieving this optimal integration becomes intricate and challenging due to 
the diversity of conditions and goals, especially the long-term objectives of individual 
energy communities involving multiple stakeholders.

Energy system solutions, or more accurately, Cyber-physical energy system (CPES) 
solutions, usually consist of different hardware and software configurations. They often 
include various libraries of energy system modeling and AI algorithms. Energy system 
modeling in CPES is often employed as an emulator (as known in software engineer-
ing) to replicate the behavior of real-world energy systems (Pham 2023). Emulation 
is a process where one system imitates the function of another. This allows for better 
control, monitoring, optimization, and understanding of the system’s behavior under 
various conditions without having to physically test it. However, the accuracy of an emu-
lator depends on the sophistication of the model. The more accurately the model can 
reproduce the behavior of the real system, the more effective the emulator will be for 
predicting system behavior and testing control strategies. While there are numerous 
energy system modeling tools and methodologies available, but also challenges within 
the current energy system modeling landscape (Ringkjøb et al. 2018). One of the main 
challenges is the growing involvement of consumers in the energy system, particularly 
through distributed generation and demand response, but their responses to electricity 
changes and policies are not captured in energy system modeling. Agent-based model-
ling provides the ability to represent the behaviors and choices of energy consumers (Rai 
and Henry 2016).

AI algorithms are crucial in cyber-physical energy systems as they effectively man-
age and integrate variable renewable energy sources into the grid. These algorithms not 
only predict energy demand and supply patterns, but they also foresee the generation of 
renewable energy, such as wind and solar power, and anticipate system failures or faults. 
Furthermore, they help optimize power generation schedules, power flows, and energy 
dispatch. Additionally, they can be employed in controlling various components of the 
energy system, ranging from individual smart devices to large-scale power plants, which 
enhances response times and minimizes human error. In AI algorithms, Deep learning 
(DL) could outperform current SotA methods, including traditional Machine Learning 
(ML) methods in the application of renewable energy systems.

The stability of power systems, threatened by the variability and unpredictability 
of Variable Renewable Energy (VRE), and the use of efficient forecasting tools can 
reduce such uncertainties and aid in system planning. Current VRE forecasting meth-
ods face challenges, including irregularities and fluctuations in VRE generation data 
(Khodayar et  al. 2017), the change in daytime hours (Alanazi et  al. 2016), and the 
lack of long-term historical weather data for specific locations (IRENA 2019). With 
an abundance of historical and real-time data available, various DL frameworks have 
been proposed for VRE forecasting that can improve the precision and temporal reso-
lution of forecasts for VRE generation (Klaiber and Dinther 2023). Currently, deter-
ministic VRE forecasting mainly utilizes algorithms like DCNNs (Deep Convolutional 
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Neural Networks) (Ghimire et  al. 2019) and LSTMs (Long Short-Term Memory) 
(Husein and Chung 1856) for solar and wind power forecasting.

For forecasting electricity consumption and demand-side behaviors, LSTM archi-
tectures have shown considerable success at both the residential and building levels 
(Chen et al. 2019). However, DCNNs outperform traditional ML approaches and even 
LSTM due to their superior abilities in recognizing patterns and extracting features 
from aggregated electricity consumption patterns (Kuo and Huang 2018). In fact, the 
integration of DCNNs with Deep Recurrent Neural Networks (DRNN) or LSTM can 
elevate the accuracy of forecasting even further (Kim et al. 2019; Pramono et al. 2019).

Increased VRE penetration and the growing number of system participants, such 
as Electricity Storage Systems (ESS), compound the complexity of scheduling and 
operating electricity systems (Wei et  al. 2019). Therefore, significant enhancements 
in scheduling are needed for solving scheduling problems quickly and optimizing 
responses to real-time fluctuations in VRE power generation and flexible demand. 
DRNNs or DCNNs have been used for balancing demand and supply, real-time dis-
patch, and the optimal utilization of ESS, such as microgrids’ real-time management 
with a near-optimal scheduling policy (Alhussein et al. 2019). Extended models inte-
grating DCNNs with Gated Recurrent Units (GRU) can further optimize the multi-
day scheduling of microgrids (Afrasiabi et  al. 2019). Additional technologies, such 
as LSTM models combined with Particle Swarm Optimization (PSO), have demon-
strated cost and energy loss reductions in community microgrids (Wen et al. 2019).

Furthermore, DL has been utilized for power system frequency control to attain and 
maintain a real-time power balance between generation and load. LSTM has been 
implemented to identify power fluctuations and to enable automatic generation con-
trol (Wen et al. 2019). DCNNs increase the accuracy of power fluctuation identifica-
tion under noiseless and noisy conditions (Wen et al. 2019) and can be employed to 
classify island events (Manikonda and Gaonkar 2019).

However, there are substantial challenges in applying Deep Learning to energy sys-
tems. For instance, the accuracy of these models is significantly influenced by the vol-
ume of training data (Lago et al. 2018). Acquiring sufficient data can be challenging 
or expensive. This issue becomes particularly prominent in projects like ours, where 
the primary objective is to assess the design prior to development when there is little 
to no data available. Transfer Learning (TL) techniques for renewable energy applica-
tions allow ML methods to be applied with limited or even no training data by infer-
ring knowledge from existing energy forecasting models trained with sufficient data 
(Al-Hajj et al. 2023). The choice of TL techniques is based on the types of challenges 
that arise. There are numerous research works have focused on the application of TL 
to forecasting wind and solar power generation (Schreiber 2019), and load forecasting 
(Jin et al. 2022). However, the success of knowledge transfer, also known as domain 
adaptation, largely depends on the similarity between the source and target domains/
tasks, but there is no standard procedure to assess the similarity of the source and tar-
get domains before initiating the transfer of knowledge (Wang et al. 2018). Concept 
drift detection methods that can monitor data changes that impact the model’s pre-
dictions (Agrahari and Singh 2022), and domain adaptation that deals with problems 
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where the distribution of training data (many labeled samples) is different from the 
distribution of test data might solve this challenge (Karimian and Beigy 2023).

The design and development of CPES solutions can be challenging due to heterogene-
ous hardware and software configurations, and the MBD methodology has been widely 
seen as a promising solution to address the associated design challenges of creating a 
CPES (Faruque and Ahourai 2014). Within this context, energy system modeling serves 
as an emulator, generating a virtual model of the energy system. DL algorithms are then 
utilized alongside these energy system emulators to learn the system’s dynamics, predict 
its behavior, and make decisions for controlling the system under various conditions. 
The design of DL algorithms can be validated and enhanced through MBD, which incor-
porates iterative simulation, as well as verification and validation testing (Faruque and 
Ahourai 2014). This integrated approach provides a powerful framework for designing, 
managing, and optimizing cyber-physical energy systems.

However, this approach brings new challenges, such as emulation-simulation clock 
synchronization issue: traditional emulators execute real programs and its clock elapses 
with the real wall clock and simulators execute models with reference to the simula-
tion’s virtual clock. Furthermore, time resolutions can vary between different energy sys-
tem models and DL algorithms. The time resolution refers to the temporal granularity 
at which data is considered or processed in models or algorithms. Some energy system 
models may operate at an hourly resolution, while others may work on a minute or even 
second basis. Similarly, DL algorithms can also be designed to process data at different 
time resolutions based on the specific task or application. Various time resolutions can 
lead to challenges such as data mismatch and incompatibility, complexity in interpola-
tion and aggregation, and synchronization issues. These complications can consequently 
make performance evaluation more difficult.

Circular value chain

The Circular Economy (CE) is a model of production and consumption aiming to effec-
tively extend the lifecycle of products by emphasizing sharing, leasing, reusing, repair-
ing, refurbishing, and recycling existing materials and products for as long as possible 
(Parliament and Circular economy: definition, importance and benefits 2023). CE field 
is currently populated by diverging approaches and many available CE implementation 
strategies have been proposed. There are tools that consist of CE strategy options that 
support CE implementation (Kalmykova et  al. 2018). However, there is little research 
on performance measurement in CE literature (Svensson and Funck 2019). Therefore, 
which performance measurement systems are most suitable for a CE and how the effec-
tiveness of CE-specific performance indicators remain unclear (Svensson and Funck 
2019). However, some studies indicate that multi-criteria decision-making techniques 
might be able to support CE implementation (Chauhan et al. 2021).

The circular value chain integrates the CE approach with value chain theory, often 
referring to the management of a circular supply chain (CSC). A CSC outlines the steps 
of value creation that contribute to a CE by closing material loops. These steps typically 
encompass product-related activities such as material sourcing, design, manufacturing, 
distribution and sales, consumption and use, collection and disposal, as well as recycling 
and recovery.
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The CE implications along Porter’s value chain (Porter 2011) framework show that 
the linear structure of the framework is not sufficient to reflect circular business prac-
tices which are primary activities in a circle (Kalmykova et  al. 2018). Furthermore, 
Porter’s framework does not sufficiently show connections between different value 
chain categories nor acknowledges their interrelations with external stakeholders 
which both are crucial requirements for CE implementation. A circular value chain 
framework is proposed that extends Porter’s linear view to a circular business under-
standing and connects insights from management and CE research (Eisenreich et al. 
2022).

The co-creation of circular solutions should involve the whole supply chain stake-
holders (Prieto-Sandoval et  al. 2019).  Furthermore,  stakeholder collaboration, 
experimentation, and platformization are proposed to be the principles for circular 
ecosystem innovation (Konietzko et al. 2020). However, the majority of the literature 
only emphasizes the necessity of collaborations without further investigation (Pin-
heiro et al. 2019), the roles of the stakeholders in the circular value chain in the con-
text of different circular solutions and industries are not discussed (Lieder and Rashid 
2016). Furthermore, value co-creation models could facilitate the process of co-cre-
ating circular solutions which focus on deep interactions between the providers, cus-
tomers, and their resource integration (Skarzauskaite 2013). Moreover, a three-stage 
value co-creation process for product-service solutions is proposed with relational 
coping strategies (Rönnberg Sjödin et al. 2016). However, the value co-creation pro-
cess does not involve the entire value chain stakeholders. Theories, e.g., business eco-
system modeling (Ma 2019) and stakeholder theory (Freeman 2010) could be applied 
to identifying value chain stakeholders and interactions in CSC co-creation.

There are two types of circular solutions: Closed cycle solutions create biological 
material cycles or technical material cycles, generated by maintenance, reuse, refur-
bishing, remanufacturing, or recycling (Ellen MacArthur Foundation 2013); and 
systemic solutions, refer to product-service systems such as leasing, sharing, or pay-
per-service offers (Tukker 2015). The existing literature is primarily concerned with 
closed cycle solutions or CE in general, and Research on systemic solutions is less 
frequent which has high significance for a CE (Ellen MacArthur Foundation 2015). 
Some discussion on systemic solutions is mainly about how Industry 4.0 might sup-
port a CE, e.g., additive manufacturing producing goods in an additive, digital process 
without fixtures and tooling (Sauerwein et  al. 2019) and cloud manufacturing ena-
bling resource sharing on a cloud platform (Lopes de Sousa Jabbour et al. 2018). But 
no extensive knowledge of CSC for Industry 4.0. furthermore, Cyber-physical systems 
(CPS) are discussed in CE, but the main discussion is to track products throughout 
their life cycles and potentially support a product passport with the internet of things 
(Franco 2017). Moreover, the value chain for the software is different from the general 
value chain, and usually consists of eleven activities including some software specific 
activities, e.g., component procurement, user documentation activity, training and 
certification (Pussep et al. 2011).

Exploratory, experimental, and agile practices are necessary for the development 
of circular solutions since circular economy often requires a redefinition of busi-
ness models, daily routines, and the established game rules in traditional linear 



Page 13 of 35Ma ﻿Energy Informatics            (2023) 6:42 	

systems (Hofmann and Jaeger-Erben 2020). Applying a modular design to the devel-
opment process is also crucial. A modular approach breaks down complex projects 
into smaller, manageable components or modules, allowing quick adjustments and 
improvements (Tukker 2015).

In addition to the development process of circular solutions, organizations need to 
drive a systemic shift in core business logic and align incentives among different stake-
holders. A circular economy requires businesses to design and implement models that 
prioritize resource efficiency, longevity, and value extraction (Geissdoerfer et al. 2020). 
These models, known as circular business models, are essential for successfully embrac-
ing the principles of a circular economy. Several conceptual frameworks for circular 
business models have been proposed in the literature which can be divided into three 
types: reference models, requirements, and classifications (Pieroni et  al. 2019). Refer-
ence models for circular business models are frequently employed as tools supporting 
the conceptualization of how a business model should be structured or represented for 
circular economy, and classifications support the identification of how business models 
should be configured or changed to accommodate circular economy principles (Wirtz 
et  al. 2016). Furthermore, a framework of key circular business model considerations 
is proposed to recommend the implementation of circular business model strategies, 
including cycling, extending, intensifying, and dematerializing (Geissdoerfer et al. 2020).

According to the definitions by EU, climate mitigation means “making the impacts of 
climate change less severe by preventing or reducing the emission of greenhouse gases 
(GHG) into the atmosphere”, and climate adaptation means “anticipating the adverse 
effects of climate change and taking appropriate action to prevent or minimize the dam-
age they can cause, or taking advantage of opportunities that may arise”. Climate adap-
tation and mitigation are two critical corporate responses to climate change, each with 
distinct objectives, scales, planning, and implementation measures. Despite their differ-
ences, the synergy between them is crucial (Berry et al. 2015). However, there is little 
literature addressing climate adaptation and mitigation at the organizational level (Lin-
nenluecke et al. 2013).

Some mitigation and adaptation options (e.g., risk assessments for operations and 
locations, insurance, and assessment of policy developments) has been discussed 
(Wittneben and Kiyar 2009), and corporate climate change mitigation actions and fac-
tors are investigated (Glienke and Guenther 2016). Nevertheless, a climate change miti-
gation strategy framework was proposed for carbon-intensive firms (Cadez and Czerny 
2016), furthermore, companies’ primary mitigation practices were proposed by the 
Intergovernmental Panel on Climate Change (IPCC) (The Intergovernmental Panel on 
Climate Change (IPCC) 2023) including e.g., energy efficiency, emission efficiency, reuse 
and recycling of materials, and reducing demand for product services. Furthermore, 
companies can implement corporate carbon strategies that encompass organizational 
engagement, risk management, carbon measurement and policy, product improve-
ments, process improvements, and carbon offsetting to increase their carbon competi-
tiveness (Perlin et al. 2022).

There is limited literature in cooperating climate mitigation strategies because adap-
tation strategies are often seen and linked as the responsibility of the government and 
the public sector (Rao and Thamizhvanan 2014). Adaptation options strongly depend on 
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the adaptation objective of each sector or environment. Adaptation practices are usually 
specific to local conditions and developed locally from relevant action plans to reduce 
climate-related risks, including, e.g., information-sharing practices, developing early 
warning and preparation plans, and developing strains and cultures that can withstand 
various climatic conditions (Todaro et al. 2021).

Therefore, climate mitigation and adaptation strategies significantly influence compa-
nies’ business models. Companies vulnerable to natural disasters amplified by climate 
change can experience significant hindrances to their profits and market efficiency 
(Hong et al. 2019). Meanwhile, companies may seek to develop new products or enter 
new markets to mitigate climate risks and costs which can lead to economic opportuni-
ties and improved societal roles (Hsu and Wang 2013). However, general business model 
strategies including circular business model strategies do not incorporate climate adap-
tation and mitigation strategies. Hence, the value of the solutions does not always align 
with climate adaptation and mitigation objectives.

In the energy domain, energy system solutions are closely linked to climate adapta-
tion and mitigation objectives referring to the focus on sustainability, efficiency, flexibil-
ity and resilience. Sustainability, efficiency, and flexibility can contribute to the climate 
mitigation objective that reduces GHG emissions, such as renewable energy sources, 
and energy efficiency in power generation and grid operations, battery technologies and 
demand response (Kang et al. 2020). Resilience along with flexibility can contribute to 
the climate adaptation objectives, such as nature disasters and other extreme weather 
driven threats with, e.g., infrastructure design, planning, emergency response and post-
event recovery (Jessen et al. 2022). The design of an energy solution typically does not 
encompass all climate adaptation and mitigation objectives. The strategies often rep-
resent a trade-off among these objectives and the interests of various stakeholders that 
increase the complexity and difficulty for the business model development and value 
chain design.

Lifecycle assessment

Evaluating the performance and effectiveness of designed energy solutions and their 
value chains is crucial to ensure the design fulfills pre-defined goals and adapts to local 
needs and conditions. This evaluation should encompass all perspectives to guarantee 
the success of adoption, implementation, and long-term effects. Consequently, the eval-
uation should consider all five critical CSTEP business ecosystem dimensions: Climate, 
environment, and geographic situation, Societal culture and demographic environment, 
Technology (Infrastructure, technological skills, technology readiness), Economy and 
finance, Policies and regulation (Ma 2022). Moreover, the evaluation should be con-
ducted prior to the development and implementation phase. This allows for valuable 
feedback that can improve the design and reduce risks, costs, and uncertainties associ-
ated with the development and implementation process. To realize such an evaluation, 
it not only needs to capture the above dimensions, but also all value chain stakeholders’ 
interests and constraints.

The currently accepted definition of Life Cycle Assessment (LCA) is the "compila-
tion and evaluation of the inputs, outputs, and potential environmental impacts of a 
product system throughout its life cycle” (Hellweg and Milà I Canals 2014). There are 
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typically four steps in LCA: (1) the description of the goal and scope, (2) inventory 
analysis, (3) life-cycle impact assessment, and the interpretation of the inventory and 
impact assessment results. The LCA method is based on a detailed inventory of input 
and output flows of processes across the life cycle stages of products or services, con-
verting the overall flow balance into several environmental impact categories, and these 
impacts may potentially be further consolidated into a single score (Blass and Corbett 
2018). Current LCA practices as standardized by International Organization for Stand-
ardization (ISO) (2023), and the ISO 14040:2006 standards are a broadly accepted set of 
principles and guidelines for performing a LCA analysis (Curran 2013). there are many 
LCA software and only two open-source LCA software: OpenLCA (2023) and Brightway 
(2023). OpenLCA is a Java application that is popularly used for LCA. Brightway is writ-
ten in the Python programming language and designed for large datasets.

The applications of LCA can be from product design, process optimization, supply 
chain management, cooperates’ strategies, and national environmental policies. In the 
energy sector, LCA has been deployed as a standardized tool to understand the environ-
mental effects of energy generation technologies, especially renewable energy technolo-
gies, and most of the studies have been conducted in Europe (Barros Murillo et al. 2020). 
LCA is mainly applied to conventional product development, potential can be applied in 
the software engineering domain to determine the environmental impact of a software 
product and the environmental impact of a software development process. However, 
LCA in software engineering is rarely discussed in the literature. Simultaneously, there 
is no literature in LCA for digital technology and only one short conference paper (less 
than 3 pages, published in 2005) discussed eco-design factors of software product con-
tent and commercialization (Kawamoto et al. 2005).

Accompanying the increasing focus on Industry 4.0, there is growing interest in envi-
ronmental awareness within cyber-physical systems. This typically refers to the environ-
mental impact assessment of these systems. The environmental impact assessment of 
cyber-physical systems is usually to assess the environmental footprint of devices and 
their use, and data management and lifecycle (Cortes-Cornax et  al. 2023). There is a 
framework proposed for the maintenance of cyber-physical systems incorporating LCA 
methods (Sénéchal and Trentesaux 2019). However, the climate impact of Information 
and Communications Technology (ICT) is underestimated with few studies (Freitag 
et al. 2022).

In the field of ICT, the concept of green computing or green IT refers to the prac-
tice of utilizing computing resources to their maximum efficiency to mitigate the envi-
ronmental impact (Harmon and Auseklis 2009). The literature has proposed numerous 
classifications of green computing metrics, covering an array of categories such as car-
bon footprint, population, and green energy usage (Gürbüz and Tekinerdogan 2016). In 
addition, metrics considering other aspects like performance and cost have also been 
incorporated. In the context of software development, certain strategies can enhance the 
green computing practice. For example, a reengineering process that promotes efficient 
software recycling, and green software engineering that optimizes energy consumption 
(Kutscher et al. 2020). Engineering software as a Software Product Line (SPL) is a strat-
egy to improve efficiency that allows software modules to be configured or deselected, 
thereby enabling the creation of various distinct software products from a single code 
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base (Clements and Northrop 2002). This not only facilitates reuse but also diminishes 
the effort required for maintenance.

In the value chain domain, there are some practices in LCA of a specific sector’s value 
chain and mainly from cooperates’ value chain decision making perspective (Geibler 
et al. 2016) incorporating cooperates’ internal metrics (Meinrenken et al. 2014). In the 
supply chain domain, an LCA of the supply chain constitutes a full LCA, involving all 
activities associated with a product or service, especially including logistics (transporta-
tion and vehicles), rather than only focusing on the product’s material life cycle (Browne 
et  al. 2005). A decision tree approach with 19 environmental criteria is proposed for 
LCA and decision making of sustainable transport processes (Greschner Farkavcova 
et al. 2018). Furthermore, supply chains always involve several actors, and the majority 
of LCA studies may acknowledge the presence of these actors but seldom explicitly take 
each stakeholder’s incentives into account (Blass and Corbett 2018) Agent-based mod-
eling methods are recommended to address the complexity of this topic (Batten 2009).

Life Cycle Cost Analysis (LCCA), or Life Cycle Costing (LCC), is typically considered 
in the LCA process to ensure a holistic, long-term evaluation of costs associated with a 
product, service, or infrastructure (Kubba and Kubba 2010). LCC can be divided into 
three different types: conventional, environmental, and societal, and it aids in making 
informed decisions about the total costs over the lifetime of the asset (Yang et al. 2020). 
LCA and LCC were often used together along with a range of other methodological aids, 
e.g., cost–benefit analysis (Jeswani et al. 2010). There are methods proposed for the use 
of LCA together with LCC (França et al. 2021). Recently, LCC was implemented in the 
LCA software – openLCA, but focused on environmental Life Cycle Costing, not opera-
tional costs.

Besides LCA, there is increasing research in Social Life Cycle Assessment (S-LCA) 
aiming to evaluate the social and socio-economic aspects of products, as well as their 
positive and negative impacts throughout their life cycle (Jørgensen 2013). S-LCA is an 
addition to LCA, but it can be used individually without combining it with LCA. Stake-
holders play a crucial role in the S-LCA methodology and the S-LCA evaluation indica-
tors are developed and selected according to the stakeholders’ life cycle activities (UNEP, 
SETAC Life Cycle Initiative 2009). There are several S-LCA frameworks and methods 
including both economic and social aspects of S-LCA (Wu et  al. 2014), and indica-
tors (Kühnen and Hahn 2017). The primary methodologies used for Social Life Cycle 
Assessment (S-LCA) are derived from Life Cycle Assessment (LCA). However, there 
are challenges when deploying LCA methods in S-LCA, such as impact assessment and 
handling of data (Petti et al. 2018). Dealing with semi-quantitative and qualitative indica-
tors poses a challenge in S-LCA, particularly because these impacts are not expressed in 
relation to the functional unit (Wu et al. 2014). S-LCA has been applied for renewable 
energy technologies, such as solar power (Corona et al. 2017), offshore wind (Tseng et al. 
2017), and hydrogen power (Adami Mattioda et al. 2017).

Based on LCA, LCC, and S-LCA, Life Cycle Sustainability Assessment (LCSA) has 
been proposed to incorporate the three pillars of sustainable development (environmen-
tal, economic, and social impacts) into one formulation, while retaining a life cycle per-
spective (Fauzi et  al. 2019). There are two main formulations of LCSA: (1) the LCSA 
model consisting of LCA + LCC + S-LCA (Kloepffer 2008), (2) acts as a framework with 
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a similar definition as first formulated, but with a broader and deeper scope (Guinée 
et al. 2011). Eight research challenges in LCSA are identified, and mainly due to the dif-
ferent perspectives of LCA and S-LCA (Fauzi et al. 2019).

There is a S-LCA database, PSILCA (PSILCA 2023), which can be imported into and 
used in LCA software—openLCA, however, it is not for free. In addition, other tools are 
also used with the LCA-LCC approaches, such as a multi-criteria approach to account 
for environmental, social, and economic impacts (Balasbaneh and Marsono 2020). A 
widely used technique is Multi-Criteria Decision Making (MCDM), including e.g., 
mathematical modeling, Analytic Hierarchical Process (AHP), and fuzzy logic approach 
that has been used in LCA studies (Zanghelini et al. 2018).

Furthermore, Policy and regulation need to be considered in LCA in several ways, 
e.g., defining assessment boundaries and scenario analysis (such as waste regulations 
included end-of-life disposal scenarios), and incentives and penalties for reduced envi-
ronmental impact (e.g., tax credits for renewable energy). Therefore, the Life Cycle 
Impact Assessment (LCIA) is recommended to integrate with another assessment mod-
elling, e.g., regulatory assessment practices and policy support tools (Pennington et al. 
2004).

Moreover, results from LCA can be used to inform policy and regulatory decisions, 
offering insight into the potential environmental policy and regulation making. Policies 
play a critical role in shaping the life cycle of a product or service by establishing guide-
lines and regulations to influence how products are designed, manufactured, used, and 
discarded (Rebitzer et al. 2004). Especially product-oriented environmental policies, e.g., 
the EU’s Communication on integrated product policy—building on environmental life-
cycle thinking (Commission and Building on Environmental Life-Cycle Thinking 2003), 
and the proposal for establishing a framework for the setting of eco-design requirements 
for energy-using products (European Commission 2003).

In addition to considering environmental, social, economic, and political factors, suc-
cessful implementation of technology requires its widespread adoption to truly achieve 
the anticipated benefits. Technology adoption theories and models have been intro-
duced in the literature to describe the adoption behavior toward new technology and 
help to develop business models aiming to achieve a fast and/or high adoption (Ma 
et al. 2022). The adoption and diffusion of green energy technologies are impacted by 
various factors at the individual, corporate and societal levels. The determinants of green 
energy adoption can be categorized into the technical matter, adopter level, corporate 
promotion and environmental challenge. Cost [expense of adopting green technologies 
(Higueras-Castillo et al. 2019)], performance [the functional reliability and effectiveness 
(Sopha and Klöckner 2011)], infrastructure (infrastructure readiness and facilitating 
conditions (Girod et al. 2017)), visibility of technology (Parkins et al. 2018), technologi-
cal capabilities (Fu et al. 2018) and environmental regulation are the main determinants 
in the category of technical matters.

The performance of the energy solutions in the literature is usually regarding end-
users’ perceptions and experiences of use, e.g., charging time and driving distance 
of electric vehicles, which usually associate with the determinant of consumers’ envi-
ronmental concerns. However, the performance associated with climate concerns is 
barely discussed. Climate concerns include climate adaptation and mitigation, and the 
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performance of a renewable energy solution should consider both climate mitigation 
and adaptation measures. Mitigation measures are associated with adaptive actions 
in response to climate change by society and business (West and Brereton 2013), and 
there are significant analytical challenges associated with mitigation and adaptation 
assessments. However, the boundaries of mitigation measures are more clearly defined 
because there is a straightforward metric (GHG emission reduction) to assess the 
effectiveness of such determinations (Perlin et al. 2022). There are several examples of 
adaptation measures, such as developing integrated risk assessment tools in the insur-
ance sector; and investing in drought prevention measures (Perlin et al. 2022). Climate 
resilience can be used as the adaptation measure, which is defined as “The ability of the 
system and its component parts to absorb, accommodate and recover from both short-
term shocks and long-term changes. These shocks can go beyond conditions covered in 
standard adequacy assessments” by International Energy Agency (IEA) (2020).

Challenges in SotA technologies and methods

The energy ecosystem data space

The concept of a "data space" has been defined by the EU, but not practically imple-
mented. Therefore, no practical common data space design principles exist. Several 
challenges and limitations exist in implementing data spaces in practice:

•	 Data platform projects are running under the Big Data Value association, but they 
are way too complex to deploy in practice.

•	 Commercial data and model management platforms are too expensive and less flex-
ible for deployment.

•	 Open-source platforms, including cloud-based data management systems and 
MLOps platforms, present their own limitations, particularly in their ability to han-
dle complex operations and integration.

Despite these challenges, the SotA methods for cloud-based data management systems 
and MLOps platforms with APIs and microservices have been developed and refined to 
high degrees. However, the challenge lies in their integration to create a versatile and 
secure energy data space that complies with the data space design principles.

The interoperable virtual ecosystem living lab

Digital twin technology is emerging within the context of business ecosystems, with a 
focus on the energy sector. However, the application of this technology faces several 
challenges and limitations:

•	 Complexity and availability: The applications of digital twin technology are primar-
ily limited to physical energy systems. There are only a few digital twin applications 
designed for business ecosystems due to their inherent complexity. The intrinsic 
complexity of the ecosystems also hampers integrated ontology design and applica-
tion across multiple energy systems.

•	 Standards and Interoperability: An integrated approach to ontology and interoper-
ability design is currently lacking, as well as open standards across multiple energy 
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systems. There’s some literature on the interoperability of digital twins, but there’s 
a notable absence of standards to ensure this interoperability. None of the com-
mon reference models or frameworks (e.g., SGAM, USEF, SEAS, and OpenADR) 
cover the whole semantics in energy and are not formally aligned with each other.

•	 Testing methods: SotA methods utilizing digital twins are present for monitor-
ing, simulation, optimization, and control of physical systems. However, there is 
no method using digital twin technology specifically for the verification and val-
idation of highly interconnected energy systems. Different types of In-the-Loop 
testing, such as hardware-in-the-loop and software-in-the-loop, are used for 
model-based verification and validation. Still, an integrated approach for highly 
interconnected energy systems is missing.

These challenges necessitate the development of a virtual energy ecosystem living 
lab that can connect various energy system models and AI algorithms. This would 
enable the creation of more robust digital twin applications, specifically suited for 
highly interconnected energy systems.

Energy system modeling and AI algorithms

Energy system modeling tools and DL algorithms are being used for energy systems, 
but several challenges and limitations persist:

•	 Complexity of behavior and choices: The central challenge of energy system mod-
eling is its inability to accurately capture the growing complexities of consumer 
behavior and choices. Existing tools and methodologies are also incapable of cap-
turing the growing involvement of consumers in the energy system.

•	 Data acquisition challenges: DL requires sufficient data for effective implementa-
tion. However, collecting data from targeted energy communities can be difficult 
or expensive. This remains a main challenge for applying DL algorithms, particu-
larly in the use of CPES.

•	 Synchronization issues: There are problems with clock and time resolution syn-
chronization between energy system models and DL algorithms, further compli-
cating interoperability. This includes challenges with differences in emulation-sim-
ulation clock and time resolutions.

•	 Algorithm limitations: though DCNNs and LSTM algorithms outperform current 
SotA methods in renewable energy systems, there are no standard procedures for 
domain adaptation available to assess the similarity of source and target domains. 
TL techniques are present but are not fully adapted to the context.

Circular value chain co‑design toolbox

The main challenges in integrating circular value chain design practices with CPES 
solutions, particularly in connecting these with climate mitigation and adaptation 
goals, can be summarized as:
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•	 Lack of focus on CPES solutions: Only a few circular values chain design practices exist 
for CPES solutions and no systemic approach has been developed to streamline circu-
lar value chain co-design for CPES solutions. While a circular value chain framework 
exists, it lacks a detailed exploration of stakeholder identification, its roles, and the flows 
among these stakeholders within a CSC.

•	 Lack of focus on climate objectives: While there is a growing emphasis on corporate 
climate adaptation and mitigation, these efforts are not yet linked with the value of the 
business model. Presently, circular business model strategies don’t incorporate climate 
mitigation or adaptation goals. Also, the design process of an energy solution usually 
does not encapsulate all climate adaptation and mitigation objectives.

•	 Limited linkage and systematic approaches: The value propositions of CPES solutions, 
encompassing sustainability, efficiency, flexibility, and resilience, have not been prop-
erly linked. Furthermore, these initiatives remain isolated, without a comprehensive or 
standardized approach.

•	 Lack of collaborative tools: Additionally, there is a lack of tools to facilitate collaboration 
in integrating circular value chain practices with CPES solutions and climate objectives.

Lifecycle assessment

There are significant shortcomings in the LCA studies related to CPES solutions, especially 
concerning the assessment of value chains:

•	 Limitations in LCA and LCC: LCA is mainly applied to conventional product develop-
ment, and LCA of digital technology is rarely discussed. Most LCA studies in supply 
chains seldom explicitly take each stakeholder’s incentives into account. LCC tends to 
focus only on environmental costs, not operational costs.

•	 Neglect of cyber aspect: The existing studies primarily address the "physical" compo-
nent and neglect the "cyber" aspect. Additionally, there is a lack of LCSA or LCA studies 
focusing specifically on software.

•	 Geographical focus: LCSA studies (including LCA, LCC, and S-LCA) have been con-
ducted mainly in Europe. This regional focus limits the applicability of findings to 
diverse and global contexts.

•	 Absence of climate measures: Measures for climate mitigation and adaptation are 
absent in existing studies. Consequently, the climate effectiveness of CPES solutions 
and their circular value chains remains immeasurable. No studies have combined these 
measures with LCA.

•	 Lack of comprehensive studies: No studies assess CPES solutions or value chains from 
all five CSTEP dimensions. This leaves gaps in understanding the full impact and effec-
tiveness of CPES solutions, particularly in the context of climate mitigation and adapta-
tion.
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Recommendation of energy metaverse development methods and technologies

Versatile energy ecosystem data space

To create a dynamic and versatile energy ecosystem data space, the open cloud-based 
platforms MongoDB and GitLab could be considered for storing and sharing data and 
AI models. To solve limitations of MongoDB and GitLab, e.g., size limits, unfriendly 
transactions and integration, the data space could encompass various interconnected 
databases, with each database operating as an independent service and maintaining 
its own lifecycle. These databases could include:

–	 Physical energy ecosystem inventory database describing typical cases (e.g., 
energy communities) or cases that have been investigated before. The description 
could include the cases’ conditions (e.g., populations, potential renewable energy 
resources, etc.).

–	 Energy production and consumption database containing historical data for elec-
tricity production and consumption at the physical energy ecosystems. In the 
case where no historical data is available, synthetic data generation can be used to 
compensate for the missing data.

–	 Weather database containing historical weather data for the physical energy eco-
systems.

–	 Energy technology catalog describing the potential energy technologies and sys-
tems that might be used for experiments. The catalog is used to select the tech-
nologies for the alternative energy system configurations that will be evaluated in 
the virtual ecosystem living lab.

–	 Algorithms database containing potential AI algorithms for energy management 
system operations.

–	 Scenario and results database containing scenario information and resulted energy 
production and consumption data, and evaluation results of energy solutions and 
value chain.

An energy data space framework and internal and external data exchange proto-
cols with the employment of the microservices architecture equipped with standard 
API interfaces (e.g., OpenAPI 2023) are recommended to ensure interoperability. This 
design will facilitate secure and seamless interactions with the internal systems and 
third-party APIs, broadening the ecosystem’s utility and functionality.

Interoperable virtual ecosystem living lab

The architecture for the interoperable virtual ecosystem living lab is recommended to 
be designed based on ecosystem architecture design and analysis methods (Ma et al. 
2021; Ma 2019) which can ensure the virtual ecosystem living lab captures the fun-
damental ecosystem elements. Digital twin technology with multi-agent-based sim-
ulations could be used to develop the virtual environment including actors, objects 
(facilities, systems), and the dynamics and evaluation of the whole virtual ecosystem. 
For a typical virtual electricity ecosystem living lab, it should include digital twins of 
electricity grids (Værbak et al. 2021), energy sources and production (Clausen et al. 
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2022; Sørensen et al. 2022), energy consumption (Howard et al. 2021), and electric-
ity markets (Fatras et al. 2022). The web-based tool Energy Metaverse platform (Ma 
2023) can be utilized to build the foundation of the virtual ecosystem living lab.

Hierarchical ontologies and existing standards and communication protocols in the 
energy domain are recommended to be used in the development of the virtual ecosys-
tem living lab. The interoperability standards can support the plug-and-play functional-
ity of energy solutions and enable integration with the circular value chain co-design 
toolbox and ecosystem lifecycle evaluation. Furthermore, the set of communication 
protocols will guarantee seamless communication with external systems. Protégé (2023) 
and Protégé Ontology Web Language (OWL) API (Programmer’s and Guide 2023) are 
recommended for ontology development which also can ensure semantic consistency 
and reasoning capabilities throughout the entire ontology lifecycle.

Energy system models and algorithms sandbox

Energy system models and algorithms sandbox should comprise various energy sys-
tem models and an array of DL algorithm libraries. These energy system models could 
include energy generation system models, energy storage system modeling, energy net-
work modeling, etc. They function as digital emulators that mirror the corresponding 
physical energy system. The open-source Modelica-based modeling and simulation soft-
ware OpenModelica (2023) can be utilized for energy system modelling.

The DL algorithm libraries could include forecasting, scheduling, and control librar-
ies that can operate on energy system emulators. This setup allows for learning system 
dynamics, predicting system behavior, and making decisions to control the system. 
DCNNs and LSTMs have been popularly used in the energy system. The DL algorithms 
(DCNNs and LSTMs) can be built with Keras (2023) and PyTorch (2023), and experi-
mented and documented with Jupyter Notebook (2023) to ensure a systematic working 
flow. For the physical energy ecosystems that only have minimal or no data, TL tech-
niques along with concept drift detection methods can be used to create DL algorithms.

A flexible framework is recommended to ensure interoperability between energy sys-
tem models and DL algorithms. This setup will allow for easy configuration and modi-
fication of both energy system models and DL algorithms. The framework should also 
apply multi-time resolution and a container-based virtual time system to achieve effi-
cient synchronization between the energy system models and DL algorithms. Moreover, 
this framework can implement the designed communication protocols and interoper-
ability standards to ensure compatibility with the virtual living lab.

Circular value chain co‑design toolbox

The circular value chain co-design toolbox is recommended to consist of three inter-
connected tools: a business model development tool, a strategies tool, and a value chain 
design tool. The business model development tool should be considered to be built upon 
a business model framework, e.g., the business model canvas (Strategyzer. 2023), and 
the value proposition component can be linked with the strategies tool. The strategies 
tool could consist of CE implementation, climate mitigation, and adaptation strategies. 
A set of customized mitigation and adaptation options could be designed to align with 
the objectives of sustainability, efficiency, flexibility, and resilience.
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The value chain design tool could be employed with the circular value chain frame-
work and value co-creation models. The business ecosystem modeling method (Ma et al. 
2021) can be used in the value chain design tool to identify value stakeholders and their 
interactions, and the web-based tool, Ecosystem Map Generator (Map and Generator 
2023) can support this objective. Furthermore, the web-based Energy symbiosis designer 
(Energy symbiosis designer 2023) can be utilized to analyze the value chain and inves-
tigate the optimal circular value chain. Moreover, a collaborative user interface with a 
real-time collaboration feature could be deployed to enable individual users for the busi-
ness model development and multiple users’ value chain co-design.

Ecosystem lifecycle evaluation software tool

Ecosystem lifecycle evaluation software could be built upon the CSTEP ecosystem 
analysis and evaluation method (Ma 2022; Ma et al. 2022) and MCDM models to evalu-
ate the scenario results. Furthermore, the ecosystem lifecycle evaluation could employ 
LCSA methods (including LCA, LCC, and S-LCA) and green computing metrics to cap-
ture five dimensions of Climate and environmental, Social and cultural, Technological, 
Economic and financial, policy and regulatory (Ma 2022), as well as the preferences and 
constraints of individual value chain stakeholders. The web-based tool, CSTEP Business 
Opportunity Identifier (Business Opportunity and Identifier 2023) can be employed to 
define long-term future scenarios together with scenario design and analysis in LCA, 
thus enabling the evaluation of the enduring effectiveness of energy solutions and their 
value chains.

Moreover, open-source LCA software, e.g., OpenLCA and Brightway, and python 
libraries for MCDM models, e.g., PyMCDM (2023), can be utilized and integrated with 
the virtual energy ecosystem living lab. It will not only evaluate the results but also pro-
vide feedback, improving the design of the energy solutions and value chains.

Discussion and conclusion
This paper proposes a conceptual framework of the energy metaverse with five critical 
elements (as illustrated in Fig. 1). Based on the review of the State-of-the-Art methods 
and technologies, this paper recommends the development of the energy metaverse 
should consider the methods and technologies shown in Table 2. Compared to Table 1. 
the potential State-of-the-Art methods and technologies related to the energy metaverse 
development in Table 2 are more practically feasible to be implemented for realizing the 
energy metaverse development with reliable software and tools.

Scientific contributions

The recommended approaches for developing the energy metaverse are built up the 
State-of-the-Art methods and technologies, and significantly enhance the State-of-the-
Art as:

Energy ecosystem data space

 The proposed data space features an array of interconnected databases, facilitating 
secure data and information exchanges within the energy metaverse and with third-party 
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systems or APIs. This innovative design will effectively address the capacity limitations 
and integration challenges inherent in State-of-the-Art methods.

Virtual ecosystem living lab 

The proposed approaches take digital twin technology a step further. It employs this 
technology in an innovative virtual ecosystem living lab that allows for the verification 
and validation of interconnected energy systems. To address the challenges of interoper-
ability, a dynamic digital replica of predefined physical energy communities and systems 
is proposed. This architecture pushes the boundaries of the state-of-the-art by leverag-
ing existing interoperability standards and communication protocols. This approach 
enables seamless integration and communication between different digital twins and 
existing systems. Furthermore, the proposed approaches move beyond static analyses 
and instead adopt dynamic, scenario-based simulations. Therefore, they enhance the 
depth and breadth of evaluations of energy solutions, especially cyber-physical energy 

Table 2  Recommended methods and technologies for the energy metaverse development

Energy metaverse element Deployed methods and 
technologies

Software and tools

A versatile energy ecosystem data 
space

• Open source cloud-based data 
management system
• Open DevOps and MLOps 
platform
• Interconnected databases
• Microservices architecture
• Standard API interfaces

MongoDB (2023)
GitLab (2023)
OpenAPI (2023)

An interoperable virtual ecosystem 
living lab

• Digital twin technology
• Ecosystem architecture design and 
analysis methods
• Multi-agent-based simulations
• Hierarchical ontologies
• Communication protocols and 
Interoperability standards

SDU-CEI Energy Metaverse platform 
(Ma 2023)
Protégé (Protégé. 2023)
Protégé Ontology Web Language 
(OWL) API (Programmer’s and Guide 
2023)

An energy system models and AI 
algorithms sandbox

• Energy system models
• Deep learning algorithm libraries 
(DCNNs and LSTMs)
• Transfer learning techniques
• Communication protocols and 
interoperability standards

OpenModelica (2023)
Keras (2023)
PyTorch (2023)
Jupyter Notebook (2023)

A circular value chain co-design 
toolbox

• Business model framework
• Circular economy implementation 
strategies
• Climate mitigation and adaptation 
strategies
• Circular value chain framework
• Value co-creation models
• Ecosystem architecture design and 
analysis methods

Business model canvas (Strategyzer 
2023)
Ecosystem map generator (2023)
Energy symbiosis designer (2023)

An ecosystem lifecycle evaluation 
software tool

• CSTEP ecosystem analysis and 
evaluation method
• Multi-Criteria Decision Making 
(MCDM) models
• Life Cycle Assessment (LCA) 
methods (including social LCA and 
Sustainability Assessment)
• Green computing metrics

CSTEP Business Opportunity Identi-
fier (2023)
OpenLCA (2023) and Brightway 
(2023)
PyMCDM (2023)
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system solutions, allowing for more comprehensive value chain co-design and multi-cri-
teria lifecycle assessments.

Energy system models and AI algorithms sandbox

This paper proposes the first energy system models and AI algorithms sandbox that 
combines a variety of energy system models and deep learning algorithm libraries. This 
approach advances energy system modelling by deploying agent-based simulation mod-
els to accurately capture the growing consumer involvement in energy systems. Fur-
thermore, the use of Transfer Learning techniques alongside concept drift detection 
methods to create deep learning algorithms for targeted physical energy ecosystems with 
minimal or no data is a significant leap beyond existing models. Moreover, the proposed 
flexible framework can ensure interoperability, easy configuration and modification, and 
efficient synchronization between energy system models and deep learning algorithms 
through multi-time resolution and a container-based virtual time system.

Circular value chain co‑design toolbox

The proposed approach can ensure the integration of energy solutions, especially 
cyber-physical system solutions, with circular value chains and circular business mod-
els, focusing on the missing linkage between climate adaptation and mitigation strate-
gies and business model values. The employment of the business ecosystem modeling 
for value stakeholder identification, facilitating collaboration and co-creation, a notable 
upgrade from existing isolated efforts. The innovative combination of circular business 
model development, climate strategies, and circular value chain design into a co-design 
toolbox, aligns business and climate objectives such as sustainability, efficiency, flexibil-
ity, and resilience. It allows the seamless development and execution of energy solutions.

Ecosystem lifecycle evaluation software tool

This paper proposes an ecosystem lifecycle evaluation method that is tailored to offer a 
comprehensive evaluation of energy solutions and their corresponding business models 
and value chains. This method integrates a variety of methodologies, including methods 
of Life Cycle Assessment, Life Cycle Costing and Social Life Cycle Assessment, regu-
latory and policy assessment practices, and technology adoption theories with climate 
mitigation and adaption measures. This method ensures the comprehensive capture of 
the five CSTEP dimensions of Climatic, environmental, Social, cultural, Technological, 
Economic, and Policy and regulatory thus providing a holistic evaluation of energy solu-
tions and value chains. Furthermore, the green computing metrics are also deployed in 
this method to fill the research gap of missing Life Cycle Assessment of software. This 
method also incorporates Multi-Criteria Decision Making models into the evaluation 
framework. This allows the encapsulation of diverse stakeholder preferences and con-
straints, adding depth and inclusivity to the decision-making processes. Furthermore, 
the deployment of the web-based tool, CSTEP Business Opportunity Identifier, and sce-
nario design & analysis in LCA can ensure the reliability and credibility of the evaluation 
of the long-term effectiveness of energy solutions and their circular value chains.
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Practical contributions

The use of the energy metaverse can facilitate a transformative shift in the energy sector, 
primarily targeting key players and stakeholders who are at the forefront of the sector’s 
evolution. The focus will be on the active participants in the renewable energy sector, 
energy technology developers, policymakers, and the scientific community. These groups 
are not just interested but are deeply involved in enhancing the economic and environ-
mental performance of the energy sector. These professionals understand the benefits of 
incorporating innovative technologies, advanced business models, and effective policy 
measures in promoting sustainable energy. Their expertise, insights, and influence are 
vital in overcoming the challenges that the sector currently faces. The stakeholders who 
can benefit directly from the applications of the energy metaverse can be outlined as:

Energy technology providers

They will benefit significantly from the outcome related to the development and optimi-
zation of energy solutions and AI-based operational models. These outcomes provide 
concrete steps for energy technology providers to refine their existing technologies or 
develop new ones, ultimately enhancing their offerings’ reliability and cost-effectiveness.

Energy services companies and business consulting firms

The novel business models, value chains, and AI-based operational strategies can guide 
them to refine their consultancy services, potentially driving revenue growth and com-
petitive advantage.

Utility companies

The AI-enhanced efficiency aspect of the economic/technological outcome can serve as 
a model for these companies to optimize their grid operations. The innovative business 
models and value chains from the same outcome may provide insights into optimizing 
their resource allocation, leading to cost reductions and improved service reliability.

Local Communities and energy consumers

 The optimized energy solutions will provide reliable and affordable energy, fostering 
local economic development, and improved living standards. Also, CO2 emission reduc-
tion will contribute to cleaner, healthier environments.

Regulatory bodies and policymakers

 The evidence-based optimization strategies and ecosystem lifecycle evaluation meth-
odology can be highly valuable for policy development. The societal outcome’s emphasis 
on quantifying impacts can provide them with robust data to guide policy decisions and 
regulatory measures related to renewable energy use.

Non‑Governmental Organizations (NGOs)

 NGOs focusing on climate change, energy, and social development. The ecosystem life-
cycle evaluation methodology can guide their initiatives and advocacy. They can also use 
the societal outcome’s emphasis on quantifying environmental, health, social, and eco-
nomic impacts to measure the effectiveness of their programs.
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Scientific community

The scientific community will directly benefit from the scientific outcomes, including 
the advanced knowledge on the co-design of value chains, business models, and eco-
system lifecycle assessment methodologies. They can leverage these outcomes to guide 
their research directions and potentially open new frontiers in the integration of cyber-
physical systems, artificial intelligence, and renewable energy technologies.

Limitations and future works

The development of the energy metaverse is extremely complex and requires great effort 
to deal with the following challenges:

The main technological challenge is the digital replication of each targeted physical 
energy ecosystem which requires demands substantial manual preparatory activities, 
such as gathering and analyzing information and data. The information and data collec-
tion not only includes the technical specifications and constraints (e.g., existing energy 
systems), climate and environmental conditions (e.g., solar radiation, wind speed) but 
also the behaviours of all involved stakeholders. Furthermore, to ensure the virtual rep-
resentation of targeted physical energy ecosystems remains realistic and precise, there’s 
a need for comprehensive long-term trend analysis and forecasting. However, execut-
ing such multi-faceted ecosystem trend evaluations can be labor-intensive, and current 
state-of-the-art methods don’t present efficacious solutions. A recommended approach 
is to employ the CSTEP ecosystem evaluation technique (Ma et al. 2022) and its associ-
ated CSTEP Business Opportunity Identifier tool (2023), complemented by the scenario 
design and analysis in LCA for long-term trend prediction. However, this approach is 
qualitative rather than quantitative, which poses its own set of challenges. While quali-
tative analyses offer valuable insights into system behaviors, stakeholders’ motivations, 
and potential system evolutions, they might not provide the precise numerical data 
needed for some technical simulations or decision-making processes. Quantitative data 
is essential for making accurate forecasts, optimizing system performance, and conduct-
ing rigorous risk assessments. The absence of exact numerical values can make it chal-
lenging to gauge the full impact of certain decisions, measure return on investments, or 
ensure the most efficient allocation of resources.

Another technological challenge is to integrate pre-existing software into the energy 
metaverse platform. Although some software is open-source, due to the diversity in 
their foundational architectures, compatibility issues might arise. This can lead to diver-
gences in data exchange, misalignment in functionalities, and potential operational inef-
ficiencies. Furthermore, closed-source software brings along its set of challenges such 
as limited access to source code, which can constrain customization and seamless inte-
gration efforts. Addressing these challenges requires a comprehensive understanding of 
software interoperability, as well as the development of standardized protocols and mid-
dleware solutions to bridge the gap between varying software architectures. However, 
the implementation of the existing interoperability standards and communication pro-
tocols reveals difficulties for software developers and stakeholders to adopt them. This 
is primarily because these standards and protocols, while universally designed, might 
not account for the specific differences and unique requirements of every application 
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or system. Moreover, the dynamic nature of the technological landscape means that 
standards can quickly become outdated, requiring frequent updates and adaptations. 
Additionally, a lack of comprehensive documentation or training resources for these 
standards can impede their widespread acceptance and use.

Cost is the main economic challenge for developing and operating such an energy 
metaverse platform. Each of the five critical elements in the energy metaverse platform 
requires significant financial resources for research, development, deployment, and 
maintenance. Firstly, the foundational infrastructure, being the backbone of the plat-
form, demands robust hardware and software components, which often come with high 
initial investments. Secondly, the data management and storage systems necessitate 
state-of-the-art security measures and large-scale storage solutions, which can be expen-
sive to implement and maintain. Thirdly, integration tools and APIs for ensuring seam-
less interoperability among different systems introduce costs associated with licensing, 
customization, and continuous upgrades. Fourthly, user interfaces, while vital for user 
engagement and experience, need ongoing design and user research to stay intuitive 
and relevant. Lastly, the analytics and reporting tools require advanced algorithms and 
computational power, representing another significant expense. All these elements com-
bined underscore the financial challenges involved. To mitigate these costs, it’s essential 
to explore diversified funding sources, partnerships, and scalable design solutions that 
can adapt to changing technological landscapes without frequent and costly overhauls.

While there are considerable advantages for stakeholders in using the energy 
metaverse platform, as highlighted in the "Practical contributions" section, certain stake-
holders, particularly energy technology providers, may be hesitant to adopt it. This reluc-
tance can come from the platform’s potential to disrupt established R&D procedures. 
Consequently, the usage of the energy metaverse platform might need a re-evaluation of 
existing infrastructural systems, processes, and practices. In addition, the transparency 
provided by the metaverse platform might expose certain inefficiencies or proprietary 
methods, causing concerns among stakeholders who view these as competitive advan-
tages. Additionally, there might be concerns related to data security, intellectual prop-
erty rights, and the high learning curve associated with understanding and navigating a 
new digital platform.
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