
Quantum–classical co‑simulation for smart 
grids: a proof‑of‑concept study on feasibility 
and obstacles
Dominik Vereno1*, Amin Khodaei2, Christian Neureiter1 and Sebastian Lehnhoff3 

From The 12th DACH+ Conference on Energy Informatics 2023 
Vienna, Austria. 4-6 October 2023. https://www.energy-informatics2023.org/

Introduction
Modern electricity infrastructure faces various challenges, including the electrifica-
tion of transport, and climate change. In response to these challenges, smart grids are 
being developed, which rely on Information and Communications Technology (ICT) 
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for pervasive monitoring and automated control. These smart grids facilitate more 
efficient utilization of energy, reduce costs, and enable better integration of renewable 
energy sources, resulting in enhanced resilience and sustainability in electricity pro-
duction and distribution (Farhangi 2010).

Co-simulation has emerged as a promising paradigm for overcoming these chal-
lenges, especially the heterogeneity and trans-domain nature of subsystems, as well as 
their operational independence (Vereno et al. 2023). With co-simulation, independ-
ent subsystem simulators are coordinated to simulate the coupled system (Gomes 
et al. 2018). However, large-scale co-simulation with complex simulators can be com-
putationally expensive. Some power-system problems require repeated execution 
(e.g. for analyzing different contingency scenarios (Eskandarpour et al. 2020b)), which 
further exacerbates the computational cost. While co-simulation can be parallelized 
and distributed (Steinbrink et al. 2018), some subproblems may still be prohibitively 
expensive. For example, large-scale power-flow computations pose significant compu-
tational challenges (Yoon and Han 2020).

Quantum computing may provide a solution. It is a novel computing paradigm 
that harnesses quantum-mechanical effects for information processing that prom-
ises drastic speed-up for many fundamental computational problems (Nielsen and 
Chuang 2010). In recent years, research has identified the potential value of quan-
tum computing for power systems (Eskandarpour et al. 2020a). For example, quantum 
mixed binary optimization was applied to unit commitment (Koretsky et  al. 2021), 
and the viability for quantum annealing-based phasor-measurement unit placement 
was analyzed (Jones et al. 2020). Furthermore, a quantum algorithm for solving lin-
ear systems of equations—the HHL algorithm (Harrow et al. 2009)—promises expo-
nential speed-up of power-flow analysis, both DC (Eskandarpour et al. 2021) and AC 
(Feng et al. 2021). For more examples on the state of the art of quantum power-sys-
tems engineering, see (Ullah et al. 2022) and (Golestan et al. 2023).

Vereno et al. have proposed utilizing the potential of quantum computing in smart-
grid co-simulation by introducing quantum–classical co-simulation, where “one or 
more simulators of an otherwise classical co-simulation are executed on quantum 
hardware” (Vereno et al. 2023b, p. 2). They specifically propose the use case of apply-
ing quantum power flow in a smart grid co-simulation. Quantum–classical co-simu-
lation can be seen as a form of hybrid quantum-classical approaches, as discussed in 
Endo et al. (2021). Vereno et al. (2023b) only discusses the concept in theory, however, 
the authors highlight the need for a proof-of-concept study to determine its feasibil-
ity and to assess its usefulness. In our research, we address this need by conducting 
an exploratory case study-based proof-of-concept study where we integrate quan-
tum power flow in a smart grid co-simulation. We opted for DC power flow in our 
experiments due to its simplicity and suitability for co-simulation scenarios involv-
ing quantum computing. DC power flow is attractive for applications requiring speed, 
which could benefit especially from quantum speedup. The limitations of quantum 
AC power flow, such as the need for Quantum Random Access Memory (QRAM) for 
efficient retrieval of intermediate results (Golestan et  al. 2023), further support our 
decision to use DC power flow instead.

The paper’s two main goals and research contributions are: 
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1	 We provide a proof of concept for quantum–classical co-simulation and its applica-
tion to smart grids, using a quantum power flow simulator.

2	 We identify and assess potential obstacles to the practical implementation of this 
concept, and their impact on its utility; we further provide recommendations on how 
to address them.

The next chapter offers background on the involved disciplines of quantum computing, 
power-systems engineering, and co-simulation. Chapter  Research approach describes 
how the proof-of-concept study is conducted. In Experiments, we lay out the experi-
mental setup and show the results. After that, the chapter Discussion of obstacles pre-
sents four main issues we encountered in our experiments and ways of addressing them. 
Finally, we conclude the paper by highlighting the key takeaways and giving an outlook 
to future research.

Background
This chapter provides an overview of the key concepts and theories relevant to the 
research. First, a brief introduction to quantum computing is given; it forms the basis for 
the consequent section on the HHL algorithm, a quantum algorithm for solving systems 
of linear equations. Then, we cover how said algorithm is used to perform quantum DC 
power flow analysis. Finally, we explain co-simulation and its application in smart grid 
applications.

Quantum computing

Quantum computing leverages properties described by quantum mechanics to perform 
computation (Hidary 2021). The fundamental unit of information in quantum comput-
ing is the quantum bit (qubit in short), which is analogous to the bit in classical comput-
ing. In contrast to a classical bit, a qubit can exist in a superposition of basis states |0� 
and |1� which can be described by a linear combination of the basis states with coeffi-
cients α, β ∈ C:

When measuring the state of a quantum system, the superposition collapses, resulting 
in one of the basis states. According to the Born rule (2), the probability of the measure-
ment yielding either basis state is proportional to the square of the corresponding coef-
ficient in the state vector (Born 1926). In other words, by estimating the probability one 
can make inferences about the superposition coefficients.

To visualize the state of a qubit, the Bloch sphere can be used (see Fig. 1). It is a com-
plex unit sphere where the antipodes correspond to the basis states, and its surface rep-
resents all possible states.

Alongside superposition, entanglement and tunneling are two fundamental quantum 
phenomena that have important applications in quantum computing. These principles 

(1)|ψ� = α |0� + β |1� , where |0� =
1
0

and |1� =
0
1

.

(2)|α|2 + |β|2 = 1
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are used in general-purpose circuit-based quantum computing and optimization-
focused quantum annealing. In this paper, we deal with circuit-based computation. A 
circuit consists of a series of quantum operators (so-called gates) that act on the circuit’s 
qubits. The width of a circuit refers to the number of qubits it contains, while the depth 
refers to the number of gates applied to these qubits (these dimensions are illustrated 
in Fig.  2). As the width and depth of a circuit increase, so does its ability to perform 
complex computations; this, in turn, requires more precise control which is difficult to 
achieve in practice.

Recently, there has been a significant development in platforms and tools for quan-
tum programming that provide access to cloud-based quantum hardware. Popular pro-
viders are IBM Quantum (2023), Google Quantum AI (2023), and D-Wave (Systems 
2023). This development has facilitated researchers and practitioners to experiment 
with quantum algorithms and circuits. The steep growth of the discipline increases the 
need for software-engineering practices in quantum programming. This trend has led 
to the emergence of quantum software engineering (Zhao 2020) and architecture (Khan 
et  al. 2022). The development of standardized software development methodologies, 
design patterns, and software tools will be key to realizing the full potential of quantum 
computing.

HHL algorithm

The HHL algorithm is a quantum algorithm for solving linear systems of equations by 
Harrow et al. (2009). It has generated much excitement since it may provide exponential 

|ψ〉

x1

x2

|0〉

|1〉

φ

θ

Fig. 1  Representing the quantum state |ψ� in the Bloch sphere

Fig. 2  Illustration of width and depth of a quantum circuit
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speedup for many problems in science and engineering. Its goal is to prepare a quantum 
state that encodes the solution to a system of equations.

Given the linear system

where A ∈ C
N×N is a square matrix, and �b, �x ∈ C

N are vectors. If A is a sparse, well-
conditioned Hermitian matrix—meaning it is its own conjugate transpose—the algo-
rithm prepares the normalized quantum state |x� that is an approximate solution to

Figure 3 depicts the circuit for the HHL algorithm, including four quantum registers. 
It can be subdivided into six main steps (Quantum 2023b): 

1	 loading the input vector |b� to a quantum register,
2	 estimating the eigenvalues of A using quantum phase estimation,
3	 adding an ancilla qubit and applying conditioned rotation,
4	 performing uncomputation using inverse quantum phase estimation,
5	 determining whether the computation was successful by measuring the ancilla qubit, 

and
6	 applying the observable M to query the output state.

The time complexity of the algorithm is O(log (N )s2κ2/ε) , where s is the sparsity, mean-
ing at most s non-zero entries per row. Since A is a Hermitian matrix, the condition 
number κ represents the ratio of largest and smallest eigenvalue |�max |

|�min|
 . The precision is 

given by ε . Childs et al. (2017) have further improved the scalability from poly(1/ε) to 
poly(log 1/ε) . The classical equivalent to the HHL algorithm is the conjugate gradient 
method; it also approximately solves a sparse, well-conditioned matrix, but exhibits a 
complexity of O(Nsκ log (1/ε)) (Shewchuk 1994).

(3)A�x = �b,

(4)A |x� = |b� , where |.� =
.

||.||
.

Fig. 3  Quantum circuit for HHL algorithm
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Despite the potential advantage of the HHL algorithm, it has several caveats and lim-
itations that restrict its practical utility (for a more detailed discussion, see Aaronson 
2015). For our research, four caveats are particularly relevant: 

1	 Expensive state preparation for input vector: To maintain the exponential advantage 
of HHL, we need a method to prepare the quantum state for |b� (Step 1) that scales 
at most logarithmically. In theory, quantum random access memory (QRAM)—as 
described in Giovannetti et  al. (2008)—could help with this task (Aaronson 2015), 
however, it was not yet realized in practice. Alternatively, the algorithm can be used 
as a subroutine where another component prepares |b� (Harrow et al. 2009).

2	 Precise eigenvalue representation: In Step 2, we apply quantum phase estimation to 
estimate eigenvalues of A by applying the operator U = eiAt ; determining a suitable 
time t can be a difficult task that diminishes the quantum speedup of the algorithm. 
An inappropriate value negatively affects both the performance and solution accu-
racy (Shao 2018).

3	 Circuit depth and noise susceptibility: The number of required operations and the 
circuit depth rises drastically as system size increases. Therefore, the noisy nature of 
current hardware makes larger systems infeasible (Sævarsson et al. 2022).

4	 Solution vector extraction: Reading all components of the solution vector would 
take linear time, which defeats the purpose of HHL’s sublinear performance (Harrow 
et al. 2009). Often, however, only a subset of information is required. Consequently, 
we need a way to efficiently extract the required subset of information from the pre-
pared quantum state |x� in Step 6.

Quantum power flow

Power-flow analysis is a fundamental tool in the operation and planning of power sys-
tems. It is used to compute the steady-state voltages, currents, and power flows in a net-
work, given the network topology, component parameters, and load demand (Grainger 
and Stevenson 1994). The analysis can be carried out for both AC and DC power 
systems.

•	 Pi and Qi are the injections of real and reactive power at bus i
•	 |Vi| is the voltage magnitude at bus i
•	 θi,j = θi − θj is the voltage angle difference between bus i and j
•	 Gi,j and Bi,j are the conductance and susceptance of the line connecting bus i and bus 

j

(5)Pi =

N
∑

j=1

|Vi||Vj|(Gi,j cos θi,j + Bi,j sin θi,j)

(6)Qi =

N
∑

j=1

|Vi||Vj|(Gi,j cos θi,j − Bi,j sin θi,j)
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In practice, the non-linear equations are solved approximately using approaches such 
as the Newton–Raphson method, where an initial estimate is iteratively refined using 
linear approximations. However, for some problems, such as transmission system plan-
ning and economic dispatch, the non-linear AC system can be treated as a DC system, 
under several simplifying assumptions, such as neglecting reactive power flows, voltage 
magnitudes, and line losses (Purchala et al. 2005). This results in the simplified power 
flow equation

which can be formulated as an equivalent linear system of equations including the vec-
tor of nodal power injections P , the nodal voltage angles θ and the susceptance matrix B . 
By removing the row and column corresponding to the slack bus, we make B invertible:

We can then use the voltage angles θ to calculate the flow of a specific line Pi,j:

Since both AC and DC power flow come down to solving systems of linear equations, 
they are amenable to be conducted using the HHL algorithm. For quantum AC power 
flow, Feng et al. (2021) have proposed an approach that was later experimentally real-
ized by Sævarsson et al. (2022). In contrast, Eskandarpour et al. (2021) showed that the 
HHL algorithm can be used to perform quantum DC power flow. Their work was later 
expanded with a hybrid approach by Gao et al. (2022).

Smart grid co‑simulation

In a co-simulation, independent simulators are coupled that differ regarding their simu-
lation tool, solver algorithm, or step size (Hafner and Popper 2021). The paradigm allows 
for jointly executing independent simulations to simulate a larger system. It is therefore 
possible to perform the modeling on the subsystem level “without having the coupled 
problem in mind” (Schloegl et al. 2015, p. 516). The coupling of the simulators can either 
be done bilaterally or they can be connected to a central orchestrating framework, yield-
ing orchestrated co-simulation. When a larger number of simulators is involved, this 
simplifies the simulation architecture (Nguyen et al. 2017). The orchestrating framework 
has three main tasks: initializing the simulators, synchronizing them, and facilitating 
data exchange between them (Palensky et  al. 2017). A simulator comprises a simula-
tion model together with a simulation kernel for executing it (Denil et al. 2015). For this 
study, we assume simulators to have the capability of instantiating multiple homogene-
ous entities; for example, a power-plant simulator can handle multiple simulated power 
plants, each connected to a different bus in the grid. The topology of data exchange 
between simulated entities is specified in the simulation scenario.

The emergence of complex cyber-physical systems and systems of systems has brought 
with it an increased research interest in co-simulation. A broad state-of-the art analy-
sis can be found in Hafner and Popper (2021) whereas Gomes et al. (2018) provide an 

(7)Pi =

N
∑

j=1

Bi,jθi,j ,

(8)P = Bθ ⇐⇒ B
−1

P = θ.

(9)Pi,j = Bi,j(θj − θi).
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in-depth technical discussion. The simulation paradigm has proven promising in vari-
ous application domains, among them maritime and automotive engineering as well as 
robotics (Gomes et al. 2017). The most prominent domain for co-simulation seems to 
be power grids. Palensky et al. (2017) provide an extensive primer on co-simulation of 
power systems together with ICT. For an empirical analysis of smart grid co-simulation 
see (Schweiger et al. 2019) and for a literature review see Mihal et al. (2022).

Co-simulation requires synchronizing simulators with varying step sizes and even 
time paradigms, e.g. discrete-event or continuous time. It further requires facilitat-
ing complex, at times asynchronous, data exchange. Therefore, frameworks are usu-
ally used that take care of these difficult tasks and provide interfaces to both connect 
already developed simulators and also define the scenario. A comprehensive overview 
of different frameworks can be found in Vogt et al. (2018). One critical aspect of such 
frameworks is their adherence to the two most important co-simulation standards: First, 
the High-Level Architecture enables the reuse and interoperation of simulations (Dah-
mann 1997). Second, the Functional Mock-Up Interface (FMI) allows for interchange of 
dynamic co-simulation models (Blochwitz et al. 2011).

Research approach
This study aims to demonstrate the technical feasibility of quantum–classical co-simula-
tion and identify potential issues. The integration of quantum DC power flow with smart 
grid co-simulation is the primary area of focus. The evaluation of the integration’s scal-
ability and usability will determine its practical applicability.

Case‑study scenario selection

To conduct the study, an exploratory approach was adopted, which relies on a fictitious 
case-study scenario. The scenario involves a highly simplified load-shedding situation, 
in which a power line in a transmission system is monitored for potential overloads. If 
an overload is detected, the power of a solar farm is throttled and instead provided by a 
different generator. The scenario is implemented on a simple 5-bus test system, details of 
which are provided in the next chapter. The scenario was chosen based on the following 
criteria: 

1	 Small scale: A 5-bus transmission system with a low number of interacting sub-
systems was used. The limited scale makes it easier to find freely available quantum 
hardware that is compatible.

2	 Low complexity: The scenario was simplified to be suitable for a proof-of-concept 
study; domain-specific aspects are of little relevance. For example, time series replay 
was used for the solar generation and aggregate loads.

3	 Suitability of DC approximation: DC simplification is appropriate for frequently 
computed line overload detection in transmission systems.

4	 Sign negligibility: The direction of flow is not important when monitoring overload. 
This is necessary since we have no way of efficiently recovering sign information 
when using HHL.

5	 Bi-directionality: The computed line flow is influenced by the other simulators, and 
vice versa.
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Assessment criteria

The study involves the implementation of the chosen case-study scenario, followed by simu-
lation runs in three main configurations: classical power flow, HHL run on simulated quan-
tum hardware, and HHL run on real quantum hardware. The results obtained from each 
configuration will be compared to evaluate the accuracy and usefulness of quantum–clas-
sical co-simulation for real-world applications. Although the primary motivation for quan-
tum–classical co-simulation is to make smart grid co-simulations faster, the timing analysis 
is not the main criterion at this stage of research. This is because of the overhead introduced 
by cloud-based quantum computing in a small-scale scenario, which vastly outweighs the 
potential advantage of improved scalability. Furthermore, the current implementation does 
not fully realize the logarithmic scalability promised by HHL due to inefficient circuit prep-
aration (HHL caveat 1 in the background section on HHL algorithm). In addition to dis-
cussing timing aspects, the evaluation will also qualitatively assess how well the quantum 
solutions correspond to the classical ones, with an emphasis on feasibility not quantitative 
analysis. The main focus of the study is to use the implementation and simulation runs to 
identify and assess potential issues to determine the utility of the concept for near- to mid-
term applications with real-world grid sizes.

Designing observables for information extraction

A central goal of DC power flow is computing the flow of active power for transmission 
lines based on grid characteristics and nodal injections. This computation is usually done 
via the voltage angles, which are then used to compute line flows. Since (at least) one bus—
in our case Bus 0—serves as a slack bus and is therefore our reference angle with θ0 = 0 , 
our goal is to find the remaining angles

With the HHL algorithm we can approximately prepare a normalized quantum state

In order to use the results of the algorithm in any classical routine, we have to extract 
information from the quantum state via measurement. Specifically, we have to apply an 
operator M (represented by a square matrix) to compute

To retrieve the kth element of |x� (which corresponds to θk ) we can use a diagonal matrix 
with a single 1 at position k:

For example, to retrieve x3 we can perform the computation

(10)θ =
[

θ1 θ2 θ3 θ4
]T

.

(11)|x� =
[

x1 x2 x3 x4
]T

:=
θ

||θ||
.

(12)F(x) = �x|M |x� .

(13)Mi,j =

{

1 if i = j = k
0 otherwise

.
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yielding the square of x3 . Note that the information on the sign is lost. Consequently, we 
cannot distinguish a negative or positive voltage angle in relation to the reference angle 
θ0 . This is a critical issue, since we cannot get an accurate estimate of a line flow if the 
angles of the involved buses differ in sign. Therefore, we use an alternative approach: 
We design the observable in a way that extracts the differences of two coefficients in the 
state vector |x� . Consider how to compute the power flow Pk ,l of the transmission line 
connecting buses k to l:

Therefore, if we are able to compute |xl − xk | we are able to estimate the magnitude of 
the line flow |Pk ,l | . To extract the difference, we define the matrix

If we want to compute the voltage-angle difference between the slack bus and any other 
bus, we end up with a matrix as defined in (13). To illustrate, let us estimate the magni-
tude of the line flow between Bus 2 and Bus 3 which correspond to x2 and x3 ; therefore, 
k = 2 and l = 3 . Computing F(x) yields

which we can take the square root of to receive |x3 − x2| . As in (15) we can multiply by 
B2,3/||θ|| to get the magnitude of the line flow |P2,3| . In contrast to (14), the sign informa-
tion we lose here is that of the differences and not that of the components, which allows 
for a proper estimation of the magnitude of the angle difference and consequently the 
line flow. However, the information on line-flow direction is lost; we are therefore lim-
ited to applications that are not dependent on it.

Tool selection

Selecting appropriate tools is crucial for quantum–classical co-simulation. To support 
quantum computing and co-simulation, tools that can abstract low-level complexities 
and provide high-level programming are necessary. Additionally, the quantum-comput-
ing platform and co-simulation framework must be free and open-source to facilitate 
reproducibility and further research. The quantum-computing tool must provide local 
and cloud-based quantum simulators to enable efficient development and testing. Fur-
thermore, it must allow simulators for both noise-free and noisy hardware, which is 

(14)F(x) = �x|M |x� =
�

x1 x2 x3 x4
�







0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0













x1
x2
x3
x4






= x23,

(15)Pk ,l = Bk ,l(θl − θk) =
Bk ,l

||θ||
(xl − xk).

(16)Mi,j =







1 if (i = j = k) ∨ (i = j = k)
−1 if (i = k ∧ j = l) ∨ (i = l ∧ j = k)
0 otherwise

.

(17)
F(x) = �x|M |x� =

�

x1 x2 x3 x4
�







0 0 0 0
0 1 − 1 0
0 − 1 1 0
0 0 0 0













x1
x2
x3
x4







= x22 − 2x2x3 + x23 = (x3 − x2)
2,
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valuable in the Noisy Intermediate-Scale Quantum (NISQ) era—where noise is a critical 
aspect—to evaluate algorithm performance. Providing free access to real quantum com-
puters is another essential criterion. Furthermore, the tool should offer session-based 
computing job scheduling to avoid queuing for each simulation step, prioritizing sub-
sequent jobs after the initial wait. We chose IBM’s Qiskit platform (2023), specifically 
Qiskit Runtime (Quantum 2023). For the co-simulation framework, in addition to being 
free and open-source, it needs to have an easy-to-use programming interface to con-
nect simulators to the framework, and a programmatic interface to specify simulation 
topology. We have determined the framework Mosaik (originally introduced by Schütte 
et  al. (2011) and Rohjans et  al. (2013)), specifically Version 3.0 (Ofenloch et  al. 2022). 
The framework is designed for large-scale smart grid scenarios and uses the python pro-
gramming language, which makes it particularly suitable for use with Qiskit.

Experiments
Based on the determined research approach, simulation experiments were conducted. 
We describe the details of the case-study scenario and how it was implemented, includ-
ing co-simulation architecture and quantum computing-specific configurations. Then, 
we present the simulation results.

Case‑study scenario

As a basis for our experiments we have chosen a 5-bus test system. Our choice of test-
system size hinges on us being able to execute it on freely available quantum hardware. 
The test system is derived from one used by Sævarsson et al. (2022) in their quantum 
AC power flow experiments; however, we use it in a DC setting. It is depicted in Fig. 4. 
Accounting for the slack bus, the system results in a 4 × 4 modified susceptance matrix:

Just as in Sævarsson et  al. (2022), the admittances are chosen not to correspond to a 
realistic network, but to yield eigenvalues that can accurately be represented using a 
small number of bits. Therefore, any inaccuracies of eigenvalue representation do not 

(18)B′ =







4 − 0.03 0 0
−0.03 3 − 0.02 0

0 − 0.02 1.55 − 0.5
0 0 − 0.5 1.45






.

Fig. 4  5-Bus test system
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influence the simulation results. In real-world applications, accurate eigenvalue repre-
sentation requires careful consideration. However, the accuracy can be improved drasti-
cally by just a few additional qubits (Sævarsson et al. 2022). Here, the eigenvalues of B′ 
are {1, 2, 3, 4}.

In our case-study scenario, a slack generator is connected to Bus 0. It simply matches 
the slack power, be it positive or negative; in this simplified example, it does not have 
limitations such as a maximum output. On Bus 1 is a solar farm with a peak generation 
of 3 MW . It is implemented as a time series that is based on the synthetic load profiles 
for a PV module provided by Austrian Power Settling and Clearing (APSC) (2023) for 
July 1st 2022. The other buses—2, 3, and 4—are aggregate loads with a peak consump-
tion of 0.5 MW , 0.5 MW , and 1.5 MW respectively. As with the solar farm, the loads are 
based on the APSC synthetic load profile of a household for the same day; it is scaled to 
the respective maximum power.

Co‑simulation architecture

For this study, we have chosen the smart grid co-simulation framework Mosaik (Ver-
sion 3.0). It provides two programming interfaces: One is responsible for the interaction 
between the orchestrator and a simulator. The other specifies how a simulation scenario 
can be defined, including instantiating and connecting entities. A central aspect of co-
simulation is the selection of participating simulators and the nature of their information 
exchange. Here, we briefly describe each simulator and Fig. 5 shows their connections. 
Please note that for all but one simulator, there is only one instance. For example, in 
our small-scale case-study scenario, there is only one solar farm even though the solar-
farm simulator is capable of handling multiple instances. In contrast, the aggregate-load 
simulator handles three instances.

The simulators are:

•	 Grid: It contains the grid topology and line admittances, and executes power-flow 
simulation using information on nodal injection. The simulator is capable of quan-
tum power flow computation.

•	 Slack generator: An idealized slack generator that compensates for generation–con-
sumption mismatch.

Fig. 5  Co-simulation architecture: simulators and their information flows
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•	 Solar farm: The simulator outputs a scaled pre-recorded generation profile. The 
simulator has an input for the amount of power shedding.

•	 Aggregate load: Like the solar-farm simulator, this simulator also outputs a scaled-
up, pre-recorded time series, specifically of household consumption.

•	 Slack controller: It aggregates all power generation and consumption to tell the 
slack generator how much load to generate or absorb.

•	 Line monitor: This simulator monitors a transmission line and compares the 
power flow to a predetermined threshold and outputs a power-shedding amount.

•	 Collector: The co-simulation contains a simulator for retrieving all relevant data and 
recording it in a format suitable for analysis. It is an example of a simulator that has 
no equivalent in the real-world system but exists purely for the simulation study.

Quantum configuration

We utilize Qiskit as our quantum-computing platform and the IBM QASM simula-
tor as our simulated quantum hardware. Using simulated hardware reduces queuing 
times and provides a noise-free simulation of a quantum machine. We select the IBM 
Oslo quantum computer, which employs the Falcon r5.11H processor, for our HHL 
implementation since it requires seven qubits to solve the 4 × 4 system of equations. 
In quantum computing, estimating coefficients—α, β in (1)—involves repeatedly pre-
paring a quantum state and measuring its outcome, which yields the underlying coef-
ficients via Born’s rule (2) from the estimated probability. The number of iterations 
or shots performed impacts the accuracy of the estimation, but also affects compu-
tational expense. For our experiments, we use 105 shots, but the optimal number of 
shots is case-dependent and must be evaluated accordingly.

Implementation

The implementation of the HHL algorithm is derived from the one used in Sævarsson 
et al. (2022). However, we employ Qiskit Runtime primitives, i.e. elementary subrou-
tines. Specifically, we use the Estimator primitive where an operator M is applied to a 
repeatedly prepared quantum state to estimate the expected value. The operator defi-
nition is described in Designing observables for information extraction.

One significant benefit of Qiskit Runtime is session-based scheduling, which avoids 
the need to queue each time for every simulation step. In a co-simulation scenario, for 
each time step, a new computing job is created, which is then submitted to the hard-
ware in the cloud. Queuing for each simulation step would be completely unworkable, 
and Qiskit Runtime enables starting a session for the entire co-simulation, prioritiz-
ing each job once the session has started. This control sequence is illustrated in Fig. 6. 
The orchestrator initializes the simulator which in turn queues on the quantum-com-
puting platform to create a new session, then the actual co-simulation may start. For 
each of the simulator’s time steps, a computing job is submitted to the session with 
prioritized access to the quantum resources. Only after the entire simulation run is 
ended, the session is closed.
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Simulation results

Multiple simulation experiments were conducted to allow for a comparison between dif-
ferent ways of computing power flow: classical solution, simulated quantum computer, 
and real quantum hardware. The focal point of this comparison was the load-shedding 
behavior of our case-study scenario, determining whether quantum computing could be 
a valuable substitute for classical computation.

In Fig. 7, we have the power flow on the monitored line on top, and the power-shed-
ding amount on the bottom. In both diagrams, one can see the classical solution and the 
two quantum solutions, one with simulated and one with real hardware. For the power 
flow, we also include a baseline reference that shows the power flow in the observed line 
without having load-shedding measures that curtail overload. One can observe that the 
noise-free quantum simulator corresponds closely to the classical result. However, the 
flow computed with real quantum hardware deviates so drastically from the actual solu-
tion as to be unusable in practice. The severe effects from noise become more apparent 
when looking at the output distribution of measuring the state of an exemplary HHL 
circuit: Fig.  8 illustrates estimated probability distributions, which correspond to the 
squares of the coefficients, and thus the normalized solution vector—see Borne rule (2). 
Whereas the noise-free quantum simulator yields clearly distinguishable values, both the 
noisy quantum simulator and the real quantum hardware result almost in uniform dis-
tributions. This is to be expected when dealing purely with noise. It is highly likely, that 
the large circuit depth of 2620 leads to an overwhelming accumulation of noise and an 
execution time that well exceeds the coherence time of the quantum computer.

Finally, we should address the timing aspects. The central motivating factor for quan-
tum–classical co-simulation is accelerating large-scale smart grid co-simulations. 
However, for this early feasibility study, we do not focus on timing improvement. The 
simulation experiments have shown that both runs using simulated and real quantum 
hardware take orders of magnitude longer than the classical solution. Even with a per-
fect quantum implementation that preserves the potential logarithmic scalability of the 
HHL algorithm, we would expect the overhead introduced by the quantum solution to 

Fig. 6  Control sequence
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far outweigh the scalability advantages at a small scale. Future research should address 
these issues in an in-depth quantitative way.

Discussion of obstacles
Our experiments have exposed four major obstacles related to quantum–classical co-
simulation and quantum power flow for smart grid co-simulation. In this chapter, we 
describe each of the obstacles and their impact, and discuss how they can be addressed. 
This is summarized in Fig. 9.

Queuing time

Processing time on real quantum hardware is a high-demand, limited resource. A low 
number of quantum computers is accessed by numerous users via the cloud. Except 
for specialized scenarios, this paradigm will likely remain for the near- to mid-term 
future. As a result, scheduling and prioritizing computing jobs is a constant challenge. 
For co-simulations, submitting a single large computing job is not possible since there 
are constant interactions between the simulators. Instead, each time step creates a new 
computing job, making queuing for each job impractical.

In our study, we have found a simple, easy-to-implement way to deal with this issue: 
Using session-based scheduling, we queue only once to start the session and then submit 

Fig. 7  Simulation results
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computing jobs to it. This way, the jobs get prioritized, which minimizes wait time for 
all jobs but the first. The session is started when instantiating the simulator and is ended 
once it is destroyed; this sequence is illustrated in Fig. 6. Qiskit Runtime has proven to 
be an effective facilitator for this scheduling paradigm.

Distributed‑computing challenges

In the context of quantum computing, cloud-based access is common. Integrat-
ing a quantum computing-based simulator in a co-simulation results in distributed 
simulation, where the execution of a simulation is distributed across multiple proces-
sors (Fujimoto 1999); specifically, we are dealing with distributed co-simulation. As 

Fig. 8  Comparison of estimated probabilities

Fig. 9  Overview of obstacles and ways to address them
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communication relies on the internet, high-speed, low-latency connections, such as 
InfiniBand, are not viable (Mirz et al. 2018). Therefore, significant overhead and latency 
are introduced, which can either occur within a simulator (e.g. when only the quantum 
processing is done on the cloud) or between the orchestrator and a purely cloud-run 
simulator.

To mitigate these issues, one strategy is to restrict the application of cloud-based 
resources to simulators with infrequent interaction, where the data and time overhead 
is less critical than for simulators with high-frequency communication. Palensky et al. 
(2017) suggest running closely coupled simulators on the same machine. Another way to 
address the problem is through geographical proximity. According to Mirz et al. (2018), 
geographical distance is the main factor contributing to round-trip time, indicating 
that it is preferable to have quantum resources located as close as possible. In an ideal 
scenario, a local or even an on-site quantum computer laboratory is available for some 
industrial or academic applications.

Efficient information extraction

Our quantum algorithm for solving power flow, the HHL algorithm, promises loga-
rithmic scalability, in principle. However, there are various limitations and caveats that 
threaten this advantage. Importantly, we cannot retrieve all components of the solution 
vector, since that would require a linear number of steps. Therefore, we need an efficient 
means of extracting the necessary information from the quantum state that does not 
diminish the algorithms scalability. Furthermore, when measuring the quantum state, 
we lose sign information, meaning we cannot distinguish positive and negative coeffi-
cients; this requires further consideration on how to compute the required quantities.

The main way to deal with this issue is to only extract a subset of information from the 
prepared state. If the subset’s size scales at most logarithmically with system size, we can 
theoretically maintain the exponential speed-up of HHL. With power-flow analysis, for 
example, often only the power flow in a few lines is of interest. Efficiently extracting the 
line flow requires designing suitable observables that can be implemented in a quantum 
circuit (for more details, see Designing observables for information extraction). In our 
case study, we are only interested in the magnitude of the line flow, not having its direc-
tion is therefore irrelevant. For other applications, this issue could potentially be a deci-
sive factor.

Hardware limitations

We are currently in the era of NISQ hardware; therefore, we have to deal with noise and 
decoherence impeding computation. The impact of these limitations is evident for the 
HHL algorithm; it results in excessively large circuits whose size scales poorly for larger 
systems. The coherence time of quantum hardware may be much too short to reliably 
execute a full circuit, and the noise accumulates over many gates in a large-depth circuit. 
In our experiments, the effects of noise and decoherence make the results basically unus-
able, resulting in output distributions (Fig.  8) barely distinguishable from pure noise. 
Currently, quantum error correction and mitigation techniques are not nearly advanced 
enough to compensate for this. Although the number of qubits has been touted as an 
indicator for the improvement of quantum computers, for quantum power flow with 
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HHL, it is not a major issue. The number of required qubits rises only logarithmically; 
therefore, computing large-scale systems potentially only requires a few qubits. How-
ever, error mitigation and correction may require additional qubits, increasing the need 
for quantum hardware with a large qubit count. Additionally, the lack of QRAM poses 
a challenge for efficiently preparing the input vector; it is also a likely prerequisite for an 
efficient HHL-based implementation of quantum AC power flow (Golestan et al. 2023).

Even though hardware development is progressing at a rapid pace (Brooks 2023), use-
ful quantum power flow—in the context of quantum–classical co-simulation or not—is 
unlikely in the near-term future. Therefore, a degree of patience is required until we have 
large-scale fault-tolerant quantum computing and new technologies like QRAM. Until 
then, we can focus on quantum approaches that are more suitable for NISQ hardware, 
such as variational algorithms (e.g. Variational Quantum Eigensolver) and quantum 
annealing. Alternatively, Bertels et al. (2021) suggest assuming perfect noise-free qubits 
for algorithm and application development, to have them ready once the hardware is 
sufficiently advanced.

Conclusion
Co-simulation is a powerful paradigm to address smart grid simulation challenges, but 
large-scale scenarios suffer from performance issues. Quantum–classical co-simulation 
can alleviate these issues by using quantum computing to run constituent simulators. 
Although the approach was previously postulated, a proof-of-concept study was missing. 
This study demonstrates the technical feasibility and identifies potential issues, using a 
case study–based approach focused on integrating quantum DC power flow with smart 
grid co-simulation. Four major obstacles are uncovered, varying in relation to quan-
tum–classical co-simulation, HHL-based quantum power flow, and quantum computing 
generally: queuing delays, distributed-computing challenges, the need for efficient infor-
mation extraction, and hardware limitations.

The key findings from our proof-of-concept experiments are:

•	 It is feasible to integrate a quantum computing–based simulator with smart grid co-
simulation using commonly available software tools with moderate integration effort.

•	 Session-based scheduling is critical for quantum–classical co-simulation to avoid 
significant performance penalties; there are tools that enable this.

•	 All distributed, network-based co-simulation challenges are inherent to quantum–
classical co-simulation and must be addressed.

•	 The HHL-based quantum DC power flow works in principle and may be applicable 
in some co-simulation scenarios given sufficient hardware advancement.

•	 Efficient solution extraction of a subset of the HHL solution is achievable by design-
ing appropriate observables without compromising scalability.

•	 HHL faces significant issues on NISQ hardware and may require large-scale fault-
tolerant quantum computing for practical use.

In conclusion, our study demonstrates the technical feasibility of quantum–classical co-
simulation for smart grid applications, and identified several key challenges that need to 
be addressed. While the practical realization of quantum power flow on NISQ hardware 
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appears unlikely in the near to mid-term, the potential for using quantum computing 
to address optimization problems in smart grid co-simulation is promising. In particu-
lar, variational algorithms and quantum annealing show promise for improving the scal-
ability and efficiency of smart grid co-simulation. We anticipate that further research at 
the intersection of quantum computing, co-simulation, and power-systems engineering 
will open up new opportunities for solving complex problems in large-scale smart grid 
systems.
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