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Abstract 

As power systems transition from controllable fossil fuel plants to variable renewable 
sources, managing power supply and demand fluctuations becomes increasingly 
important. Novel approaches are required to balance these fluctuations. The problem 
of determining the optimal deployment of flexibility options, considering factors such 
as timing and location, shares similarities with scheduling problems encountered 
in computer networks. In both cases, the objective is to coordinate various distributed 
units and manage the flow of either data or power. Among the methods for schedul-
ing and resource allocation in computer networks, stochastic network calculus (SNC) 
is a promising approach that estimates worst-case guarantees for Quality of Service 
(QoS) indicators of computer networks, such as delay and backlog. Promising QoS 
indicators in the power system are given by the amount of stored energy, the serviced 
demand, and the demand elasticity. In this work, we investigate SNC for its capabili-
ties and limitations to quantify flexibility service guarantees in power systems. We 
generate and aggregate stochastic envelopes for random processes, which was found 
useful for modeling flexibility in power systems at multiple time scales. In a case study 
on the reliability of a solar-powered car charging station, we obtain similar results 
as from a mixed-integer linear programming problem, which provides confidence 
that the chosen SNC approach is suitable for modeling power system flexibility.

Keywords: Power system flexibility, Stochastic network calculus, Quality of Service 
indicators, Network engineering, Flexibility service guarantees

Introduction
The continuous availability of electricity is crucial for modern societies, making 
power systems highly demanding in terms of reliability and supply (Jiang et al. 2016). 
With the increasing integration of variable renewable energy sources (vRES) and the 
need to reduce greenhouse gas emissions, guaranteeing the end-users energy demand 
to be covered at all times and locations becomes more and more challenging. This 
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necessitates the development of novel approaches to capture the evolving dynamics 
of power systems and quantify their flexibility.

The literature shows a growing interest in identifying generic indicators to describe 
power system flexibility (Papaefthymiou et al. 2018; Bhuiyan et al. 2022), which then 
can be used to evaluate the system’s ability to provide power to end-users reliably. 
This concept is closely related to Quality of Service (QoS) indicators in computer net-
working, which describe measures for the overall performance of a service provided 
to network end-users, including factors such as delay and data backlog. Moreover, the 
future energy system and computer networks face the same challenge of sharing mul-
tiple distributed resources among nodes while adhering to constraints such as limited 
transmission or storage capacity without violating their QoS.

Unlike in power systems, methods to estimate worst-case guarantees for the QoS 
indicators are well known in computer networking. In particular, the mathematical 
framework of stochastic network calculus (SNC) emerges as a promising modeling 
tool. SNC bears the great advantage of directly estimating worst-case guarantees 
for the QoS indicators of computer networks through probabilistic envelopes in the 
interval domain (Ciucu and Schmitt 2012; Jiang and Liu 2008; Fidler and Rizk 2014). 
Its envelope-based modeling approach is well-suited for analyzing power systems 
with a high share of vRES generation (Jiang et al. 2016; Wang et al. 2012), as it can 
handle a wide range of stochastic processes.

This work investigates the capabilities and limitations of SNC to quantify guaran-
tees for the flexibility of a power system using a set of generic QoS indicators. The 
generic QoS indicators used within this work are the amount of stored energy in the 
ESS, the serviced demand, and the demand elasticity, e.g., the time the demand can 
be delayed. Extending the work of Wang et  al. (2012), Raeis et  al. (2017), Ghiassi-
Farrokhfal et  al. (2014), SNC is used to derive worst-case guarantees for the afore-
mentioned QoS indicators. The obtained flexibility service guarantees describe the 
minimum available flexibility potential of the power system, as well as its maximum 
flexibility potential required to meet a certain QoS level under a worst-case assump-
tion. These guarantees are referred to as: (i) guaranteed state of charge probability 
(GSCP), (ii) guaranteed power service probability (GPSP), and (iii) guaranteed tem-
poral service probability (GTSP).

The contributions of this work are threefold: 

1. It extends the work of how scheduling concepts from computer networking, particu-
larly SNC, can be applied to power system modeling to the dimension of flexibility 
analysis. The focus is on the capabilities and limitations of quantifying power system 
flexibility using stochastic envelopes in the interval domain.

2. It provides a method for quantifying guarantees for power system flexibility using 
computer networking concepts. Therefore generic QoS indicators for the available 
flexibility potential and the flexibility requirements of the power system are used.

3. It validates the flexibility service guarantees by comparing it with results obtained 
from a mixed-integer linear programming (MILP) problem for a case study on the 
reliability of a solar-powered car charging station. The analytic flexibility service 
guarantees obtained from SNC align well with the MILP results.
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The remainder of this paper is organized as follows: section Related work reviews the rel-
evant literature; section Methodology: SNC concepts for flexibility modeling  introduces 
SNC concepts and their applicability for modeling power system flexibility; section Case 
study: reliability of solar-powered car charging presents a case study on the feasibility 
of hundred percent renewable workplace car charging at a small research institute; and 
section Discussion highlights the capabilities and limitations of SNC concepts to quan-
tify flexibility service guarantees for power systems. Finally, the work is summarized, and 
future research directions are suggested in section Conclusion.

Related work
The following presents related work on the general concepts of SNC and its application 
in power system modeling.

Network Calculus concepts

Network Calculus (NC) is a theory for service guarantee analysis in computer networks. 
It uses an alternate algebra, the (min,+)-algebra, and a unique envelope concept to 
derive worst-case performance bounds on specific QoS indicators, such as backlog and 
delay. In order to provide such an analysis, a model of both the flows and the network is 
required. Modeling the data flows and the service within the framework is done by using 
cumulative envelope functions from the set of non-negative, non-decreasing functions 
F = {f (·) : ∀0 ≤ a ≤ b, 0 ≤ f (a) ≤ f (b)} , the so-called arrival and service curves. They 
follow the convention of f (x) = 0 ∀x < 0.

Arrival curves αA(x) describe an upper envelope on the incoming traffic to a system in 
any interval of time, while service curves βS(x) describe a lower envelope on the system’s 
service. From these envelopes, worst-case bounds on the backlog, e.g., the amount of 
data held inside the system and the delay the incoming data experiences, can be ana-
lytically calculated. This calculation is usually done by computing the maximum vertical 
and horizontal deviations between the arrival and the service curves (Ciucu and Schmitt 
2012; Le Boudec and Thiran 2001). By exploiting the properties of the (min,+)-algebra, 
where addition becomes the calculation of the infimum and multiplication becomes an 
addition (Le Boudec and Thiran 2001), complex non-linear computer networks can be 
transformed into analytically tractable linear systems.

SNC extends the envelope concept of NC by additionally introducing so-called bound-
ing functions ǫA and ǫS , which allow the arrival and service curves to be violated with a 
certain probability P (Ciucu and Schmitt 2012). The bounding functions are defined on 
the set of non-negative, non-increasing functions F̄ = f (·) : ∀0 ≤ a ≤ b, 0 ≤ f (b) ≤ f (a) 
with the convention of f (x) = 1 ∀x < 0 . The most widely used envelope model of SNC 
is called statistical sample path envelope and is defined as follows (Jiang and Liu 2008).

Definition 1 [Sample-Path-Envelope] A flow Q has a stochastic upper envelope 
αQ ∈ F  with bounding function ǫuQ ∈ F̄  , denoted by Q ∼ �ǫuQ,αQ� , if for all 0 ≤ s ≤ t and 
all x ≥ 0:

(1)P sup
0≤s≤t

{([Q(t)− Q(s)] − αQ(t − s)} > x ≤ ǫuQ(x)
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and it has a stochastic lower envelope βQ ∈ F  with bounding function ǫlQ ∈ F̄  , denoted 
by Q ∼ �ǫlQ,βQ� , if for all 0 ≤ s ≤ t and all x ≥ 0 there holds:

The strength of the envelope concept is that already a combination of simple functions 
adequately characterizes a large class of stochastic processes sufficiently well (Fidler 
and Rizk 2014). One example is the combination of a constant rate sample path enve-
lope A(t) = r · t and an exponential decaying bounding function ǫ(x) = p · exp{−κ · x} , 
in literature generally referred to as the Exponentially Bounded Burstiness EBB model 
(Mao and Panwar 2006). A full description of NC and SNC, its mathematical deriva-
tions, and further applications in the field of computer networking are given by Ciucu 
and Schmitt (2012), Jiang and Liu (2008), Le Boudec and Thiran (2001).

Network Calculus in power system modeling

In the first application of NC in power system modeling, Le Boudec and Tomozei (2012) 
identify strict operation boundaries and the optimal storage size for a battery storage 
system of an electricity consumer. The objective of the electricity consumer is to satisfy 
a non-elastic load subject to an external time-varying upper bound on the instantaneous 
energy consumption.

Wang et al. (2012) use SNC to analyze the impact of the power system’s composition 
on the storage requirements and reliability. They thereby extend the concepts of SNC to 
power systems by treating them as a simplified queuing problem. For their analysis, the 
two very specific QoS metrics of the power system, i.e., average Fraction of Time that 
energy is Not Served (FTNS) and Waste of Power Supply due to improper storage capac-
ity (WPS), are used.

Inspired by these results, Singla et al. (2014) use SNC to optimize the size of a hybrid 
power system consisting of an energy storage system (ESS) and a diesel backup genera-
tor in an unreliable grid to obtain a target carbon footprint.

In the three publications above, the ESS is assumed to have perfect efficiency and only 
long-term variations of the power supply curves are considered. Ghiassi-Farrokhfal et al. 
(2014a, 2014b) extend the concepts of a stochastic power network calculus (Wang et al. 
2012) further by including non-ideal ESS behavior and stochastic process variations on 
multiple different timescales.

Similar to the worst-case QoS guarantees of NC, operational flexibility can be inter-
preted as a way to guarantee a desired service, given the expected demand and the tech-
nical specification of the energy resources. This analogy gets particularly clear from the 
work of Weidlich and Zaidi (2019) and Nuytten et  al. (2013). In their energy corridor 
model, possible delays in the operation of electricity-coupled heat generators, such as 
heat pumps or combined heat and power plants, are estimated based on the system’s 
maximum and minimum operation modes. This method is similar to the concepts of NC 
to model the minimum delays in computer networks through their respective upper and 
lower envelopes (Ciucu and Schmitt 2012) as highlighted in Fig. 1.

Since SNC has already been successfully used for modeling power systems (Wang 
et  al. 2012; Ghiassi-Farrokhfal et  al. 2014a; Le  Boudec and Tomozei 2012), is 

(2)P

{

sup
0≤s≤t

{βQ(t − s)− [Q(t)− Q(s)]} > x

}

≤ ǫlQ(x)
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intrinsically interdisciplinary (Jiang et al. 2016) and shows great similarity to models 
of operational flexibility (Weidlich and Zaidi 2019; Nuytten et al. 2013), its envelope-
based modeling approach is used to develop a generic method to quantify guarantees 
for the flexibility of a power system in the following section.

Methodology: SNC concepts for flexibility modeling
In Formulation and notation, fundamental notation is introduced. Then, in Probabil-
istic power queuing model, the underlying concepts to model the power system as a 
probabilistic queuing model and the resulting QoS indicators are presented. Subse-
quently, in Quality of service guarantees, explicit definitions for the worst-case guar-
antees for power system flexibility calculated from the QoS indicators are derived. 
Finally, the general approach to model probabilistic bounds on generic QoS indicators 
in power queuing systems is provided in Modeling methodology.

Formulation and notation

The fundamental mathematical notation used in this work to describe the concepts of 
SNC is summarized from the following publications (Ciucu and Schmitt 2012; Jiang 
and Liu 2008; Le Boudec and Thiran 2001). In this context, two important functions 
of the sets F and F̄  are introduced. These functions are the cumulative distribution 
function (CDF) and the cumulative complementary distribution function (CCDF) of a 
random variable X denoted by FX (x) = P{X ≤ x} and F̄X (x) = P{X > x}.

Furthermore, for two arbitrary functions f and g the notations [f , g]+ = max{ f , g , 0} 
is used.

The (min,+)-convolution, which is characteristic for NC and uses the convention of 
f ⊗ g(0) = 0 , is described by the operator ⊗ in the following way:

Fig. 1 Representation of the analogy of computing minimum delays in computer networks and the possible 
delays in the operation of an energy device, based on figures from Le Boudec and Thiran (2001); Weidlich and 
Zaidi (2019)
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Definition 2 [(min,+)-convolution]

For any random variables X and Y, with CCDF FX (x) and FY (x) and FX (x) ≤ ǫX (x) and 
FY (x) ≤ ǫY (x) , it is found to hold, whether they are independent or not (Jiang and Liu 
2008):

In case a function f is sub-additive (Van  Bemten and Kellerer 2016), which is true if 
f (x + y) ≤ f (x)+ f (y) for all x and y, it is found to hold that f ⊗ f = f  . It is further 
remarked that although a discrete-time model is adopted, inf{·} and sup{·} instead of 
min{·} and max{·} operators are used throughout this work.

Probabilistic power queuing model

In its simplest form, a power grid can be described as a single network node with proba-
bilistic energy demand covered by a controllable or variable energy supply. Excess energy 
generated is fed into an ESS until fully charged and is discharged whenever there is 
insufficient energy supply from the source to cover the demand. The energy supplied 
when the storage is at maximum capacity is said to be curtailed, and energy demand is 
considered lost when the storage is empty. The flexibility of such a system is its ability to 
balance a certain energy demand by the additional energy stored in the ESS.

The same system can be described in the computer network analogy by a probabilis-
tic queuing model in which the cumulative energy supply ES(t) (in MWh) describes the 
service process and the cumulative energy demand EA(t) (in MWh) the arrival process 
of the queue (Ardakanian et al. 2012). Time T is chosen to be discrete with hourly time 
steps t. Both energy processes are modeled using a standard SNC Sample-Path-Enve-
lope model following the convention of EA(0) = ES(0) = 0 , EA(s, t) = EA(t)− EA(s) and 
ES(s, t) = ES(t)− ES(s) for any 0 ≤ s ≤ t:

Definition 3 [Stochastic Energy Process] Both an energy demand process EA(t) and an 
energy supply process ES(t) are said to have stochastic upper demand αA ∈ F  and sup-
ply curve αS ∈ F  with bounding function ǫuA or ǫuS ∈ F̄  , denoted by EA ∼ �ǫuA,αA� and 
ES ∼ �ǫuS ,αS� , if for all 0 ≤ s ≤ t and all x ≥ 0 there holds:

and they are said to have stochastic lower demand βA ∈ F  and supply curve βS ∈ F  with 
bounding function ǫlA or ǫlS ∈ F̄  , denoted by EA ∼ �ǫlA,βA� and ES ∼ �ǫlS ,βS� , if for all 
0 ≤ s ≤ t and all x ≥ 0 there holds:

(3)f ⊗ g(x) := inf
y∈[0,x]

{

f (y)+ g(x − y)

}

(4)P
{

X + Y > x
}

≤ FX ⊗ FY (x) ≤ ǫX ⊗ ǫY (x)

(5)P

{

sup
0≤s≤t

{(Ei(s, t)− αi(t − s)} > x

}

≤ ǫui (x), with i ∈ {A, S}

(6)P

{

sup
0≤s≤t

{βi(t − s)− Ei(s, t)} > x

}

≤ ǫli (x), with i ∈ {A, S}
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The available charging capacity of the ESS then corresponds to the backlog, i.e., the 
amount of arrivals that could additionally be served, while the capacity CESS of the 
ESS reflects the buffer size in a conventional queuing system. Both are measured in 
Watt hours (Wh). Furthermore, the generation curtailment describes a buffer under-
flow event, while unserved demand describes the buffer overflow process in this 
analogy (Ardakanian et al. 2012). In the scope of this work, such a queuing system is 
referred to as a power queuing system. Buffer overflow and buffer underflow events 
are qualitatively illustrated in Fig. 2. It has to be noted that the power queuing system 
in this work is conceptually different from a conventional queuing system from com-
puter networking due to its strict QoS constraint.

Definition 4 [Quality of Service of Power Systems] The Quality of Service (QoS) of a 
power system defines the requirement that the energy demand of end-users is covered at 
all locations within a user-specific time interval. This time interval is for most end-users 
instantaneously. In case the coverage cannot be guaranteed, the power system is said to 
fail its QoS constraint.

This strict QoS constraint means that the departure process of the power queu-
ing system, i.e., the amount of serviced demand, needs to be defined differently from 
a conventional queuing system. There is no physical interpretation of backlogged 
energy demand EA(t) , as it is either irrecoverably shed or repeatedly shifted until 
served or shed due to insufficient demand elasticity. This fact requires explicitly con-
sidering losses in the power queuing system, e.g., the unserved demand or the gen-
eration curtailment, to adequately describe its departure process. Since the departure 
process itself is unknown, and the service characterization of the power queuing sys-
tem alone cannot be linked to its arrival process (Wang et al. 2012), SNC is found to 
be not directly applicable for the QoS analysis of power systems. However, once a 
departure process is defined that accurately incorporates the QoS constraints of the 

Fig. 2 Representation of a buffer overflow and a buffer underflow event, its meaning, and related 
terminology in the power queuing system.
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power system, the concepts of SNC can be employed to determine guarantees for 
power system flexibility from a generic set of QoS indicators.

Starting from the assumption of an initially fully charged ESS with capacity CESS , 
the amount of stored energy in the ESS at time t is derived from its standard charging 
and discharging equations. It can be interpreted as an indicator of the available flex-
ibility potential of the power queuing system at time t. The following non-recursive 
identity for eESS(t,CESS) holds, where the actual storage capacity at time t is repre-
sented by the process C(t) = CESS ∀t > 0 and C(t) = 0 for t = 0 (Wang et al. 2012):

The unserved demand process then characterizes the residual power demand that 
cannot be met from the ESS at time t. It is considered as lost within the power queu-
ing system (Ghiassi-Farrokhfal et  al. 2014a). In terms of a conventional power sys-
tem, the unserved demand describes the load shedding occurring in a power system 
at time t. The following, non-recursive identity for EL(t,CESS) is found (Wang et  al. 
2012):

From the perspective of power system flexibility, EL(t,CESS) describes the energetic 
flexibility requirements a power system needs to guarantee its QoS. Comparing this 
finding with the definitions of the backlog and the departure process in SNC (Jiang and 
Liu 2008), the departure process of the power queuing system is defined as follows:

Definition 5 (Departure Process of the Power Queuing System) The departure process 
ED(t,CESS) of a power queuing system with an ESS of capacity CESS describes its actual 
serviced demand at any point in time t. It is therefore defined as the difference of the 
desired departure process, given by the arriving energy demand EA(t) , and the unserved 
energy demand EL(t,CESS) at each point in time t.

It can be noted that Definition 5 accounts for the loss dynamics of the power system in 
a similar way as the definition of the departure process in SNC for the backlog in com-
puter networks (Jiang and Liu 2008). From this, the additional degree of freedom given 
by the elasticity of the end-users energy demand in the Definition of the Quality of Ser-
vice of Power Systems is defined as follows:

The demand elasticity ET (t,CESS) , i.e., the ability to flexible shift the demand up to 
a certain temporal demand deadline, quantifies the time τ it takes for the power queu-
ing system until the (desired) requested energy demand EA(t) is ultimately served. 

(7)
eESS(t,CESS) = sup

0≤u≤t

(

inf
u≤s≤t

(

ES(s, t)− EA(s, t)+ CESS ,

ES(u, t)− EA(u, t)+ CESS − C(u)
)

)

(8)
EL(t,CESS) = inf

0≤u≤t−1

(

sup
u≤s≤t−1

(

[EA(s, t)− ES(s, t)− CESS ,

EA(u, t)− ES(u, t)+ C(u)− CESS]+
)

)

(9)ED(t,CESS) = EA(t)− EL(t,CESS)

(10)ET (t,CESS) = inf{τ : EA(t) ≤ ED(t + τ ,CESS)}
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It describes an indicator of the temporal flexibility requirements of a power system to 
guarantee its QoS.

Due to directly accounting for the loss dynamics of the power system, the QoS indica-
tors of the power queuing system should be given by the corresponding processes of 
the QoS indicators of a conventional queuing system. Making use of the general duality 
principle of queuing systems given by Lemma 3.2 in Raeis et al. (2017), the QoS indica-
tors for the power queuing system are then given by the amount of stored energy in the 
ESS, the serviced demand and the demand elasticity.

In the following, generic guarantees for the flexibility of power systems under a certain 
violation probability of its QoS constraints are developed by applying the concepts of 
SNC to the QoS indicators eESS(t,CESS) , EL(t,CESS) and ET (t,CESS).

Quality of service guarantees

Similar to the operational boundaries in Weidlich and Zaidi (2019), Definition 3 defines 
upper and lower envelopes for the energy demand EA(t) and energy supply ES(t) pro-
cess from section Probabilistic power queuing model. Applying these envelopes to Eqs. 
(7),  (9), and  (10) allows to derive specific flexibility service guarantees for the power 
queuing system used in this work. These guarantees are derived under a worst-case 
condition, e.g., maximum possible power demand αA and lowest possible power sup-
ply βS . They are in the following defined as the guaranteed state of charge probability 
(GSCP), guaranteed power service probability (GPSP), and guaranteed temporal ser-
vice probability (GTSP). Due to page limitations, the mathematical proof is given in the 
supplementary information at the following Zenodo archive: http:// dx. doi. org/ 10. 5281/ 
zenodo. 81027 89. The definitions are general in that no statistical independence assump-
tion is required between energy demand and supply processes.

Guaranteed state of charge probability

Definition 6 [Guaranteed state of charge probability (GSCP)] For a stochastic 
power queuing system, with a probabilistic upper bounded power demand process 
EA ∼ �ǫuA,αA� and probabilistic lower bounded power supply process ES ∼ �ǫlS ,βS� , 
then for all (t ∈ T : t ≥ 0) and all γ ≥ 0 , given a maximum capacity CESS of the ESS, the 
amount of stored eESS(t,CESS) in the ESS is bounded by:

The GSCP describes the probability that the amount of stored energy in the ESS exceeds 
a certain amount of energy γ within the time interval T. Thereby, αA(s) and βS(s) are the 
respective upper and lower envelopes of the energy demand and supply process. The 
GSCP is then derived as the (min,+)-convolution of the corresponding bounding func-
tions ǫuA ⊗ ǫlS(·) using SNC. Regarding power system flexibility, the GSCP describes the 
guarantee to have at least the amount of energy γ as additional flexibility potential within 
the power system. A sketch of the mathematical proof is given in the following:

(11)
GSCP(t,CESS) = P{eESS(t,CESS) ≥ γ }

≥ 1− ǫuA ⊗ ǫlS
(

CESS − γ − sup
0≤s≤t

{αA(s)− βS(s)}
)

http://dx.doi.org/10.5281/zenodo.8102789
http://dx.doi.org/10.5281/zenodo.8102789
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Proof Fix t > 0 , then from Eqs. (7) and  (11) it is shown that: P{eESS(t,CESS) ≥ γ } =

P{ inf
0≤u≤t

( sup
u≤s≤t

(EA(s, t)− ES(s, t),EA(u, t)− ES(u, t)+ C(u))) > CESS − γ } , with its right 

hand side bounded by sup
0≤s≤t

(ES(s, t)− EA(s, t)) ≤ sup
0≤s≤t

(EA(s, t)− αA(t − s))+ sup
0≤s≤t

(βS(t − s)− ES(s, t))+ sup
0≤s≤t

(αA(s)− βS(s)).

By using the Definition of the Stochastic Energy Process for ES(t) and EA(t) , the rest of 
the proof then follows from using Eq. (4) and the properties of the (min, +)-convolution. 
The random processes ES(t) and EA(t) are not necessarily independent. The full proof is 
provided in the supplementary information published at the following Zenodo archive: 
http:// dx. doi. org/ 10. 5281/ zenodo. 81027 89. 

Guaranteed power service probability

Definition 7 [Guaranteed power service probability (GPSP)] For a stochastic 
power queuing system, with a probabilistic upper bounded power demand process 
EA ∼ �ǫuA,αA� and a probabilistic lower bounded power supply process ES ∼ �ǫlS ,βS� , the 
unserved demand EL(t,CESS) is bounded by:

The GPSP describes the probability that the unserved demand within a time interval T 
does not exceed a certain amount of energy � . It is understood as the required energetic 
flexibility potential to fulfill a certain QoS guarantee, such as no demand being allowed 
to be dropped. In the case of power systems, the threshold value � in Eq. (12) is set to 
zero to meet its unique QoS constraints given in the Definition of the Quality of Ser-
vice of Power Systems. � then describes any event in which the energy demand of end-
users is covered, and no load shedding is needed. It is therefore referred to as the load 
shedding threshold, as it sets the energy that constitutes the demand-supply imbalance, 
above which a QoS violation is said to occur.

Guaranteed temporal service probability

Definition 8 [Guaranteed temporal service probability (GTSP)] For a stochastic 
power queuing system, with a probabilistic upper bounded power demand process 
EA ∼ �ǫuA,αA� and a probabilistic lower bounded power supply process ES ∼ �ǫlS ,βS� , the 
demand elasticity ET (t,CESS) is bounded by:

The GTSP describes the probability that the demand elasticity ET (t) within a time inter-
val T is shorter than a certain amount of time τ . It is understood as the required tem-
poral flexibility potential to fulfill a certain QoS guarantee, such as each demand being 
served within two hours. In the case of power systems, the threshold value τ in Eq. (13) 

�

(12)
GPSP(t,CESS) = P{EL(t,CESS) ≤ �}

≥ 1− ǫuA ⊗ ǫlS
(

�+ CESS − sup
0≤s≤t

{αA(s)− βS(s)}
)

(13)
GTSP(t,CESS) = P{ET (t,CESS) ≤ τ }

≥ 1− ǫuA ⊗ ǫlS
(

C − sup
0≤s≤t

{αS(s)− βS(s + τ )}
)

http://dx.doi.org/10.5281/zenodo.8102789
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reflects the user-specific time interval to cover its demand as indicated in the Defini-
tion of the Quality of Service of Power Systems. τ is therefore referred to as the demand 
elasticity and sets the time for the demand-supply balance, after which a QoS violation is 
said to occur.

It is interesting to notice that for an instantaneous demand-supply balance, e.g., no 
demand elasticity τ = 0 and no load shedding γ = 0 , Eq. (13) and Eq. (12) are the same. 
From this, the GTSP is identified to be also an indicator of the duration of demand-sup-
ply imbalance in power systems, while the GPSP accounts for its frequency. The follow-
ing sections present a generic modeling method to calculate the probabilistic envelopes 
from section Probabilistic power queuing model and the guarantees for power system 
flexibility presented in section of Quality of service guarantees.

Modeling methodology

In this work, the energy demand EA(t) and the energy supply ES(t) are modeled as given 
in Definition Stochastic Energy Process using a standard SNC SNC Sample-Path-Enve-
lope approach. The envelope functions of both energy demand EA(t) and the energy 
supply ES(t) are chosen to be affine functions of the form αi = [(ρ + δ) · t + σ ]+ and 
βi = [(ρ − δ) · t − σ ]+ , with i ∈ {A, S}.

Thereby, ρ describes the rate parameter of the underlying energy process and is set to 
its long-term average mean, e.g., ρi =

∑T
t=1

Ei(t)
T  . Meanwhile, δ and σ are tuning parame-

ters of the envelopes, which resemble the rate variation and burstiness of the underlying 
random process (Ciucu and Schmitt 2012).

The corresponding bounding functions of both stochastic energy processes are chosen 
to be simple exponential decays of the form ǫi(x) = p · exp{−κ · x} . The initial amplitude 
p and the decay rate κ of the bounding function ǫi(x) are derived from fitting the bound-
ing function to the CCDF of the envelope model given in Definition 3. The general pro-
cedure for calculating the bounding functions for the power demand and supply process 
E
j
i(t) given a set of measurement traces J then takes the following steps: 

1. Envelope Model: Choose a specific set of envelope function αj
i(t) and β j

i (t) for the 
energy demand and supply process Ej

i(t) , with j ∈ J  . In this work, the same affine 
functions of the form [(ρ ± δ) · t ± σ ]+ are chosen for each measurement trace.

2. Envelope Violations: Calculate the maximum deviations, e.g., the left-hand-side term 
(LHS) in Definition 3, LHSj,ti  , of the chosen envelope model αj

i(t) or β j
i (t) and the 

measurement traces Ej
i(t) for all t ≤ 0 : 

 It should be noted that all elements of the LHS must be non-negative. Therefore, all 
negative elements of LHS are set to zero.

LHS
j,t,u
i = sup

0≤s≤t

{E
j
i (t)(s, t)− αi(t − s)}

LHS
j,t,l
i = sup

0≤s≤t

{βi(t − s)− E
j
i(t)(s, t)},

with i ∈ {A, S} and j ∈ J
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3. Bounding Function: In general, the CCDF of any distribution that fits the tail of the 
LHS can be chosen as a sufficiently good approximation of the respective bounding 
function ǫui (x) and ǫli (x) (Ciucu and Schmitt 2012). This work assumes exponential 
tail distributions, and simple exponential decays of the form p · exp{−κ · x} are used 
as bounding functions.

4. Parametrization: The decay rate κ of the bounding functions are obtained by curve 
fitting the non-zero distribution ( LHS > 0 ) of the LHS over the free parameter x in 
Definition 3. The non-zero distribution of LHS is chosen to avoid bias of the zero ele-
ments in the fitted distribution. Furthermore, the initial amplitude p of the bounding 
functions is set to the ratio of non-zero elements and the total number of elements in 
the LHS (Ghiassi-Farrokhfal et al. 2014a).

For a given set of measurement traces Ej
A(t) and Ej

S(t) , there are infinitely many combi-
nations of envelope and bounding functions to choose from. However, not all combina-
tions yield useful results. Balancing the tuning of the envelope functions αi(t) and βi(t) 
with the resulting bounding functions ǫui (x) and ǫli (x) involves a certain trade-off. Tight-
ening the envelope function increases the bounding function and vice versa. Ideally, the 
optimal combination should consider both high fluctuations in the energy demand and 
energy supply processes (Wang et al. 2012).

Recall that each flexibility service guarantee is constrained by the (min,+)-con-
volution between the two processes, which is not only computationally expensive 
but even amplifies the trade-off between envelope and bounding functions further 
since both energy demand and energy supply must be optimized simultaneously 
(Wang et al. 2012). When exponential bounding functions are employed, Lemma 3 
from Ciucu et al. (2006) drastically decreases the computation time of the (min,+)

-convolution. The optimal guarantees for power system flexibility, as defined in the 
section Quality of service guarantees, are then the result of solving a joint optimi-
zation problem over the free tuning parameters σi and δi for both energy processes 
EA(t) and ES(t).

In practical applications, a feasibility space for the tuning parameters σi and δi 
that adequately captures a broad range of fluctuations is chosen for both energy 
processes. Note that the feasibility space grows with O(n2) , which is why knowledge 
of the modeled process can reduce computation time drastically. Since the optimi-
zation problem is twofold, all combinations of the envelope and bounding functions 
within the feasibility space are first calculated. Then, the second step optimizes the 
flexibility service guarantees for different system compositions. The optimal flex-
ibility service guarantees are given by the maximum probabilities among all fea-
sible envelope and bounding function combinations. The algorithm developed for 
this work is published in the following Zenodo archive: http:// dx. doi. org/ 10. 5281/ 
zenodo. 81027 89. In the following, the modeling approach is validated in a case 
study on the reliability of a solar-powered car charging station.

http://dx.doi.org/10.5281/zenodo.8102789
http://dx.doi.org/10.5281/zenodo.8102789
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Case study: reliability of solar‑powered car charging
The case study investigates and validates the capabilities of computer networking-
based guarantees for power system flexibility to quantify the reliability of a solar-
powered car charging station for a small research institute in Germany.

Structure and data

The power system under consideration consists of ten car charging stations in parallel, 
a lossless ESS with capacity CESS , and renewable power generation units in the form of 
solar panels. The car charging profiles are based on the German mobility survey (Nobis 
and Kuhnimhof 2018) and are obtained from emobpy (Gaete-Morales et al. 2021). The 
data set consists of 200 car charging profiles in 15-min resolution distributed across four 
car types, from which 97 are commuting full-time workers, and 27 are commuting part-
time workers. The per unit solar generation profiles are obtained in 15-min resolution 
from Pfenninger and Staffell (2016) and the associated web platform (www. renew ables. 
ninja) for the model years 2011 to 2020. The hourly variations and the average cumula-
tive energy of both data sets are depicted in Fig. 3 for representative weeks in summer 
( a1 to c1 ) and winter ( a2 to c2).

The solar generation profiles exhibit a typical daily pattern, with significantly more 
generation in summer than in winter due to meteorological factors. In contrast, the 
workplace car charging profiles exhibit much stronger hourly variations and a slightly 
increased cumulative energy demand in winter. This difference is most likely due to 
decreasing efficiency of electric vehicles with colder temperatures (Jaguemont et  al. 
2016).

Fig. 3 Hourly variations and cumulative sum of the mean profiles of the per unit solar generation (blue) and 
car charging demand (orange) for representative weeks in summer and winter, with the standard deviation 
included as a colored error band

http://www.renewables.ninja
http://www.renewables.ninja
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Modeling approach

The guarantees for power system flexibility are calculated according to the sec-
tion Modeling methodology. The measurement traces for the energy demand process 
E
j
A(t) are given by one hundred random combinations of ten workplace car charging 

profiles from the emobpy dataset (Gaete-Morales et  al. 2021) for eight representa-
tive weeks in summer and winter. The split between full-time and part-time work-
ers was set to eight over two. The total power supply was modeled using ten years 
(2011 to 2020) of per unit solar generation profiles from Pfenninger and Staffell 
(2016) for the same representative weeks in summer and winter. The solar generation 
units were assumed to be homogeneous. This assumption allows direct scaling of the 
per-unit solar profiles with the installed capacity of interest due to the sub-additivity 
of the corresponding bounding functions. If heterogeneous power generation units 
are used, an additional aggregation step is required to transform the multiple supply 
curves into a single one. For further details, the interested reader is referred to Wang 
et al. (2012).

As sample path envelopes affine functions of the [(ρ ± δ) · t ± σ ]+ are used with the 
rate parameter ρ set to the long-term mean rate of the used measurement traces. The 
tuning parameters for each envelope σ and δ are varied in a total of 300 combinations, 
showing robust results against wider or smaller step sizes once a minimum number 
of combinations was used. The bounding functions are given by a simple exponen-
tial decay of the form p · exp{−κ · x} . Then based on the section Modeling methodol-
ogy, all feasible combinations of the envelope and bounding functions for the power 
demand and supply processes are calculated. A selection of stochastic envelopes in 
comparison to the average cumulative generation and charging profiles are depicted 
in Fig. 3. Finally, the optimal guarantees for power system flexibility are calculated for 
different ESS capacities CESS and threshold values γ , � , and τ . The detailed parameters 
used for the optimization are accessible in the source code published at the following 
Zenodo archive: http:// dx. doi. org/ 10. 5281/ zenodo. 81027 89.

In order to validate the results of the computer networking-based modeling 
approach, it is compared with a MILP using the open-source framework PyPSA 
(Brown et al. 2018). The objective function of the problem is an operational cost mini-
mization (Brown et al. 2018) with perfect foresight and certain demand elasticity as 
an additional constraint. Since all marginal generation costs are set to zero, the prob-
lem optimizes the dispatch of the solar generation and the storage unit to fulfill the 
demand. In order to ensure the feasibility of the optimization, backup generation is 
available at high marginal costs. The input data used in the MILP approach is the 
same as for the SNC approach.

In contrast, to the SNC approach, which solves the underlying statistics of the problem 
(1200 weeks) in advance, the MILP optimization requires solving for multiple random 
samples to capture the statistics of the problem afterward. Therefore one hundred ran-
dom model runs (100 weeks) were evaluated for the same parameter combinations used 
in the SNC approach. This method comes at relatively high computational costs, with 
the SNC approach being roughly 100 times faster than the MILP approach by a highly 
increased number of random samples (1200 weeks vs. 100 weeks).

http://dx.doi.org/10.5281/zenodo.8102789
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In both models, the capacity of the ESS CESS is assumed to be time-invariant and ini-
tially fully charged ( eESS(0) = CESS ). Furthermore, a cyclic state-of-charge constraint 
of the form eESS(tend) ≥ eESS(tinit) is applied to have no free energy in the system, e.g., 
physical feasibility. This constraint could lead to different results than published in 
previous work (Wang et al. 2012; Singla et al. 2014; Ghiassi-Farrokhfal et al. 2014a). A 
trivial example would be a power system with an energy demand EA(t) that is always 
larger than the average renewable generation ES(t) . In such a system, even an ESS of 
infinite size could not guarantee the system’s power supply below a certain violation 
probability ǫ.

Numerical results

The following presents the resulting guarantees for power system flexibility obtained 
from computer networking concepts. First, in section Comparison of flexibility ser-
vice guarantees, the flexibility service guarantees obtained from the SNC and the 
MILP modeling approach are compared for an increasing amount of system flexibil-
ity. Second, section  Influence of increasing solar capacity investigates the impact of 
increasing solar generation on the flexibility service guarantees. Finally, section Influ-
ence of increasing solar capacity  analyzes the influence of varying seasonality.

Fig. 4 Comparison of the flexibility service guarantees obtained from the stochastic network calculus and 
mixed-integer linear programming modeling approach for different energy storage system capacities and a 
solar capacity of 2.53 kW in the summer season
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Comparison of flexibility service guarantees

In Fig. 4, the guarantees for power system flexibility are depicted for different thresh-
old values γ , � , and τ and an increased capacity of the ESS. They represent the worst-
case guarantees for the time interval of one week in the summer season. For validation 
the results from both the SNC ( a1 , b1 , c1 ) and the MILP modeling approach ( a2 , b2 , 
c2 ), as well their difference (SNC - MILP; ( a3 , b3 , c3)), are compared. The installed 
capacity of the solar generation unit was dimensioned to match the average daily car 
charging demand to a size of 2.53 kW for a representative week in the summer season. 
It is observed that all three QoS indicators exhibit the same trend: With increasing 
system flexibility, in the form of an increased ESS capacity CESS or demand elasticity τ 
of the car charging requests, the flexibility service guarantees are increased.

Figure  4 (a1) and (a2) illustrate the GSCP for various states of charge (SOC) of the 
ESS. The SOC is defined as the ratio between the stored energy in the ESS at time t and 
the ESS capacity CESS to SOC(t,CESS) =

eESS(t,CESS)
CESS

 . The GSCP represents the likelihood 
that a power system will exhibit additional flexibility potential γ equal to or greater than 
the stored energy of the ESS with capacity CESS . Both the SNC (a1) and the MILP (a2) 
approach yield comparable results. For example, for an ESS with capacity greater than 
25 kWh, both approaches show low flexibility service guarantees ( < 25 %) for SOC val-
ues above 60% of the ESS capacity and high guarantees ( > 50 %) for SOC values below 
60% of the ESS capacity.

Furthermore, Fig.  4 (b1) and (b2) display the GPSP for a load shedding threshold of 
� = 0 . The GPSP indicates the likelihood that a power system, with an energetic flex-
ibility potential given by the capacity CESS of an ESS, meets the QoS constraint of 
power systems specified in Definition  4. The maximum flexibility service guarantees 
are approximately 80% for both the SNC approach (b1) and the MILP approach (b2) , 
with a saturation of the GPSP occurring for ESS capacities of 27.3 kWh and 36.4 kWh, 
respectively.

Finally, Fig. 4 (c1) and (c2) present the GTSP for increasing demand elasticity τ . The 
GTSP indicates the likelihood that a power system, with a temporal flexibility potential 
determined by the elasticity of the demand τ , meets the QoS constraint of power sys-
tems specified in Definition 4. For both modeling approaches, the GTSP increases along 
the CESS and the τ axis. The temporal flexibility of the power demand is dependent on 
the ESS capacity, with smaller capacities having a larger influence.

This finding suggests that for larger ESS capacities, any further increase in flexibility 
service guarantees can only be achieved by increasing the temporal flexibility of the sys-
tem since the ESS’s flexibility is already optimally utilized. Additionally, the transition 
from low (red) to high (blue) flexibility service guarantees is observed to differ between 
the SNC and MILP approaches. The SNC approach (c1) exhibits a strictly linear increase 
in flexibility service guarantees, while the MILP approach (c2) shows a stair-like increase 
at demand elasticity τ values around 4 and 20 hours.

In general, the SNC approach overestimates the flexibility service guarantees in all 
three cases, which is demonstrated in Fig. 4 (a3) to (c3) . It shows the differences between 
the SNC and the MILP approach for each guarantee. The differences in results can be 
attributed to the advantages of the MILP approach, which has perfect foresight and 
optimally utilizes the flexibility of the ESS and the elasticity of car charging requests. In 
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addition, the SNC approach employs a simplified envelope model that does not account 
for the inter-hourly variability of solar generation and car charging requests.

Furthermore, the MILP approach is purely deterministic and has strict decision cri-
teria, meaning that the QoS constraint of power systems specified in Definition 4 can 
either be fulfilled or not. In contrast, the SNC approach is probabilistic, allowing for the 
incorporation of low violations of the QoS constraint of the power system, which can 
lead to better guarantees, which is observed in the results of Fig.  4. Nonetheless, the 
MILP approach confirms the results of the SNC modeling approach, which provides 
confidence that the chosen SNC approach is suitable for modeling power system flexibil-
ity. In the following, the influence of an increased installed solar capacity and different 
seasonality is only discussed for the SNC approach.

Influence of increasing solar capacity

In Fig. 5a, the GTSP is depicted for an increased capacity of the installed solar genera-
tion unit of 2.53 kW. The resulting flexibility service guarantees are significantly higher, 
which can be attributed to the better utilization of the existing system flexibility. The 
dependencies between the installed generation capacity and the required ESS capac-
ity CESS and the elasticity τ of the power demand are depicted in Fig. 5b and c. Small 
increases in generation capacity substantially impact the flexibility service guarantees of 
the power system when sufficient flexibility is available. Figure  5d  provides additional 
quantification of the optimal system composition by showing the required energetic 
and temporal flexibility potential to achieve a QoS guarantee of at least 90 % for vari-
ous solar generation capacities. This potential is measured in terms of the ESS capacity 
CESS and the power demand elasticity τ . Although the base system’s power generation 
capacity is set at 2.53 kW and cannot meet the desired QoS guarantee regardless of the 

Fig. 5 Graphical representation of the guaranteed temporal service probability for an increased solar 
capacity of 3.79 kW, as well as the dependencies between the installed generation capacity and the required 
energy storage system capacity CESS and the demand elasticity τ
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additional ESS capacity CESS and demand elasticity τ , a mere 20% increase in solar gen-
eration capacity is enough to achieve the desired QoS guarantee. Further power supply 
increase can lead to system solutions requiring low amounts of ESS capacity CESS and no 
demand elasticity τ.

Meteorological impact

Finally, the impact of different meteorological conditions on the flexibility service guaran-
tees of power system flexibility is analyzed. Figure 6 shows the GPSP for a power system 
with an installed solar generation capacity of 6.32 kW for representative weeks in sum-
mer and winter. As expected, the energetic flexibility potential to guarantee a certain QoS 
level given by the GPSP is much higher in summer than in winter. For instance, the prob-
ability of a power system to meet its QoS constraint specified in Definition 4 given an 
ESS with a capacity of 15 kWh as energetic flexibility potential is above 95 % in summer, 
but only roughly around 50 % in winter. This result can be attributed to two factors. First, 
during summer, there is a substantial increase in solar power generation due to favorable 
meteorological conditions. Second, during winter, there is an increase in energy demand 
resulting from the lower efficiency of electric vehicles in colder temperatures.

Discussion
The QoS guarantees derived in this work using SNC concepts offer a statistical quan-
tification of power system flexibility under worst-case conditions. The main advantage 
of this approach is its ability to analytically derive flexibility service guarantees across 
multiple time intervals rather than focusing on individual time points. By incorporating 
underlying statistics in advance, the computational time is significantly reduced com-
pared to conventional simulation methods since these require retrospective considera-
tion of statistics. Moreover, the results for a specific model configuration can be applied 
to other systems with similar dynamics.

However, it is essential to acknowledge a notable limitation of the current mod-
eling approach. The underlying Sample-Path-Envelope model accounts for the history 

Fig. 6 Graphical representation of the guaranteed power service probability for a fixed solar capacity of 
6.32 kW for representative weeks in summer and winter.
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of energy demand and supply processes and does not directly capture the temporal 
dynamics of flexibility potentials and requirements. The flexibility service guarantees 
derived in this work represent worst-case scenarios over a week-long interval rather 
than at specific time points. One potential solution to address this limitation is to 
modify the envelope model to incorporate the power system’s temporal dynamics 
directly. An alternative envelope model worth exploring are traffic-amount-centric 
(t.a.c.) envelopes (Ciucu and Schmitt 2012; Jiang and Liu 2008). Unlike the sample 
path envelopes used in this work, t.a.c. envelopes do not include worst-case situations 
of previous time intervals. However, it should be noted that t.a.c. envelopes currently 
do not provide the desired QoS indicators of computer networking without imposing 
additional constraints.

Conclusion
This work explores the use of computer networking concepts to quantify guarantees 
for power system flexibility. The motivation for this research arises from the simi-
larities between Quality of Service indicators in computer networking and the oper-
ational flexibility required to ensure desired Quality of Service levels in the power 
system. Due to its unique envelope-based modeling approach, the framework of sto-
chastic network calculus is employed to generate and aggregate stochastic envelopes 
for random power demand and supply processes at various time scales.

Using the concepts of stochastic network calculus, guarantees for power system flex-
ibility are developed and validated through a case study on the reliability of a solar-pow-
ered car charging station. Three guarantees are established: guaranteed state of charge 
probability, the guaranteed power service probability, and the guaranteed temporal ser-
vice probability. These guarantees assess the presence and sufficiency of specific flexibil-
ity potentials to ensure the desired QoS level and are represented either by the capacity 
of an energy storage system or the demand elasticity of the power demand.

Results indicate that the flexibility service guarantees derived from the stochastic 
network calculus approach align well with common approaches in mixed-integer 
linear programming modeling while significantly reducing computation times and 
resource requirements. Its main advantage is the analytical derivation of Quality of 
Service indicators for power system flexibility across multiple time scales.

Future work could involve analyzing the impact of different envelope models and 
expanding the analysis to include multiple network nodes, encompassing transmis-
sion and market constraints considerations.
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