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Abstract 

We consider line failure cascading in power networks where an initial random failure 
of a few lines leads to consecutive other line overloads and failures before the sys-
tem settles in a steady state. Such cascades are rooted in non-obvious, long-range, 
and higher-order couplings among the lines’ flows induced by physical constraints 
on the network. Failure interaction graph encodes which and to what extent other 
lines in a networked system are affected after each line failure and can help to pre-
dict the final state after an initial disturbance. We perform data analytics on the final 
lines’ steady states of cascade trajectories to infer a specific line’s state given the states 
of others. We use a generative model to reconstruct possible steady states, and a pre-
dictive model aims to predict the probability of each line’s failures after the initial failure 
as a regression problem. The generative model uses regularized pseudolikelihood 
estimator to infer interaction weights by solving the inverse Ising problem and deploys 
Glauber dynamics to generate steady states. The discriminative model uses boosted 
trees to efficiently learn over training and predict over test data the state of each line 
as a target finding an appropriate subset of other lines’ states as explanatory vari-
ables. We analyze the degree distribution of the corresponding interaction graphs 
to study the number of other components affected by each line failure (out-degree) 
or the number of lines that affect the state of a given line (in-degree). Both models 
show that the in-degree follows a power-law distribution. Finally, we discuss the pos-
sible application of the interaction graph for early link removal to mitigate the failure-
cascading consequences.

Keywords: Cascading failure, Data analysis, Interaction graph

Introduction
Cascading failure is a complex process in distributed networked systems like power 
networks. It refers to a dynamic in which an initial, usually unforeseen disturbance, like 
the failure of a subset of components, leads to a sequence of dependent failures prop-
agating through the network and causes severe damage (Dobson 2021). Although the 
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probability of such failures is very low, the corresponding incurred direct and indirect 
cost is proportionally increased such that these failures are considered high-risk events. 
Indeed, the recorded data of blackouts in power grids (Carreras et  al. 2004; Informa-
tion on Blackouts in North America 2023) shows that the frequency and size of cas-
cades because of unforeseen events like overload, protection failures, and human error, 
do increase over time, despite the high engineering efforts which are put in to make the 
system more robust.

Cascade dynamics is hard to predict because of specific features of the process. Cas-
cading is a self-amplifying process that successively weakens the power network (Baldick 
et al. 2008) with three distinct features against other contact processes used to model 
disease epidemics and diffusion (Motter and Yang 2017): non-additive response, non-
local propagation, and disproportional impact. The non-additive response refers to the 
fact that other components’ responses may reinforce the initial failure’s effect. The non-
local propagation property of cascades reflects that the initial event may affect some 
distant components without affecting the in-between ones. Finally, failure of different 
components disproportionally impacts the number of other affected components, e.g., 
in power grids, there are a small, vulnerable set of components whose failures lead to 
large-scale outages (Yang et  al. 2017a). Other studies show correlations between link 
failures in power grid networks, which reveal co-susceptible groups of links that tend to 
fail together (Yang et al. 2017b) though it is unclear how to find these sets.

From the computational perspective, the component failure does not have monotonic-
ity property in the physical domain, i.e., failure of a set of components may have a smaller 
effect than the failure of a subset of them (Guo et al. 2017; Mazauric et al. 2013), and 
the problem of finding the set of lines whose removal has the most impact is NP-hard 
with different metrics. The authors of Ghasemi and Kantz (2022) show that the failure 
cascading in power networks involves higher-order interactions when the simultane-
ous states of a group of more than two lines affect the process dynamics. The authors 
observe positive and negative interactions between line failures and the existence of 
higher-order interactions like strongly frustrated triplets discussing non-monotonicity 
property and how the process could follow completely different trajectories considering 
the current state of two components making the trajectory prediction of failure cascad-
ing hard. In fact, a single error in the prediction procedure can completely change the 
successive predictions.

The large blackout failure cascades are rooted in diverse and complex interactions of 
components failure, protection device responses, and human intervention (Baldick et al. 
2008) or interaction with the communication layer (Ghasemi and de Meer 2023) at dif-
ferent space and time scales, which might lead to rare, unpredictable outcomes. A fail-
ure interaction graph is an abstract graph different from the network’s physical topology, 
which captures these interactions and could help in cascade failure analysis and mitiga-
tion. Here, we consider the problem of finding the lines’ failure interaction graph that 
encodes which lines(and to what extent) are affected after a failure of a specific line.

We note that inferring the interaction graph is challenging because experimental 
studies on infrastructure networks are not practically possible, the available recorded 
data is rare and protected for security reasons, and various exogenous and endogenous 
disturbances affect the system. Therefore, modeling, collecting simulated data under 
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controlled initial disturbances, and data analytics are crucial to learning explainable 
interactions.

Nakarmi et al. review techniques based on the physics of electricity and data-driven 
approaches to capture and infer the interactions in Nakarmi et al. (2020). In particular, 
correlation-based methods use pairwise statistical correlation without considering the 
order of failures. Furthermore, because of higher-order interactions, the naive correla-
tions conceal some highly conditional correlated pairwise statistics as explained in Gha-
semi and Kantz (2022). The consecutive pairwise methods consider the order of failures 
but ignore the impact of group interactions. The generation-based methods (Qi et  al. 
2014; Qi 2020) consider interactions between groups of lines’ failures defining the gener-
ation concept; however, it is unclear how to separate different generations and consider 
pairwise interaction in consecutive generations to avoid underestimating/overestimating 
interactions.

In this paper, we argue that instead of learning the interactions using cascade trajec-
tories, one can learn the interactions from the rather limited final states, which meet 
all system constraints as the trajectories attractors. As mentioned before, two different 
trajectories may differ slightly at the early stages of the cascade, making separating the 
generations of real data and model learning difficult. Furthermore, the failure trajec-
tories are sensitive to details of the data collection simulation where it is unclear how 
much and which details should be considered in generating simulation data to capture 
the effective interactions. See Guo et al. (2017) for a review of failure-cascading simula-
tion modeling in power networks and their advantages and disadvantages. However, the 
network’s steady states depend only on the initial disturbance, even though it does not 
consider the order of failures. Data analysis and interaction learning using the steady 
states is more straightforward, requires much fewer data, and can still provide insights 
into the cascade process.

We simulate and collect cascade failure data on the IEEE-118 bus transmission net-
work and perform data analytics on the steady states in section System model and data 
collection. Data visualization and analytics provides visualization of the steady states 
and the existence and importance of higher-order interactions among the network’s 
steady states. In Learning interactions, we discuss two machine learning techniques 
to find the underlying interaction graph to robustly capture each line’s state as a func-
tion of a subset of lines’ states and analyze its statistical properties. The first model is 
based on a regularized pseudolikelihood estimator for solving the inverse Ising problem. 
Here, we use the learned interactions to reconstruct the steady states using the Glauber 
dynamics. The second model uses boosted trees as a highly predictive machine learning 
model where we use feature permutation to find the robust influential lines whose states 
affect the considered line’s state. Our objective in both models is not to learn a highly 
predictive model by tuning the hyperparameters for specific test data but to find the 
underlying interaction graph’s robust statistical properties and structure. In Statistical 
properties and using the interaction graph, we discuss that the corresponding interac-
tion graphs show power-law in-degree distribution indicating that there exist lines in the 
network whose states are affected after any initial random failure. We also discuss using 
the interaction graph for early link removal to mitigate the cascade effects under specific 
scenarios before concluding the paper in section Conclusion and future works.
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System model and data collection
We simulate, collect, and use a data set containing 50,000 trajectories of failure cas-
cading on the IEEE-118-Bus transmission network with N = 118 buses and L = 179 
links, in which all initial failures propagate at least one step. Some trajectories end at 
the same steady state where we have M ≈ 37000 unique steady state. The network data 
(IEEE 2023) provides the topology, lines susceptances, demands, and generations at all 
buses as well as the maximum capacity for each line and the generation capacity of each 
generator.

We use the linear flow distribution (DC flow) model to find the lines’ flows consider-
ing the generator with the greatest capacity as the slack bus generator. The initial dis-
turbance is imposed by removing a small random subset of lines in which each line is 
removed independently with probability pf = 2.5/L , i.e., in each initial failure, we 
remove 2.5 lines on average. The initial failure may lead to consecutive secondary line 
failures if a line’s flow exceeds its capacity after flow redistribution. The flow redistribu-
tion is performed until no more failures happen, and the network settles into a steady 
state where all system constraints are met. The trajectories of failure unfolding and the 
corresponding final state are recorded. The flow computation is performed for each 
component separately if the network decomposes into components. See Ghasemi and 
Kantz (2022) for more details.

Let si ∈ {−1,+1} denote the state of line i where si = +1 indicates that i initially or 
eventually fails. A network steady-state s = (s1, . . . , sL) shows the state of each line at the 
end of a cascade trajectory and Z = L

i=1(1+ si)/2 denote the corresponding cascade 
size in terms of the number of line failures. As we will discuss, the cascade size shows a 
power-law distribution where we observe there exist initial random failures which cause 
nearly half of the lines to a failure state. We use 

〈

f (s)
〉

D
= 1

M

∑M
m=1 f (s

(m)) to denote the 
empirical mean of f (s) with data set D = {s1, . . . , sM}.

Data visualization and analytics
This section provides data visualization of the cascade data and data analytics to empha-
size the existence and importance of higher-order interactions in the lines’ states.

Data visualization

Power networks are subjected to many constraints, including a high density of local con-
straints, e.g., flow conservation at each node and flow capacity of each line, and global 
constraints, e.g., power balance at each component or maximum generation capacity of 
generators. Therefore, the number of steady states is limited and much less than pos-
sible 2L states, i.e., not all possible links’ states are plausible. The states of stub lines con-
necting small demands do not affect other lines’ states, whereas the state of a line that 
connects a big generator to the rest of the network influences many other lines’ states. 
Therefore, we intuitively expect clusters of steady states that meet all system constraints 
with an associated cascade size.

Figure  1a shows a two-dimensional visualization map of the L-dimensional M 
steady states using the t-distributed stochastic neighbor embedding (t-SNE) method 
(Van  der Maaten and Hinton 2008). t-SNE maps each high-dimensional point to the 
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two-dimensional one by minimizing the divergence between the pairwise distances in 
the high and low dimensional space. We use the off-the-shelf t-SNE implementation 
to map all M steady states to a two-dimensional space adopting the Euclidean metric 

Fig. 1 2D visualization of the network’s steady states for data, DG samples, and Glauber samples are shown 
in a, c, and e, where the color of each point shows the corresponding cascade size. The point depicted 
with the green cross symbol is the corresponding mapping of the network state when all lines work, 
s = (−1, . . . ,−1) . The empirical mean and pairwise uncentered covariance of generated DG and Glauber 
samples’ network states are approximately the same as data as depicted in b and d. Panel f shows the 
cascade size distribution for data and samples, and its inset depicts the binned probability of cascade size for 
samples against data
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to measure the distance between data points. We should note that the exact distances 
between the two-dimensional space do not exactly reflect the corresponding distance 
in the L-dimensional space in the t-SNE algorithm, and the final map depends on the 
selected perplexity and learning rate parameters in the algorithm. Nevertheless, the 
whole map can provide insights into the data clusters.

We find that the number of possible network states that meet all system constraints 
is indeed limited, suggesting that one can infer the interactions by learning the statisti-
cal properties of steady states in these clusters. We observe the same clustering map of 
steady states with similar cascade sizes changing the perplexity and learning rate param-
eters. We learn models to predict the state of each line given the state of its influential 
neighbors in Learning interactions.

Importance of higher‑order interactions

The outcome of the imposed constraints on lines’ flows is diverse higher-order interac-
tions among groups of lines at different spatial scales and sizes. Higher-order interac-
tions (HOI) refer to an indirect interaction among a group of more than two lines where 
their simultaneous states affect the cascade dynamics. The failure correlation between 
two lines belonging to a higher-order group can not be distinguished by observing naive 
correlation coefficients but by conditioning on the states of other lines in the group. The 
authors of Ghasemi and Kantz (2022) show the existence of such HOI in power net-
works failure cascading.

To investigate the importance of HOI and the insufficiency of naive pairwise line sta-
tistics, we generate M distinct L-dimensional steady state samples with the same mean 
and covariance matrix as the data using the method based on dichotomized Gaussian 
(DG) distribution (Macke et  al. 2009). This method first samples from L-dimensional 
Gaussian distribution with proper mean and covariance matrix and then maps each 
sample’s element to 0 and 1 using the sign of the corresponding element in the continu-
ous sample. The appropriate mean vector and covariance matrix are calculated based on 
the desired binary mean and covariance values. The entropy of the generated samples is 
close to the theoretical maximum entropy ensuring that the binary samples contain no 
more statistical information beyond the mean and pairwise statistics.

Figure 1b and d show that the generated samples from the DG distribution approxi-
mately have the same empirical mean, 〈si〉 , and pairwise uncentered covariance, 

〈

sisj
〉

 , as 
data. Note that these samples are characterized by matching first and second moments 
with the data while exhibiting no additional discernible statistical regularities. Interest-
ingly, the cascade size of DG samples has approximately the sample distribution as the 
data cascaded size, as shown in Fig. 1f. This result emphasizes that predicting the cas-
cade size distribution is insufficient for evaluating the cascade models.

Fig.  1c shows a 2D visualization map of the DG-samples generated by the t-SNE 
method with the same parameters as Fig.  1a which does not show specific clustering 
structures. We perform this visualization with different perplexity values for t-SNE and 
found that the network state clustering in the data does not appear in DG samples. This 
visualization suggests that the pairwise statistics per se do not show the rich and com-
plex interactions among the lines’ states, indicating the importance of HOI. We will dis-
cuss the Glauber dynamics for generation samples in Learning interactions.
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Learning interactions
This section explains two different methods for learning the interaction graph denoted by 
Ĝ . The interaction graph is an abstract graph different from the network’s physical topol-
ogy, which reflects how one component’s state affects others’ components’ states. Ĝ is a 
(weighted) directed graph in which each node corresponds to a physical line in the power 
network, and a link between j and i shows that the state of i is affected by the state of j in a 
defined manner. Therefore, the interaction graph encodes all influential neighbors of each 
line, which may not necessarily be adjacent in the physical network.

Interaction graphs can be constructed using prior knowledge and cascade data by 
applying machine learning (ML) tools. Designing ML tools for inferring interactions and 
using that for prediction and possible intervention is challenging. The reason is that the 
explainability of the learned model is as important as its prediction power. The model 
should meaningfully reveal possible higher-order or weakly positive/negative interac-
tions. Furthermore, the amount of required data is unclear for many ML techniques, 
and we expect the model to predict unseen rare events. Nevertheless, as we will dis-
cuss, some persistence structures on the interaction graph exist, which are insightful for 
understanding the origins and mitigating the large cascades. Therefore, in the follow-
ing, instead of focusing on tuning hyperparameters for improving the desired prediction 
power over test data, we focus on finding persistent structural features of interaction 
graphs among the applied ML techniques.

Regularized pseudolikelihood estimator

We use the regularized pseudolikelihood method for reconstructing the structure of 
interactions (Lokhov et al. 2018) by maximizing the probability of each line’s state condi-
tioned on the remaining ones and following the method suggested in Ghasemi and 
Kantz (2022). In this model, the state of the line i, si , is influenced by the states of other 
lines,  s−i , in a probabilistic manner in terms of pairwise interactions given by 
Pr(si|s−i) =

1

1+e
−2si

(

hi+
∑

j �=i Jij sj (t)
) . Here, hi is a local factor reflecting the overload toler-

ance at the designing stage, e.g., the lines with higher maximum capacity tolerate more 
overload and are less susceptible to failure in the cascade process, and Jij is the influence 
of line j on line i. The method first estimates an initial interaction strength of each line by 
maximizing a proper l1- regularized pseudolikelihood over the M samples by solving

where 〈.〉M denotes the average over M samples, and � is a regularization parameter that 
should be tuned as a hyperparameter to push un-explainable interactions to zero. dij is 
the graph distance of lines i and j in the power network to impose a greater penalty for 
the potential influence of lines located at a greater physical distance to line i. Then, all 
weak interactions with −δ < Jij < δ are set to zero to find the influential neighbors of i, ∂i 
where δ is a proper threshold. Finally, we find the interaction strengths by maximizing 
the pseudolikelihood over the selected neighbors without applying the regularization, 
(hi, Ji) = argmax(hi ,Ji)

〈

ln 1

1+e
−2si(hi+

∑

j∈∂i Jij sj )

〉

M
 (Lokhov et  al. 2018). We examine differ-

ent values for � and δ to find parameters that better discriminate the clusters of 

(1)(h0i , J
0
i ) = argmax(hi ,Ji)

〈

ln
1

1+ e
−2si(hi+

∑

j �=i Jij sj)

〉

M

− �

∑

j �=i

|dijJij|,
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meaningful and close to zero interactions in the strength histogram and select 
� = 0.0005 and δ = 0.1 . See Ghasemi and Kantz (2022) for details.

Having found the effective neighbors and corresponding strength, we can use the 
model to generate the network’s steady states. The idea is to consider the power network 
as a dynamic system that initially works in a steady state where all lines are working 
si = −1, ∀i and Pr(si = 1|s−i) ≈ 0 . The system is subject to random initial perturbations 
due to line failures that flip some random lines’ states. This perturbation does change 
Pr(si = 1) for some i if the perturbed states intersect with the neighbor of i. By updat-
ing the state of all lines after the perturbation with their corresponding probability, we 
expect to push the network state to one of the steady states and remain at it until another 
perturbation applies. Therefore, in the long run of updates, we should observe the steady 
states much more than transient states, and if we sample from this dynamic, we expect 
to statistically capture samples corresponding to network steady states rather than tran-
sient states with less sojourn time.

We use sequential Glauber dynamics with the learned interactions to randomly select 
and update the state of each line, starting with a completely unplausible initial random 
state s0 in which each line is failed with probability 0.5. In each update, the algorithm 
selects a line uniformly and randomly, say i, and calculates the probability of updating its 
state to + 1 using p+i = 1

1+e
−2(hi+

∑

j∈∂i Jij sj )
 . Next, it draws a random number from a uni-

form distribution in (0,1), say u, and updates the state of the line i using 
si = sign (p+i − u) where sign (.) denotes the sign operator. We draw M unique samples 
(name Glauber samples in figures) where the warm-up time is 103 updates, and the sam-
pling step is 20L in Monte Carlo simulations.

Figure 1b and d show that the empirical mean and uncentered pairwise covariance of 
the Glauber samples are approximately the same as the data, and Fig. 1f shows that the 
corresponding cascade size distribution as well follows the data. The 2D visualization of 
these samples using the t-SNE method shows that the model can partially recover some 
network’s state similar to the data shown in Fig.  1e, suggesting that the model learns 
some HOI beyond the first and second moments statistics.

The model’s predictive power to predict a specific line’s state, given the others, 
depends on properly selecting the model’s hyperparameters � and δ and selecting the 
proper threshold for making binary decisions following computing the selected line fail-
ure probability by the model.

We use the same model parameters as before, i.e., learned with � = 0.0005 and δ = 0.1 , 
and evaluate its predictive power by computing the area under the precision-recall curve 
(AUC-PR). AUC-PR is a threshold-independent metric that considers the trade-off 
between the precision (the ratio of true-positive to the sum of true-positive and false-
positive) and the recall (the ratio of true-positive to the sum of true-positive and false-
negative). The AUC-PR metric is robust for highly imbalanced cascade data with rare 
binary events where the true negative (predicting a line does not fail consistently with 
the observed data) measure does not convey much information (Sofaer et al. 2019).

To generate test data, we use our simulator to generate 20,000 samples of the final net-
work steady-state applying an initial random failure and find the AUC-PR measure for 
the lines that the percentage of observing + 1 as target value is greater than 0.5 % total 
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number of target values. Figure 2a shows the histogram of the number of lines for dif-
ferent AUC values. We observe that for 109 out of the total 123 lines, the AUC measure 
is greater than 0.8. This result shows that the model has a reasonable prediction power 
for lines’ states with a minimum positive final state in the data even though the hyperpa-
rameters did not tune to maximize any predictive power like AUC-PR over the dataset.

The big advantage of this generative model is that one can interpret the interaction 
weights. However, it is hard to learn the interaction for lines that do not have a mini-
mum number of positive final states in the training data set.

XGboost regression

In this section, we use the scikit-learn XGBoost package as the off-the-shelf implemen-
tation of the well-known regularized extreme gradient boosting (XGboost) method as 
a powerful discriminative machine learning tool for regression problems (Chen et  al. 
2016). XGboost builds and uses an ensemble of decision trees to make predictions con-
sidering the trees’ complexities in the regularization term. The method shows strong 
predictive power over different data sets but is not explainable like the Regularized pseu-
dolikelihood estimator.

We train an xgboost regressor on the available training samples for each line, con-
sidering the selected line’s state as the target and the other lines’ states as explanatory 
variables with a binary logistic objective function. The model allows a l1 regularization 
parameter, say αi , to promote model sparsity and avoid overfitting in finding the best 
model for line i. Here, in contrast to the pseudolikelihood model, we tune the model of 
the line i by adjusting αi using 5-fold cross-validation to maximize the AUC-PR on the 
training data.

We test the model prediction power by predicting the state of each line for the same 
test data as used for the regularized pseudolikelihood. Since xgboost is robust to imbal-
anced data, we use the model to predict the state of lines with at least one observed 

Fig. 2 Histogram of the number of lines with a specific area under the precision-recall curve for 
a Regularized pseudolikelihood estimator model and b the boosted tree model
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positive state in the test data. Fig. 2b shows the histogram of the number of lines for dif-
ferent values of AUC-PR, which shows that the model is indeed highly predictive.

Next, to select the robust influential neighbors of line i, we performed permutation 
importance for the state of the line j  = i as an explanatory variable over the test data. 
In permutation importance, the other lines’ states are flipped one at a time, the model 
is re-fit, and the resulting decrease in model performance is measured to estimate the 
importance of each other line’s state on the learned model. In order to get more reli-
able results, the permutation importance is repeated several times where the value of 
the selected line’s state randomly changes, and the performance decrease is recorded. 
We then consider the median of each line’s computed importances as a single measure 
of its importance. The median is a robust measure against outliers where we know that 
for each line, there do exist a few influential adjacent lines which strongly influence this 
line’s state, as observed in the importance values histograms. Our objective is to sepa-
rate those other lines which weakly influence the selected line from those with near-zero 
importance values. Therefore, all lines with an importance measure greater than 0.02 
of the maximum importance value are selected as the influential lines to construct the 
interaction graph.

Statistical properties and using the interaction graph
Having the interaction graph with two distinct models, we can study its persistent sta-
tistical features. We are interested in the statistics of the number of lines that influence 
(in-degree) or are being influenced (out-degree) by each line’s state. These statistics show 
the possible spatial scale that a line’s state may interact and how much the system con-
straints are convoluted.

Degree distribution of interaction graph

Table 1 shows the basic statistics of the physical and interaction graphs. As expected, the 
average and standard deviation of interacting neighbors for a typical line is much greater 
than the physical network. Fig. 3 show the complementary cumulative distribution func-
tions for the out- and in-degree distributions. We observed a power-law behavior at 
the tail of the in-degree distributions. The estimated exponent of the tail distribution is 
α1 = 2.8 for the first and α2 = 3.1 for the second model where p(x) ∝ x−α using (Als-
tott et al. 2014). This result suggests that there exist lines whose states are influenced by 
many others effectively after all initial random failures.

Table 1 The average and standard deviation of the physical network and the interaction graphs 
where graph1 refers to interactions inferred by the pseudolikelihood model, and graph2 refers to 
interactions inferred by boosted trees

Avg. degree Std. out-degree Std. in-degree

Physical network 3.04 1.56 –

Interaction graph1 10.4 5.8 7.6

Interaction graph2 8.5 5.5 7.7
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Early link removal

The designed network structure at the planning stage is optimized for the normal opera-
tion and constraints of the system, considering the robustness (absorptive capacity) 
against a limited set of foreseen stresses. However, this structure may not be efficient or 
even imposes additional adversarial constraints after unforeseen stresses, here random 
line failure, which may amplify and propagate the initial failure impact. One approach 
is intervening and adapting the network structure to curtail the cascade impact. This 
intervention in network structure could be done by the intentional removal of a carefully 
chosen link(s) following the initial failure (Hines et al. 2009; Witthaut and Timme 2015). 
Nevertheless, it is unclear how to find these line(s) considering the combinatorial nature 
of the problem and the explosive number of possible initial failure scenarios and line(s) 
selection for removal.

Interaction graphs can be used for this intervention. We observe many negative inter-
actions in the interaction graph inferred by the pseudolikelihood model. In particular, 
there exist strongly frustrated triplets. In a frustrated triplet, one line, say i, has positive 
interaction on the failure of the other two lines k and j when there is a negative interac-
tion between these lines. Therefore, one expects that following the failure of i, either j or 
k may fail. Without any intervention, other lines’ states determine which line may fail. 
However, one can avoid the consequences of j failure by early removing k or vice versa 
to steer the final network state to a more desirable steady state. Early link removal aims 
to intervene and proactively remove the specific line(s) after observing a particular tran-
sient network state.

Fig. 4a shows how to use the learned frustrated triplets at the computation plane to 
search for possible interventions in network structure. The objective is to use these HOIs 
to extract a table of logical rules for events and actions. Each event shows the current 
observable network state for a specific set of lines. The corresponding action determines 
which specific line’s contact should be proactively opened to curtail the cascade.

Fig. 3 The complementary cumulative distribution function for the out- and in-degree distributions of the 
interaction graph for the pseudolikelihood and boosted tree models. The dotted lines in the in-degree curve 
show the power-law fit at the tail of the distribution



Page 12 of 14Ghasemi et al. Energy Informatics  2023, 6(Suppl 1):17

We follow this idea with an illustrative example. By exploring the lines’ interaction 
values of the pseudolikelihood model, we find that three lines i = (85, 89) , j = (85, 88) , 
k = (82, 83) (see IEEE (2023) to locate these lines on the IEEE-118 bus network) form 
a strongly frustrated triplet. A close look at the cascade trajectories shows that from 
the total number of cases in which line i is initially disturbed, in near 94 %, line j 
and in 2 % k fails consequently. Also, we observe that the final cascade sizes in some 
instances are large.

Next, we consider the cascade size with early link removal of either j or k. We first 
separate all trajectories in which i and a random subset of other lines (except j and k) 
fail and find the corresponding cascade sizes. Then we find the cascade size for the 
same scenario when j or k is removed from the network after the same initial failure, 
i.e., j or k is added to the initial failure scenario, by running the simulator again for 
this intervened initial failure. Fig. 4b compares the cascade size results in these two 
scenarios. We observe that the early k-removal is beneficial in most cases even though 
it slightly increases the cascade size in some scenarios compared to non-intervention 
or proactively removing j.

We emphasize that using the learned models for intervention in the network using 
triplets needs that the model captures the physically meaningful interactions in the 
first place and should be further justified by other simulations. The former ensures 
that the model does not try to predict the current training/test data and reveals 
the real physical constraints of the network. The latter is because the lines typically 
belong to and are affected by different groups of higher-order interactions, not just 
the selected triplet.

Fig. 4 (a)Intervention in network structure using learned triplets: Lines i, j, and k form a frustrated triplet 
according to the learned interactions. Failure of i has a positive interaction on j and k, and we observe a 
strongly negative interaction between j and k. After the failure of i, by intentionally early removal of k (j), 
one might avoid the failure of j (k) and the following consequences. (b) For a selected frustrated triplet, the 
data analysis shows that intentionally removing one of the links mitigates the cascade size in most random 
scenarios. Therefore, we add one entry to our logical rules: open the contact of k if the contact of i opens
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We extracted 15 strong frustrated triplets (those with strong positive and negative 
interactions) relying on the interactions learned by pseudolikelihood and performed 
the same experiment. We find the distribution cascade size with and without proper 
intervention and depict the results in Fig. 5. We observe that the early link removal can 
change the distribution of cascade size, and in 7 out of 15 triplets, by proper early link 
removal, one can decrease the average cascade size suggesting that interaction learning 
can be potentially used for cascade mitigation.

Conclusion and future works
In cascading failure dynamics in energy networked systems, the initial unforeseen 
failure leads to a chain of consecutive failures and may cause catastrophic outcomes. 
This dynamics roots in interactions among the system’s components in different tem-
poral and spatial scales with different sizes making the prediction of cascade behav-
ior hard. We consider the cascade process after an initial random line failure which 
causes load redistribution and possible consecutive failures, and performed data ana-
lytics on the final states in which the network settles at them. Two models are learned 
to infer the final state of each line by finding the robust influential neighbors and 
inferring the interaction graph. The first model aimed to be interpretable, and the sec-
ond model has more predictive power but is not easily interpretable. We discuss the 
possible application of interaction graphs for intervening in network structure, inves-
tigate their statistical properties, and show that their in-degrees follow a power-law 
distribution. Future works will consider how to infuse prior knowledge of the systems 
in learning interactions and find higher-order interactions to explain the cascade and 
mitigate its behavior.
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