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Abstract 

Deploying real-time control on large-scale fleets of electric vehicles (EVs) is becom-
ing pivotal as the share of EVs over internal combustion engine vehicles increases. In 
this paper, we present a Vehicle-to-Grid (V2G) algorithm to simultaneously schedule 
thousands of EVs charging and discharging operations, that can be used to provide 
ancillary services. To achieve scalability, the monolithic problem is decomposed using 
the alternating direction method of multipliers (ADMM). Furthermore, we propose 
a method to handle bilinear constraints of the original problem inside the ADMM itera-
tions, which changes the problem class from Mixed-Integer Quadratic Program (MIQP) 
to Quadratic Program (QP), allowing for a substantial computational speed up. We 
test the algorithm using real data from the largest carsharing company in Switzerland 
and show how our formulation can be used to retrieve flexibility boundaries for the EV 
fleet. Our work thus enables fleet operators to make informed bids on ancillary services 
provision, thereby facilitating the integration of electric vehicles.

Keywords:  EV, V2G, Optimization, Optimal scheduling, Ancillary services

Introduction
Background and motivation

Public authorities and the private sector face many challenges in transforming industries 
and infrastructure to meet sustainability goals. A key factor is the successful integra-
tion of renewable energies such as solar or wind power, which however poses difficul-
ties to the power system due to the increased fluctuations in supply from renewable 
energy sources. At the same time, an increasing number of electric vehicles pose an 
additional burden on the grid (IEA 2021). Both challenges inspired the development of 
smart charging or V2G technologies, where the charging flexibility of EVs are exploited 
as buffer storage to the power system. Smart charging and V2G were shown to have high 
potential benefits for peak load shaving (Xu et al. 2018; Crozier et al. 2020; Kempton and 
Tomić 2005), supporting the integration of renewable energies (Martin et al. 2022) while 
offering additional revenues to vehicle owners (Kara et al. 2015).
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Although smart charging and V2G have been studied for years (García-Villalobos 
et al. 2014; Tan et al. 2016), they remain difficult to implement in practice for the fol-
lowing reasons: (1) they require control over a sufficiently large fleet of EVs, (2) they 
imply complex dispatching problems, and (3) they involve trading between the power 
system and the vehicle fleet operators. A major opportunity is the application of V2G 
for large-scale car sharing systems (Fournier et al. 2014), since they can centrally manage 
large and significant resources for V2G operations. In contrast to the share of EVs on the 
private vehicle market (8% global sales share1), the share of EVs in car sharing systems is 
already high, with more than 66% of car sharing services offering fully or partially elec-
tric fleets (Shaheen and Cohen 2020). V2G may afford additional revenues to car sharing 
operators, but at the same time requires careful dispatching to minimize the negative 
impact on car availability for mobility purposes.

Here, we propose an optimization approach for V2G operations that scales to a large 
fleet of EVs. Specifically, we first provide a monolithic formulation for optimizing charg-
ing schedules, and further develop relaxations that allow to decompose the problem by 
aggregated vehicle hubs such as car sharing stations. Our experiments demonstrate a 
strong improvement in runtime using our approach, enabling its application on a large-
scale vehicle fleet. Furthermore, the optimization framework is tested on a new dataset 
from a car sharing operator in Switzerland. It is shown that our method scales to a fleet 
of 1440 electric vehicles in feasible runtime and can be employed to decrease energy 
costs while providing different kinds of grid services. Our optimization approach is 
therefore not only relevant for car sharing services but may in general support in con-
trolling V2G fleet operations.

Literature review and previous works

An increasing number of works is tackling the problem of charging schedule optimiza-
tion in the context of car sharing; (Xu et al. 2021) optimize charging times in a MINLP 
problem targeted at determining the fleet size of a car sharing system. He et al. (2021) 
optimize the charging station setup and schedule for a car sharing fleet and provide 
interesting insights on the best decisions on charging station placement and minimum 
State of charge (SOC). Similarly, Biondi et al. (2016) formulate a two-step optimization 
problem in order to reduce the charging prices in a shared system, while retaining user 
satisfaction. Large-scale, national-level optimization of V2G is a more challenging prob-
lem if realistic constraints are considered. In Schlund et al. (2020) a method to quantify 
EVs flexibility and a PID controller keeping the average SOC of an EV fleet constant over 
a day is proposed. In Sala et al. (2015) the impact of EVs is determined independently 
optimizing for their charging price over a Swiss test grid while in (Strobel et al. 2022) 
regional and national power system impacts due to EV charging are analyzed approxi-
mating a peak shaving problem using sequential optimization. Furthermore, the typi-
cal scale of pilot projects in this context is small: in Ravi and Aziz (2022) the authors 
reviewed 54 pilot projects using EVs for providing grid services, reporting an average 
number of 26 EVs per pilot. In Ma et al. (2016) a decentralized algorithm to optimize 

1  https://​www.​ev-​volum​es.​com

https://www.ev-volumes.com
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the charge (but not discharge) of 5000 EVs was presented. In Yi et al. (2020) a rule-base 
two-stage hierarchical approach to coordinate charging operations of thousands of EVs 
is presented. While this research only considers smart charging and not V2G, Caggiani 
et al. (2021) also includes the possibility of V2G in the relocation-optimization of one-
way car sharing. In Zhong et  al. (2014) 500 EVs are coordinated to achieve frequency 
regulation using a rule-based control in a V2G setting. Zhang et  al. (2021) regard the 
problem that is most closely related to our formulation, namely V2G strategies for car 
sharing, and they propose a two-stage stochastic optimization employing a 24 h reced-
ing horizon approach solved with a resolution of 15 min. They show that keeping integer 
variables lead to infeasible solution times (greater than 32 h in their case), and propose 
to both relax all integer variables to continuous one and use decomposition techniques 
in order to speed it up. However, they do not provide a scalability analysis of their algo-
rithms, nor mention the number of considered EVs. In contrast to optimal control 
methods, others propose data-driven optimization with learning methods. For example, 
Valogianni et al. (2013); Wan et al. (2018); Tuchnitz et al. (2021); Dang et al. (2019); Li 
et al. (2019) train a reinforcement learning (RL) agent to decide on charging behavior. 
However, these methods are usually focused on finding decision policies for single EVs, 
since finding the optimal joint actions for a fleet of EVs, which is the focus of our work, is 
a much more challenging task, in general requiring a multi-agent RL strategy, which usu-
ally involve to optimize over a large decision space. Sadeghianpourhamami et al. (2019) 
propose RL for guiding charging decisions for a whole vehicle fleet at once by reducing 
the action space by pooling EVs with similar energy requests; however, this was done not 
considering external inputs such as an aggregated profile, and only regards smart charg-
ing, not V2G.

Problem definition and formulation
In the following we start describing a generic formulation needed to effectively synchro-
nize the EV fleet charging and discharging operations, and later explain how relaxing 
some conditions can lower the overall computational complexity. The common setting 
for all the problem formulations is the following: a car-sharing provider operating a sta-
tionary fleet (as opposed to free-floating) is willing to jointly optimize all its EVs’ opera-
tions in order to reduce its own operating costs, whether by optimizing for a dynamic 
price, increasing its own self-consumption if local PV generation is present, or by pro-
viding services to the electric grid. Furthermore, the provider knows the schedule of the 
future EVs’ visited charging stations and their driven mileage for the next control hori-
zon. This can be realistically achieved using information from booking apps and by mod-
eling historical data. Based on these assumptions we can estimate the lower bounds for 
the EVs’ battery energy constraints needed to satisfy all their foreseen mobility demand, 
as we will show in Sect. “Numerical simulations”. These time series are required to for-
mulate the optimal control problem, as explained in the following section.

Monolithic formulations

Given a control horizon of T steps, ns stations, each station hosting nv,s vehicles, and 
called T  and S the sets of times and stations, the monolithic problem can be described 
as:
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where x ∈ R
T×

∑

s nv,s is the matrix containing the battery state for all the EVs in kWh. 
For sake of clarity, Table 1 reports all the parameters and optimization variables X  of the 
problem with associated dimensions and domains.

Here F(u) : RT× s nv,s → R and Q(x) : RT×
∑

s nv,s → R are two scalar convex func-
tions. In particular F(u) is a cost function associated with the charging and discharg-
ing actions of the EVs and depends on the specific business model and will be further 

(1)u∗ = argmin
x∈X

F(u)+ Q(x)

(2)xt+1,v = Avxt,v + Bvut,v −�et,v ∀t ∈ T , v ∈ V

(3)u � 0

(4)uc � xcu
T
c,max ud � (1− xc)u

T
d,max

(5)uc � cuTc,max ud � cuTd,max

(6)
∑

v∈Vt,s

uc,t,v − ud,t,v ∈ Us ∀t ∈ T , s ∈ S

(7)
∑

v∈Vt,s

ct,v ≤ nmax,s ∀t ∈ T , s ∈ S

Table 1  Variables, parameters and constants of the EV optimization problem

Name Type Dim. Description

c Var Z
T×nv
{0,1}

Ev connected to charger

xc Var Z
T×nv
{0,1}

Plug state

x Var R
T+1×nv Batteries state [kWh]

uc , ud Var R
T×nv Charging / discharging power [kW]

y Var R
T Energy costs [£]

r Par R
T Reference profile

l Par Z
T×nv Location matrix

nmax ,s Par Z
ns Stations’ chargers

ps,max Par R
ns Stations’ max power

ψbuy , ψsell Par R
T Buying and selling prices [£/kWh]

e Par R
T×nv Energy constraint matrix [kWh]

�e Par R
T×nv � energy at arrival [kWh]

p̂ Par R
T Forecasted station power [kW]

p̂pv Par R
T Forecasted PV profile

xstart Par R
nv Initial battery state [kWh]

xmin , xmax Par R
nv Capacity limits [kWh]

ud,min , ud,max Par R
nv×2 Discharging limits [kW]

uc,min , uc,max Par R
nv×2 Charging limits [kW]
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specified in Sect. “Problem definition and formulation” We now explain in detail the 
problem constraints. Equation  2 describes the EVs dynamic equation, taking into 
account self-discharge and asymmetric charging and discharging efficiencies encoded 
in the Av ∈ R and Bv ∈ R

2 discrete dynamics matrices, obtained by the continuous one 
through exact discretization Shieh et al. (1980):

where Ac =
1
ηsd

 and Bc = [ηch,
1
ηds

] , and ηsd , ηch and ηds are the characteristic self-dis-
charge constant, charge and discharge efficiencies, respectively. Since Bc defines an 
asymmetric behaviour in charging and discharging (even with equal charging/discharg-
ing coefficients), solving the battery scheduling requires to use two different variables for 
the charging and discharging powers for each EV. These are concatenated and denoted 
as a whole as u = [uc,ud] , where ud ,uc ∈ R

T ,nv are charging and discharging operations 
for all the EVs in kW. �e ∈ R

T ,nv is the (sparse) matrix containing the energy lost during 
the last EV trip, defined as:

where the first condition in Eq. (9) designs times in which the location matrix has a pos-
itive discrete derivative, that is, when the vth EV connects to a charging station. Here 
e ∈ R

T×nv is the (sparse) energy constraint matrix, containing the energy that the EVs 
require at departure times, while td(t) is the last departure time seen at step t. In other 
words, the minimum energies required at departure times and encoded in e are equal to 
the energy drops �et,v needed to be reintegrated at next arrival time. The energy require-
ments stored in e are assumed to be known at solution time for the next solution hori-
zon, and they are estimated starting by the total driven km for the last trip, as explained 
in Sect “Numberical simulations”. Since it is not always possible to guarantee that all the 
EVs satisfy the energy requirements stored in e at departure time, state constraints on 
the EVs SOC are taken into account as a threshold soft constraints encoded in Q(x):

where k is a large constant, which allows to retrieve feasible solutions even if some EVs 
are not fully charged. Equation (3) states that charging and discharging variables uc and 
ud are positive quantities. Equation (4) makes use of the binary variable xc , which indi-
cates whether a given EV is charging, to encode the bilinear constraint uc ⊙ ud = 0 , 
where ⊙ is the Hadamard product; this encodes the fact that each EV cannot charge and 
discharge simultaneously. It must be noted that this condition is sometimes naturally 
satisfied by the problem, depending on the objective function F(u), as shown for example 
in Garifi et  al. (2019). However, this is not always guaranteed; for example if we want 
to implement peak shaving in the presence of PV power plants. In this case EVs could 
occasionally decide to both charge and discharge and exploit the round-trip efficiency 
to dissipate more power and perform valley filling when the overall station network is a 
net energy producer. The same reasoning can be applied to quadratic profile tracking, as 

(8)A = eAcdt

B = A−1
c (Ad − I)Bc

(9)�et,v =

{
etd(t),v if �t lt,v > 0
0 otherwise

(10)Q(x) = k�max(e − x, 0)�22
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in the case of tracking a given power profile for providing services to the grid. In Eq. (5), 
the binary variable c ∈ R

T×nv is used to enforce charging and discharging powers to be 
zero when the car is not located at a station. Finally, called Vl,s the set of EVs located at 
station s at time t, Us the rectangular box set of power limits at station s, the last two Eqs. 
(6) and (7) represent the station constraints on maximum power and available number 
of charging stations, respectively. The problem composed by Eqs.  1–7 is very general, 
however it is computationally expensive; due to the presence of the soft constraint on 
the minimum required energy (10) (and to the possible quadratic objectives included in 
F(u)), the problem belongs to the MIQP class, with a number of variables in the order of 
O(Tnv) , where in our case nv is in the order of 103 and T is equal to 96, since we consider 
15 min steps and a daily control horizon. We now discuss how the original problem can 
be simplified by relaxing or removing some of the constraints 4–7, and the implications 
for the problem’s formulation hypothesis.

Strictly stationary mobility model If the sharing model is strictly stationary, meaning that 
the EVs are permanently assigned to a charging station and can only be plugged there, we 
can relax Eqs. (6) and (7) which encode the maximum power and connection limits per sta-
tion. These can be rewritten as:

The only difference to Eqs. (6) and (7) is that the set Vs is no more time dependent. 
This effectively removes the interlink between different stations given by EVs travelling 
between them; in other words, sets of EVs belonging to different stations will not influ-
ence each other directly, but only by means of the system-level objective F(u). Since the 
rest of Eqs. (3), (4) do not interlink stations, the problem can be easily decomposed. It 
must be noted that the original problem can also be decomposed; however, if the mobil-
ity model is not strictly stationary, it is likely that the influencing graph between EVs is 
dense, meaning that the behaviour of a given EV can be influenced by a high number 
of other EVs, dependent on the routing between stations. This will require to introduce 
decoupling variables for all the states and control variables, which involves a message 
passing of variables in the order of O(Tnvns) at each iteration. On the contrary, when 
F(u) is an aggregate function, as in all the cases presented in this paper, decomposing the 
problem requires messages with size in the order of O(Tns) at each iteration. Since ns << 
nv and nv is in the order of thousands, the strictly stationary hypothesis will results in a 
data transmission reduction in the order of 104.

Stations are not downsized Each station has enough chargers to accommodate all its 
assigned EVs at the same time. This hypothesis, combined with the previous one, allows 
us to remove completely the binary variable c indicating whether an EV is connected to a 
charger. In fact, Eq. (7) is not needed anymore, and Eq. (5) can be replaced with:

(11)
∑

v∈Vs

uc,t,v − ud,t,v ∈ Us ∀t ∈ T , s ∈ S

(12)
∑

v∈Vs

ct,v ≤ nmax,s ∀t ∈ T , s ∈ S

(13)uc � luTc,max ud � luTd,max
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where l is the location matrix parameter, with entries lt,v equal to 0 if the vth vehicle is 
not located in any stations at time t.

Decomposition and business models

In this section we show how the original problem can be decomposed by stations under 
the hypothesis of a strictly stationary mobility model and that stations are not down-
sized. As we keep the bidirectional hypothesis, we still need to include the bilinear con-
straint uc ⊙ ud = 0 , handled by equations (4) and by the integer variable xc . In the next 
session we will discuss alternative methods to handle this bilinear constraint. Under 
the aforementioned hypothesis the problem can be decomposed using the alternating 
method of multipliers (ADMM) Boyd (2010). Following the standard ADMM proce-
dure, since we want to decompose per station, we should introduce ns auxiliary variables 
representing the total power at each charging station. However, since in our case we are 
only interested in objective computed at the aggregation level of stations or for the over-
all fleet, F(u) can be written in the form

where S is a system level objective, that is the objective to minimize at fleet 
level, and C is a cost function that should be minimized at station level. Here 
ps(u) = p̂s,load − p̂s,pv +

∑

v∈Vs

(
uc,v − ud,v

)
 is the sum of forecasted base load and PV 

production (if any) for station s and the sum of the charging and discharging operations 
of all EVs belonging to s. Considering this form for F(u), we need to introduce only one 
additional variable z ∈ R

T representing the average power of the ns controlled stations. 
The final problem before the decomposition can be written as:

We can then proceed to formulate the augmented Lagrangian objective function in 
scaled form:

Since problem (15)–(17) can be seen as a sharing problem, we can further simplify the 
standard ADMM following the description in Boyd (2010) for this specific case. As the 
choice of ADMM’s parameter to achieve a good convergence rate can be problematic 
under the presence of equality constraints, we use a slightly different form, namely 
the linearized ADMM (He and Yuan 2015; Xu et al. (2017); briefly speaking, this form 

(14)F(u) = S

(
∑

s∈S

ps(u)

)

+
∑

s∈S

C(ps(u))

(15)u∗ = argmin
x∈X

S(zns)+
∑

s∈S

C(ps)+ Q(x)

(16)s.t.(2), (3), (4), (13), (12), (11)

(17)z =
1

ns

∑

s∈S

ps(u) := ps(u)

(18)Lρ = S(zns)+
∑

s∈S

C(ps)+ Q(x)+
ρ

2
�ps(uv)− z + ��22



Page 8 of 20Nespoli et al. Energy Informatics  2023, 6(Suppl 1):40

introduces a quadratic penalty for deviating from the decision actions at the previous 
iteration. We can then write the minimization in the primal and dual variables update as:

where us = [uTv ]
T ∀ v ∈ Vs and us = [xTv ]

T ∀ v ∈ Vs are the vectors of opera-
tions and states of all the EVs belonging to station s. Following Boyd (2010), 
rku = ps(us)

k − ps(us)
k + zk − �

k and rkz = ps(us)
k+1 + �

k are the reference signals for 
the u and z update. Line (20) contains the dumping term of the linearized ADMM form 
for the primal variable us update, γ being a dumping parameter.

The two functions C(ps(us)) and S(zns) , representing respectively the station and 
the fleet objectives, can be used to tackle different business models. For example, the 
fleet objective can be defined to minimize the intra-day cost, reduce the power peak or 
perform profile tracking. The station level objective can be used to maximize station’s 
self-consumption, minimize charging times, perform local peak shaving or minimize 
station’s costs. Here we just present the last case, energy cost minimization, which we 
will apply in the numerical examples. Called ψbuy ∈ R

T and ψsell ∈ R
T the time-depend-

ent buying and selling prices in cts/kWh. In the presence of local generation e.g. due to 
PV power plants at the station’s location, the cost function can be either positive or neg-
ative, depending on the overall power at a given time and can be expressed as in Eq. (24).

The cost can be thought of as the maximum over two affine functions (the first and 
second line of Eq. (24), respectively). If ψbuy is always greater than ψsell we can mini-
mize energy costs by introducing an auxiliary variable y ∈ R

T representing the station’s 
energy costs. We can restrict the feasible space for y to the epigraph of the cost function 
C(ps(us)) by adding the two following constraints to the station problem (19)–(21):

Minimizing y then guarantees that its value at the optimum, y∗ , will lie on the epi-
graph’s lower boundary (and will thus represents the prosumer’s total costs). In this case 

(19)uk+1
s = argmin

uv

C(ps(us))+ Q(xs)+
ρ

2
�ps(us)− rku�

2
2

(20)+
γ

2
�us − uks �

2
2

(21)s.t. (2), (3), (4), (13), (12), (11)

(22)zk+1 = argmin
z

S(zns)+
ρ

2
�rz − zk�22

(23)�
k+1 = �+ ps(us)

k+1 − zk+1

(24)C(ps,t) =

{
ψbuy,tps,t , if ps,t ≥ 0
ψsell,tps,t , otherwise

(25)y ≥ ψbuyps

(26)y ≥ ψsellps
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C(ps(us)) =
∑T

t ytδt/3600 where δt is the considered time step. Even without setting a 
system-level objective, this strategy can result in some EVs performing arbitrage, charg-
ing at low price times and later discharging to other EVs if the price swing is high enough 
to compensate for the round-trip efficiency.

Bilinear constraints handling

We now present the proposed method to handle the bilinear constraint uc ⊙ ud = 0 inside 
the ADMM iterations of the decomposed problem (19)–(23), without using the integer 
variable formulation encoded in Eq. (4). Linear complementarity constraints arise in a vari-
ety of problems from bilevel optimization to eigenvalue complementary problems. Given a 
scalar objective function f(x, y) of two variables x, y ∈ R

T
+ , the simplest form of the comple-

mentarity constraint problem can be written as:

where z = [xT , yT ]T . Depending on the complexity of the underlying problem, which 
is in general NP-hard, different iterative methods exist to find a feasible solution or a 
stationary point for this kind of problem Júdice (2014). One of the most used strategy is 
the one implemented in the YALMIP package for Matlab, which uses the built-in solver 
for non-convex problems BMIBNB. The procedure sequentially finds refinements of an 
upper and a lower bounds for the problem, respectively found using a local non-linear 
and a convex solver. The next iteration is then found using a standard branch-and-bound 
logic and split the feasible space into two new boxes Envelope approximations for global 
optimization (2016). The convex approximation for bilinear problems is found using a 
McCormick formulation. Castro (2015) proposes tighter bounds for bilinear problems 
exploiting McCormick relaxations and a sequence of MILP problems. The McCormick 
envelope has been also proposed for the relaxation of factorable functions by systematic 
subgradient construction Mitsos et al. (2009), a concept similar to automatic differentia-
tion. In this work we have chosen a different approach relying on the following observa-
tion: since we are solving the main problem iteratively, we want to exploit an iterative 
relaxation running in parallel with the standard ADMM iteration, without relying on 
branch and bound methods. Running a partial optimization for one part of the objec-
tive function for ADMM is theoretically justified by the generalized form of ADMM 
(GADMM) introduced in Eckstein and Bertsekas (1992). The GADMM guarantees the 
convergence even in the case in which the local (stations’) problems are only partially 
solved. This allows us to use a first order Taylor expansion around the previous solution 
to approximate the complementarity constraint x ⊙ y = 0 , in combination with a stand-
ard ADMM using Lagrangian relaxation. We can write the first order Taylor expansion 
around the previous solution as:

(27)argmin
z

f (z)

(28)s.t. xT y = 0

(29)
c̃(zk , zk−1) = xk−1yk−1 + xk−1(yk − yk−1)

+ yk−1(xk − xk−1)
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We propose to use this to minimize f(z) while respecting the constraint, as reported in 
algorithm 1.

Here w is an auxiliary variable representing x ⊙ y , which we want to shrink to zero; 
lines 2–4 are standard ADMM iterations where line 3 is the analytical solution of the 
minimization of the Lagrangian function with respect to w; finally line 5 is a dumped 
iteration over the last solution, with dumping parameter α . A different approach is pro-
posed by Wang et al. (2018), where they provided algorithm 2, which is a standard appli-
cation of ADMM to two objective functions, f(z) and IxT y=0 , where IxT y=0 is the feasible 
set for the complementarity constraint. Contrary to algorithm 1 that we propose, this 
approach guarantees that the problem always satisfies the complementary constraint 
at each iteration, due to the projection onto the feasible space of IxT y=0 at line 3. The 
authors proved that algorithm 2 converges into a stationary point for the bilinear con-
strained problem when f(z) is a smooth function. Algorithms 1 and 2 are appealing since 
they are easily implementable and don’t require to sequentially explore the whole solu-
tion space with a branch-and-bound strategy.

Numerical simulations
Data analysis and preprocessing

We test our optimization framework on a dataset made available by a car sharing oper-
ator managing a fleet of around 3000 vehicles. The dataset covers all car reservations 
from 1st of January 2019 until 31st of July 2020, thereby including the period before the 
COVID-19 pandemic as well as the first wave. In total, there are around 2 million book-
ings during this period, comprising 140,880 unique users and 4461 vehicles. Due to the 
setting of the considered car sharing service, only a small fraction of trips are one-way 
(0.3%), and during the observation period only 3.5% trips involved electric vehicles. Fur-
thermore, the number of vehicles per station is low on average in the considered system. 
73% of all stations offer a single vehicle, further 15% only two vehicles. 5% of all sta-
tions have five or more vehicles. The limited availability of parking slots per station also 
explains the low fraction of one-way trips.
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We first analyze the flexibility of vehicles for V2G operations based on their daily and 
overall demand. The left panel of Fig. 1 shows the histogram of reservations by vehicle. 
Clearly, there are strong differences in the usage patterns of different vehicles. 48% of the 
vehicles have at least one reservation in less than 50% of the days. These findings imply 
a strong opportunity for the car sharing operator to utilize its fleet for V2G. However, 
the most flexibility is given during the night: the right panel of Fig. 1 shows a bell-shaped 
curve of vehicle utilization over the course of a day, peaking in the afternoon. On average 
21% of vehicles are reserved at any time. Last, we validate the assumption that most car 
reservations are known in advance, as it is necessary for optimizing the charging sched-
ule. Concerning the spontaneity of the bookings, around 34% cars are reserved more 
than a day in advance, whereas 20% of the reservations are done less than an hour before 
the reservation period.

The data are discretized to a temporal resolution of 15-min steps. We remove can-
celled trips but include service reservations necessary for relocating vehicles. We use the 
reservation period in contrast to the actual driving period to define the time span of car 
usage. However, this leads to overlapping trips in some cases when a returned vehicle 
was taken by the next user before the end of the original reservation period. The reser-
vation period is therefore cut to the end of the previous drive / start of the next drive if 
necessary. Reservations without a ride are assumed to be cancelled and are not taken 
into account.

ICE mobility patterns and state of charge modeling

The car sharing service operator has set the ambitious goal to electrify their entire fleet 
by 2030. In order to provide a realistic simulation of the future fleet, and to demonstrate 
how our optimization approach scales with the number of stations, we propose to utilize 
the booking patterns of ICE vehicles as projected EV usage patterns, under the assump-
tion of a similar driving behavior. Since only 3.5% of all trips are EV trips, this scales up 
the number of reservations by a factor of more than 25. In consultation with the car 
sharing operator we assign an EV model to each ICE vehicle based on the car category in 
the car sharing operator service, i.e. “Budget”, “Combi”, “Transporter” etc. For example, 
all vehicles of the category “Transporter” were simulated as Mercedes-Benz eVito vehi-
cles, and all in category “Budget” were assigned the VW e-up model.

Two pieces of information are needed as input to the optimization problem: When 
a vehicle is plugged in at a station, and the required state of charge at the start of a res-
ervation. Due to the modeling of ICEs as EVs and the lack of SOC data in the provided 

Fig. 1  Reservations statistics. Left: Reservations by vehicle. Right: Reserved vehicles by time of the day
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dataset, we approximate the latter by the number of driven kilometers. Given the vehicle 
specifications (i.e. battery range and battery capacity) we compute the required SOC by 
multiplying the number of driven kilometers with the average energy consumption.

Formulations comparison

We evaluated the numerical advantage of the proposed formulations in two steps. 
At first, we compared the monolithic formulation (15)–(17) to the decomposed one 
(19)–(23) using integer variables for handling bilinear constraints. In a second step, 
we evaluated the decrease in computational time in using the proposed linear meth-
ods for the bilinear constraints in the decomposed problems. For both these com-
parisons we vary the range of total EVs and the horizon length. The stations’ objective 
function was set to energy cost minimization, while the system level objective was 
set to a profile tracking with a zero reference profile. The results of the first com-
parison are reported in the heatmaps of Fig.  2. For this comparison, we solved the 
monolithic problem using GUROBI with standard absolute and relative tolerances, 
while the stopping criterion for the decomposed formulation is a joint condition on 
the primal and dual residual, as described in §3.3.1 of Boyd (2010), using ǫabs = 1e − 6 
and ǫrel = 1e − 4 , respectively. The first two heatmaps refer to the total computational 
time of the decomposed problem and the monolithic formulation, respectively. The 
last plot shows the ratio of the two, a value lower than one meaning a lower com-
putational time for the decomposed formulation. As expected, the computational 
advantage over the monolithic formulation increases with both the number of EVs 
and the length of the horizon. The experimental data for up to 360 vehicles shows a 
clear trend; the computational time of the decomposed problem for the most time 
consuming configuration being roughly 20% of the time needed by the monolithic 
formulation. The second comparison was done using a fixed number of iterations, 
which was set to 800. At first, we tuned the parameters of algorithm 1 and 2 w.r.t. the 
solution reached by the integer formulation, using a random sampling strategy over 
the configuration with 144 EVs and an 18 steps horizon. The parameters ( ρ and γ for 1 
and ρ for 2, respectively) were then held constant over the different combinations of 
EVs and horizon lengths. We found that both the algorithms’ performance was stable 
for a large range of parameters values. The computational times are shown in Fig. 3, 
where the first heatmap refers to the Taylor relaxation, the second one to the integer 

Fig. 2  Computational time, in seconds, for different number of timesteps and considered EVs for the 
decomposed (left plot), the monolithic formulation (center plot) and the ratio of the two (right plot)
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formulation and the last is the ratio of the two. As the computational advantage is 
due to the change of the class of the problem from MIQP to QP, we found a negligible 
difference in the computation times between algorithm 1 and 2, and thus here report 
only results for the Taylor relaxation. Also in this case there is a clear trend in the 
reduction of computational time with increasing number of EVs and steps. The high-
est reduction was found for the most time consuming configuration of 577 EVs and 18 
steps, with the Taylor relaxation using roughly 35% of the time needed by the integer 
formulation; once again we expect this value to get lower for problems with higher 
number of EVs.

Figure 4 shows the distribution of �abs,rel Jc , that is, the relative value of the absolute 
deviations of the objective functions w.r.t. the optimal value retrieved with the inte-
ger formulation, for all the cases reported in Fig. 3. Here Jc is defined as the sum of 
the different objective functions without including any augmented Lagrangian terms 
(neither the one deriving by the problem decomposition nor the ones of the linear 
formulations) in order to have a fair comparison:

Fig. 3  Computational time, in seconds, for different number of timesteps and considered EVs for the 
decomposed problem using the Taylor bilinear relaxation (left plot), the integer formulation (center plot) and 
the ratio of the two (right plot)

Fig. 4  Comparison of convergence dynamics using the Taylor or Wang formulation for the bilinear constraint 
relaxation, in terms of relative differences in total objective w.r.t. integer formulation, when stations optimize 
for costs and the fleet has a reference tracking objective. Confidence interval refers to all the 42 combinations 
of horizon length and number of EVs of Fig. 3
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Both the algorithms converge to the solution of the integer formulation with some oscil-
lations, even if the Taylor-based relaxation shows better convergence, achieving a rela-
tive difference in the order of 1e − 3 for all the cases after 800 iterations.

Applications
We have tested our proposed method on two different applications, namely the retrieval 
of the flexibility potential of an EV fleet and the estimation of economic benefits due to 
peak shaving for a distribution system operator (DSO).

Flexibility potential

We use the proposed algorithm 1 to retrieve flexibility boundaries for an EV fleet. The 
setting is the following: an EV manager bidding for ancillary services is interested to 
know for a given leading time how many MW, for how long, can be requested to the EV 
fleet for both upward and downward flexibility calls, and how much it costs per MWh. 
This information can then be used by the manager to make more informative bids. We 
followed the approach proposed in Oldewurtel et al. (2013) to achieve hourly flexibility 
boundary for an aggregation of office buildings. For each hour of the day, we solve the 
optimization problem (19)–(23), where each station minimizes its total energy costs for 
the EVs charging operations, and C(ps(us)) is modeled through the auxiliary variable y as 
explained in Sect. “Problem definition and formulation”. Since the considered car sharing 
operator’s stations are located under different Swiss DSOs, we used data from ElCom, 
F.E.C. to link them with the correct values for the buying and selling energy prices ψbuy 
and ψsell , depending on their location. Additionally, we probabilistically assigned each 
station with a PV power plant, with a nominal power proportional to the maximum 
number of hosted EVs at that station. The system level objective function is set to be:

where r is the reference profile, Th is the set of timesteps belonging to hour h and ψf  is the 
price of flexibility, which is constant over the considered hour. Equation (31) can be seen 
as a linear punishment in deviating from a flexibility call. We simulated a total number 
of 1440 EVs, picking stations at random and then keeping all the associated vehicles. Fig-
ure 5 shows the effect of changing the price of flexibility at noon, while Fig. 6   shows 
the flexibility boundaries over a whole day.  Finally, we study the effect of the flexibility 
request on the other considered costs in the optimization problem. Figure 7 shows the 
change in charging costs, loss of SOC (Eq. 10), tracking revenues and total costs for the 
noon case. As expected, as the price level increases, the tracking revenues rises for both 
upward and downward flexibility calls, but this comes at the expense of higher charging 
costs. The change of cost for the SOC lost is negligible compared to the other costs.  

(30)Jc = F(u)+ Q(x)+
γ

2
�u− uk�22

(31)S

(
∑

s∈S

ps(u)

)

=
∑

t∈Th

ψf |r −
∑

s∈S

ps(u)|
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Peak shaving potential for a distribution system operator

To test a real-world application, we conducted a simulation test case using data from 
Elektrizitätswerk der Stadt Zürich (EWZ), the DSO of the city of Zürich, assuming 
that the entire car sharing fleet is electric. We utilized fleet usage data for the year 
2019 from the region serviced by EWZ, along with the load data for the city of Zürich 
during the same period, which is available as open data Stadt Zürich (2023). The cho-
sen region encompassed 246 car sharing stations, housing a total of 726 vehicles. We 

Fig. 5  Response to flexibility call. Left: Example of response to upward and downward flexibility calls as a 
function of price, compared to the baseline case in which there is no system level costs and the stations 
just optimize for their local energy prices. Right: Flexibility envelope for different levels of ψf  , showing the 
maximum attainable flexibility for hourly slots of the day

Fig. 6  Deviation from the baseline power profile as a function of flexibility price ψf  , for the noon case

Fig. 7  Behaviour of different fleet costs as a function of flexibility price ψf  , for the noon case
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studied the flexibility potential considering all the available car sharing stations as EV 
charging stations. Throughout the analyzed year, the maximum number of concur-
rently parked vehicles at (potentially) charging stations reached 486, while the mini-
mum and mean numbers were 60 and 360, respectively. The system-level objective 
function consists in a bonus-malus mechanism that incentivizes the fleet to reduce 
the peak load of the DSO compared to a baseline scenario where no EVs are present. 
The fleet is penalized if it increases the DSO’s peak load and rewarded if it reduces the 
peak load through vehicle-to-grid (V2G) operations. The reward is granted until the 
peak load is reduced to the value already reached by the DSO during the considered 
month; beyond that point, the reward plateaus.

Given a day-ahead forecast power profile for the DSO, p̂DSO , and the current peak 
load of the DSO for the given month up to now, κ , the objective is to minimize S:

where δ− and δ+ are the (mutually exclusive) positive and negative deviations from the 
current peak and ψ− and ψ+ are the reward for reducing or increasing the peak.Station-
level optimization is a straightforward minimization of charging costs at the charging 
station coupling point with the DSO. The overall optimization problem is defined by 
(19)–(23), with the following additional constraints:

where ν is the new power peak, ǫ is a binary variable, which is true when the peak is 
decreased with respect to the baseline and M is a large constant used for modeling 
the logical constraints. With the current formulation to ensure convexity, ψ− needs to 
be smaller or equal to ψ+ . In our simulations, they were set to be equal to each other 

(32)S = −ψ− · δ− + ψ+ · δ+

(33)
ν ≥ κ

(34)
ν ≥

∑

s∈S

ps(u)

︸ ︷︷ ︸

fleet power profile

+p̂DSO

(35)max (p̂DSO)− ν ≤ ǫ ·M

(36)δ− ≤ max (p̂DSO)− ν + (1− ǫ) ·M

(37)δ− ≤ ǫ ·M

(38)δ− ≥ 0

(39)δ+ ≥ ν −max (p̂DSO)− ǫ ·M

(40)δ+ ≤ (1− ǫ) ·M

(41)δ+ ≥ 0
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ψ− = ψ+ = ψ . We systematically varied ψ and assessed the charging costs for the fleet 
with respect to a baseline scenario in which ψ = 0 and the reduction in costs for the 
DSO consists of the difference between the reduction in peak costs paid to the transmis-
sion system operator (TSO) and the reward paid to the fleet for the service. The results 
are summarized in Table 2.

The results of our analysis can be organized into several key findings. First, as the 
value of ψ increases, the fleet response intensifies, leading to a more substantial 
reduction in the DSO peak. However, this increased response comes at a cost to the 
fleet for charging at the station outlet. The two primary factors contributing to these 
energy costs when providing V2G services are: 

1.	 The purchase and sale prices of energy display asymmetry, with the sale price being 
lower than the purchase price. This difference mainly results from grid fees and taxes 
incurred during energy consumption.

2.	 Energy losses occur during storage in batteries, with a round trip efficiency set at 
87% Schram et al. (2020).

Despite the increased energy costs, the DSO’s premium paid to the fleet offsets these 
expenses, resulting in overall cost savings for the fleet compared to the base case 
without a DSO agreement and bonus-malus mechanism.

Our investigation uncovers two optimal points, contingent upon the fleet receiving 
reimbursement for taxes and grid tariffs, at which both the fleet owner and the DSO 
can realize cost savings. These points correspond to ψ values of 50 and 200, respec-
tively. In cases where the value of ψ is minimal, the fleet does not inject energy into 
the grid due to high costs, but still manages to lower its peak consumption to a level 
comparable to when no EV fleet is present. This observation implies that even with 
smart charging (V1G) alone, integrating the car fleet into Zurich’s grid is possible 
without increasing its peak consumption.

Lastly, it is worth noting that the DSO not only benefits from peak reduction but 
also collects more revenue from grid tariffs due to the higher energy consumption of 
the fleet compared to the baseline scenario. An alternative tariff scheme could involve 

Table 2  Costs and benefits for peak shaving for the DSO of Zurich in the year 2019

Bold values indicate the best performance among the tested values of ψ 

ψ [CHF/
MW]

TSO-DSO 
avoided 
peak [MW]

Paid to 
fleet [CHF]

DSO 
savings 
[CHF]

Costs 
energy 
fleet [CHF]

Fleet 
savings 
[CHF]

Rel. 
savings 
fleet %

Rel. savings 
DSO %

0 0 0 0 319596 0 0 0

10 1.11 0.387 4490 319596 0.0719 0 0.0208

50 23.3 4505 89982 325316 − 1215 − 0.38 0.416

100 37.2 18305 132633 336289 1611 0.504 0.613

200 65.4 66854 198155 355777 30673 9.6 0.916
500 71 209826 78276 378565 150857 47.2 0.362

1000 71.1 423501 − 135259 380604 362493 113 − 0.625

no EVs 1.27 0 5147 – – – 0.0238
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compensating vehicles for grid fees and charges when they reinject energy via V2G, 
a practice already in place in countries like Italy Autorita di  Regolazione per Ener-
gia Reti e Ambiente (2022). As expected, under this kind of tariff scheme, the fleet 
requires a lower bonus to perform peak shaving. The outcomes of this scenario are 
presented in Table 3.

It is important to point out that these results represent the theoretical maximum peak 
shaving achievable by a fleet, inflexible under mobility demand. This outcome assumes 
perfect knowledge of consumption, vehicle departure and arrival times, and an accu-
rate DSO consumption curve prediction. An assessment of the impact on performance 
resulting from imperfect forecasts falls beyond the scope of this paper.

Conclusions
In this paper we presented an optimization model to control the charging and discharg-
ing operation of large EV fleets. We started by modeling a generic case in which the 
EVs are allowed to relocate between stations and then focused on the strictly stationary 
model where EVs are picked up and dropped off at the same station since this reflects 
the conditions of the presented case study. For this last case, we demonstrated how the 
problem can be decomposed by stations, allowing to reduce the overall computational 
time. Furthermore, we used iterative methods to handle the bilinear constraints arising 
from the V2G formulation, which enables us to use a larger class of (free) solvers. For 
different combinations of horizon’s lengths and number of EVs, we reported numeri-
cal results showing substantial speed ups w.r.t. the monolithic formulation, due to both 
problem decomposition and the use of relaxations for the bilinear constraints.

Subsequently, we implemented the developed algorithm in two distinct case stud-
ies. The first case study involved assessing the maximum fleet flexibility potential at a 
national level for both positive and negative flexibility requests. The second case study 
examined the peak shaving potential for a Swiss DSO. Collectively, these case studies 
provide valuable insights into the maximum flexibility potential of a station-based car-
sharing fleet in Switzerland.

We see multiple opportunities for future work. First, many car sharing bookings are 
spontaneous, limiting the applicability of day-ahead planning in real world scenarios. 
This could be tackled with the integration of booking forecasts; since forecasts intro-
duce uncertainty, a receding horizon optimization can be used to minimize errors. 

Table 3  EWZ’s peak shaving for the year 2019, with reimbursement of taxes and grid tariff when 
offering V2G service

Bold values indicate the best performance among the tested values of ψ 

ψ [CHF/
MW]

TSO-DSO 
avoided 
peak [MW]

Paid to fleet 
[CHF]

DSO 
savings 
[CHF]

Costs 
energy fleet 
[CHF]

Fleet 
savings 
[CHF]

Rel. savings 
fleet %

Rel. 
savings 
DSO %

0 0 0 0 319596 0 0 0

10 20.8 799 83511 320347 − 87.7 − 0.027 0.386

50 65.6 17524 248381 327036 9948 3.114 1.148
100 69.6 40794 241514 330564 29690 9.294 1.116

200 70.6 84268 201944 331734 71994 22.54 0.934

500 70.9 211816 75744 331892 199385 62.41 0.350
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Additionally, a stochastic formulation e.g. tree-based stochastic MPC Bernardini and 
Bemporad (2009), can be used to further tackle the uncertainty of bookings and PV 
generation.
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