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Abstract 

In this article, we address the question of electric bus planning and operation 
under stochastic travel time and energy consumption. Uncertainties in the envi-
ronment may cause disruptions to the planning and operation of electric buses, 
and a transportation planner must anticipate such conditions and be able to respond 
appropriately. One of the preconditions for planning robust strategies is understand-
ing the existence and impact of multiple trade-off scenarios, which is the basis 
for this study. We model the travel time delays and trip energy consumption using 
estimated probability density functions and use a stochastic, mixed-integer formula-
tion with chance constraints to evaluate several trade-off scenarios for electric bus 
fleets under uncertainty. The results show the existence of trade-off scenarios that lead 
to varying degrees of impacts related to network and environment. Careful fleet 
planning, dispatch, and charge control enable us to make the balance between these 
trade-offs and achieve better operational performances under uncertainty.

Keywords:  Transportation planning, Scheduling, Electric buses, Stochastic 
optimization, Charge management, Grid impacts

Introduction
Road transportation is a significant CO2 emission contributor that threatens our planet. 
According to International Energy Agency (IEA), about 11% of the global CO2 emissions 
from existing energy infrastructure originate from the transportation sector. Roughly 
two-thirds of that is due to road transportation (IEA 2020).

In recent years, there has been growing momentum for the electrification of the 
transport sector as a potential solution for reducing greenhouse gas (GHG) emissions. 
Besides being climate-friendly, electrification can also reduce air pollution and noise, 
making electrification an attractive choice for many transportation companies. In June 
2023, the Swiss public accepted “the Climate and innovation act” that, among other 
things, sets a 100% GHG reduction target for the transportation sector by 2050 (Shields 
2022). Electrification and renewable energy integration is the prime strategy to achieve 
this policy target.
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This article focuses on public buses that constitute a significant part of Europe’s pub-
lic transportation network, covering most urban and rural areas. Efficient planning and 
management of electric bus fleets, with a comprehensive understanding of the associ-
ated trade-offs, is crucial for the success of bus electrification, despite the clear environ-
mental benefits it offers. Especially under stochastic conditions where the travel time 
and energy consumption of trips cannot be accurately predicted, a public transportation 
planner must anticipate the trade-off scenarios that may emerge from various contin-
gency situations and plan for them in advance.

This article presents a mixed-integer optimization method to solve the electric bus 
planning and scheduling problem with constraints related to charging and feasible time 
windows. We model the average speed of each trip and the energy consumption as a 
stochastic function that represents the effects of unpredictable road traffic. Compared 
to a baseline scenario, various levels of unpredictability in the environment can cause 
operational contingencies with varying magnitudes that transportation planners could 
address by choosing trade-off options. We focus our study on a subset of these trade-off 
options and analyze what economic and environmental consequences that may arise.

The rest of the article contains a chapter investigating the state-of-the-art techniques 
related to electric bus planning and scheduling, the proposed mathematical formulation 
of the problem, the case study description, and the results and the conclusion.

State‑of‑the‑art
Electric bus planning and scheduling problem belong to the broad class of optimization 
problems known as the Vehicle Scheduling Problem (VSP). We can further subdivide 
VSPs based on the number of depots (single or multiple depot VSPs) and whether the 
buses are homogeneous or heterogeneous. A single depot problem is a typical case for 
small transportation companies, and it can be solved within a polynomial time (Bunte 
and Kliewer 2009). Multiple depot VSP, on the other hand, is NP-hard (Bunte and 
Kliewer 2009; Gkiotsalitis et al. 2021). Homogeneous VSP refers to a scenario where all 
vehicles have the same characteristics, such as type and capacity (Baldacci et al. 2008). In 
contrast, heterogeneous VSP involves vehicles with different characteristics.

Some of the earliest work on solving the VSP using minimum cost flow, linear assign-
ment, and quasi-assignment methods can be found in Daduna and Pinto Paixão (1995), 
Freling et  al. (2001), Orloff (1976), Paixão and Branco (1987). Several variants of VSP 
emerged over time, e.g., Capacitated VSP (Borčinová 2017), Time-window VSP (Ilin 
et al. 2018), and VSP with stochastic travel demands (Lei et al. 2011), all of which tighten 
the original VSP model with additional constraints related to the vehicle capacities, fea-
sible time-windows, and variable uncertainties.

Forming a VSP with electric buses requires additional constraints for the maximum 
driving range, battery charging, discharging, and recharging time-window constraints. 
In transportation modeling literature, the driving range constraints are often described 
as either the maximum driving distance (Li 2014) or the maximum driving time (Wang 
and Shen 2007) after one charging event. Using travel distance to determine the driving 
range is a rough proxy since energy consumption is a function of several variables, such 
as the distance and travel speed, passenger loading, terrain gradient, weather conditions, 
and the current battery life. An optimization model that considers the driving speed and 
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passenger loading is presented in Li et al. (2019). To reduce the number of variables and 
improve the computational time, the authors avoid continuously tracking the battery’s 
state of charge. Since energy consumption is not tracked explicitly, the batteries may run 
out in some extreme situations, even with satisfying model constraints. However, under 
strict assumptions, the authors solve the electric VSP problem with time constraints 
within a finite time. A modeling strategy presented in Rinaldi et  al. (2018) assigns a 
binary decision variable to indicate whether or not a bus has sufficient energy to perform 
a trip at a given time step. Since the authors keep track of the state of charge (SOC) at 
each time step, the resulting mixed-integer model becomes exponentially large as the 
number of trips or buses increases.

The variability of traffic conditions in the real world can be significant, prompting 
scientists to investigate techniques for incorporating stochasticities in travel time and 
energy consumption into electric bus scheduling models. Tang et al. (2019) introduced 
a method that addresses uncertain trip durations by using a tuneable buffer distance 
parameter to extend the electric bus’ operational range. The stochastic network flow 
methodology proposed by Shen et al. (2023) formulates the problem as a directed graph, 
wherein the nodes consist of trip and depot nodes. Each trip node is associated with 
a specific start time, a stochastic trip duration, and a stochastic energy consumption 
described by a probability density function (PDF). In the robust optimization approach 
presented in Jiang et al. (2021), the stochastic nature of travel time is modeled as a car-
dinality-constrained uncertainty set. The optimization problem seeks a robust solution, 
feasible even under the worst-case uncertainty conditions.

Despite the current work in the literature on the various formulations and solution 
methods for the electric bus planning and scheduling problem, there is a lack of studies 
on evaluating different trade-off scenarios under stochastic conditions. This article is an 
attempt to address the research gap mentioned above.

Mathematical formulation
The transportation (quasi-assignment) model, elaborated in Bunte and Kliewer (2009) 
and (Daduna and Pinto Paixão 1995), serves as the foundation for our mathematical for-
mulation. The key idea is to model the problem as a series of decisions or events that can 
be mathematically represented as a directed decision graph. The following subsections 
provide a comprehensive description of the mathematical formulation of the optimiza-
tion problem. Appendix 1: Table 5 provides a complete guide to the nomenclature used 
in the following subsections. Figure 1 shows the structure of the resulting decision graph 
for the case of only two trips.

Graph generation and compatibility constraints

Let us define the following sets:
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•	 N = {n0, n1, ..., nk} is the set of nodes. Each node represents a scheduled trip from a 
starting station nsk at time tsk to a destination ndk  with a planned travel time tk , travel 
distance sk and planned energy consumption ek,

•	 D = Ds ∪ Dd where Ds and Dd are the sets of start and end depot indices,1

•	 C = {c0, c1, ..., ck} is the set of nodes corresponding to charging events at each 
ni ∈ N  . In other words, visiting ci indicates the charging event at the destination of 
trip ni . It also implies |C| = |N | , if charging infrastructure is available at each node. If 
charging occurs only at the depot, C = ∅,

•	 W = {w0,w1, ...,wk} is the set of nodes corresponding to depot charging events. In 
other words, visiting wi indicates that a bus dead-head to the depot and recharges 
batteries after completing the trip ni ∈ N  . It also implies that |W | = |N |,

•	 B = {“elec′′, “fuel′′} is the set of heterogeneous bus types in the problem.

Let us say that G = (V ,A) is a directed graph where V = N ∪ C ∪ D ∪W  represents the 
set of nodes. A = {(i, j) : i, j ∈ V , i �= j} represents the set of arcs in the network where 
each arc (i,  j) denotes the servicing of trip j after a trip i. We define a binary decision 
variable xbi,j that takes the value one if a bus of type b reaches node j ∈ N  after serving 
the trip denoted by i ∈ N  . In other words, xbi,j takes the value one if the arc (i, j) in the 
graph is served by a bus of type b.

The resulting graph can be quite large. For example, given |N| trips, |B| bus types, and 
|Dd | number of candidate vehicles, the resulting graph has 3|N | + |Dd | + 1 nodes and 
(3|N | + |Dd | + 1)2|B| arcs. However, we can eliminate many of these arcs due to incom-
patibility, thus reducing the size of the graph significantly.

For each pair of nodes i, j ∈ V  , i and j are compatible (denoted by i ∼ j ) if an arc can 
exist between the nodes i and j. Using the above definition, we specify the compatibility 
constraints of the problem as follows. 

1.	 i  ∼ i , ∀i ∈ V ,

Fig. 1  The mathematical form of the problem with two trips (blue nodes). Each trip (blue node) has a 
corresponding charging event (light-blue node) and a go-to depot and charge event (grey node). The red 
arrows indicate a feasible solution to the problem

1  For the single depot scenario, the set Ds comprises solely of one element. The cardinality of Dd is the maximum number 
of vehicles, which is predetermined to be sufficiently large for the model to be feasible.
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2.	 i ∼ j , ∀j ∈ C ∪W , i ∈ N ⇔ i is the corresponding trip node of j,
3.	 i  ∼ j , ∀i ∈ C ∪W , j ∈ N  if j is the corresponding trip node of i,
4.	 if i ∈ Ds , i ∼ j ⇔ j ∈ N ,
5.	 if j ∈ Dd , i  ∼ j, ∀i ∈ W ∪ Ds,
6.	 if i ∈ Dd , i  ∼ j, ∀j ∈ V \ Dd,
7.	 if j ∈ Ds , i  ∼ j, ∀k ∈ V \ Ds,
8.	 i ∼ j ⇔ tsi + Ti,j ≤ tsj  , where Ti,j is the sum of the trip time and the relocation time 

from ndi  to nsj.

The last of the compatibility constraints above is called the time-window constraint.

Stochastic travel time and energy consumption

Our proposed strategy is to model the difference between the actual and planned trip 
time duration as a random variable with some known probability distribution that we 
can estimate using real-world measurements. For convenience, let us refer to the differ-
ence between the actual and planned trip time duration as “residual trip duration.”

The data set we use to approximate the best-fit distribution contains 1065 observa-
tions of residual trip durations for two public bus lines in Ticino, Switzerland. Residual 
trip duration can be negative, in which case the actual trip duration is less than planned. 
Since, by definition, residual trip duration is the difference between the actual and 
planned duration of the same trip, we can convince ourselves that each observation is 
independent, which is a requirement for the next step.

The limited size of the data set induces prediction uncertainty. Therefore, we estimate 
the upper and lower confidence bounds for the cumulative distribution function (CDF) 
by evaluating the 95% Kolmogorov–Smirnov (KS) confidence interval. Unlike paramet-
ric methods, this approach does not rely on assumptions about the underlying distri-
bution, which makes it ideal for characterizing the uncertainty of a probability density 
curve estimated using only a few observations. For an interested reader, the mathemati-
cal basis for non-parametric confidence band estimation using KS-statistic is available at 
(Owen 1995).

During the optimization process, we sample residual trip durations from the probabil-
ity distribution corresponding to the upper confidence bound (let us identify them as 

Fig. 2  Uncertainty modeling of the residual trip duration data set. a The effect of uncertainty on the PDF. b 
The estimated upper and lower confidence bounds of the CDF
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KS-Max distribution), which, in terms of residual trip durations, represent worse con-
ditions and would allow us to observe trade-off scenarios better. Figure  2 graphically 
represents the upper and lower confidence bounds and how the uncertainty modeling 
impacts the PDF of the data distribution. We estimate the best-fit probability distribu-
tion for the data set using 10,000 sampled observations from the KS-Max distribution 
(Fig. 3).

The planned energy consumption ek is determined by the method presented in 
Hjelkrem et al. (2021). First, we discretize the route of each trip and define the energy 
consumption for traveling each discrete trip segment. Then, the total energy consump-
tion of the journey is the sum of the energy consumption for all trip segments. Equa-
tion (1a) describes the calculation of the energy consumption of a single trip, which is 
the energy consumption related to the motion and auxiliary uses.2 Note that K is the set 
of discrete segments, mg is the weight of the bus (including passenger weight), Af  is the 
frontal area of the bus, αk is the inclination of the road segment k ∈ K , Cr is the rolling 
resistance of the tires, Cd is the drag coefficient, ρ is the air density, η is the overall effi-
ciency of the bus allowing for all complexities, and sk is the length of the trip segment k.

Equation (1b) refers to the calculation of auxiliary energy consumption for the trip seg-
ment k ∈ K where Cp is the specific heat capacity of air, Qv and Qd are the air exchange 
rates of the bus through ventilation and door opening/ closing. Hd is a step function 
that defines whether the door is open. The value of the step function is set to one at 
the end of each trip segment if the bus is at an intermediate stop. �θ is the temperature 
difference between the interior and exterior of the bus, and τk is the travel time of the 
trip segment k. For convenience, we assume continuous power consumption of 500 W 
for ventilation when the bus is en route. If the bus is in use, we assume 700 W constant 
power consumption for lighting and undefined sources, the time integral of which is 
given by eother . We recommend the reader refer to (Hjelkrem et al. 2021) for a complete 
explanation of the energy consumption modeling approach.

Fig. 3  Fitted log-normal distribution of the residual trip durations. Distribution fitting carried out using distfit 
(Taskesen 2023). The red dotted lines indicate the confidence intervals

2  We consider energy consumptions related to heating/cooling and ventilation under auxiliary energy uses.
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We assume constant travel speed within a trip segment which changes at the start of 
the next trip segment. This approximation excludes the effect of acceleration, but it is 
widely used in the scientific literature to model time-varying traffic conditions (Xiao and 
Konak 2016). 

Unlike the residual trip durations, we do not have measured data to estimate a sto-
chastic distribution for energy consumption. However, from Eq. (1a), we can write the 
stochastic energy consumption as a function of two other stochastic variables, i.e., veloc-
ity and passenger capacity. Another important random variable in the energy equation is 
the temperature. While it is possible to represent the temperature at each time step as a 
random variable in our method, for simplicity, we adhere to a deterministic temperature 
profile representing (on average) the coldest day of the year.

Assuming we possess knowledge or a reasonable approximation of a random variable’s 
minimum, maximum, and likely outcomes, we may represent its distribution using a tri-
angular distribution. In contrast to other common alternatives, such as the uniform and 
normal distributions, the triangular distribution can capture asymmetry and skewness 
in outcomes (Fairchild et al. 2016).

We estimate the triangular distributions for velocity and passenger capacity by utiliz-
ing the data outlined in Table 1, and subsequently, using Eqs. (1a) and (1b), calculate the 
energy consumption for 1020 trips over 6  days with randomly sampled velocities and 
passenger capacities. We also have the planned energy consumption for each trip, ena-
bling us to set up a stochastic distribution for the difference between actual and planned 
energy consumption �e . Figure 4 show the estimated best-fit distributions for �e in both 
travel directions.

Now we can write the actual trip time t∗k and actual energy consumption e∗k of a trip 
k as follows (Eqs.  2a, 2b). �tk is sampled from the estimated log-normal distribution, 
whereas �ek is sampled from one of the estimated normal distributions depending on 
the direction of the trip. 

(1a)e =

k∈K

sk

η
mg sin αk +mgCr cosαk +

1

2
ρv2kAf Cd + ehvac + eother ,

(1b)ehvac =
∑

k∈K

ρCp

(

Qv + QdHd

)

�θτk + eventilation.

(2a)e∗k = ek −�ek .

(2b)t∗k = tk +�tk .

Table 1  Minimum, likely, and maximum passenger capacity, and velocity values

vmax is the maximum speed limit of the road segment, and vavg is the average speed of the road segment 

Minimum Likely Maximum

Passengers 20% Max. passengers 40% Max. passengers 80% Max. passengers

Velocity 0.5vavg vavg vmax
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Finally, we model the stochastic time-window and battery charge/ discharge dynamics 
(for electric buses) as follows.
γi is a decision variable that denotes the actual departure time of the trip i that cannot 

be less than the planned departure time (Eq. 3a). Ŵi,j is the sum of t∗i  , the actual duration 
of trip i and the relocation time from ndi  to nsj . As such, Eq. (3b) ensures a sufficient time-
window between the starting times of two consecutive trips. Ei,j (Eq. 3c) is the planned 
energy consumption associated with the electric bus for the duration Ŵi,j . It is equal to 
the sum of ei , the actual energy consumption of the trip i, and the energy consumption 
during relocation. soci is a decision variable that keeps track of the SOC at node i where 
soci = 1.0 for i ∈ Ds . cbat is the battery capacity in kWh.3

The Eq. (3d) describes the charging dynamics of a bus entering the charging node ci . 
�soci is the SOC change corresponding to the charging event. We can write a similar 
equation for depot charging as well. Then it is straightforward to calculate the charg-
ing duration ζi , i ∈ C ∪W  , assuming constant charging power during a charging event. 
If pci ∈ [0, pcmax] and pdj ∈ [0, pdmax] are the charging powers at nodes i ∈ C and j ∈ W  . 
Then the charging time is given by Eq. (3f ). 

Fig. 4  The estimated distributions of �e , the difference between actual and planned energy consumption 
in the two travel directions. Distribution fitting carried out using distfit (Taskesen 2023) The red dotted lines 
indicate the confidence intervals

3  We assume each electric bus to have the same battery capacity. Consequently, the trip assignment is symmetric, and 
we implement a symmetry elimination constraint to eliminate symmetric solutions.



Page 9 of 20Heendeniya et al. Energy Informatics  2023, 6(Suppl 1):35	

A time-window constraint with charging time applies for every arc that starts at a trip 
node and ends at another trip node while passing through a charging or depot charging 
node. The constraint ensures the existence of a sufficient time-window between the two 
trips, given the respective trip time, relocation time(s), and charging time.

Flow constraints, total delay, and fleet size

The mathematical form of the problem also includes flow constraints and a delay time 
constraint. The flow constraints ensure that each trip node is visited exactly once 
(Eq. 4a) and there is a continuity of flow from the starting depot until one of the destina-
tion depot nodes (Eqs. 4b, 4c). 

The only source of trip delays in our mathematical form is the residual trip durations 
sampled from the estimated stochastic distribution, a proxy for uncertain conditions 
such as road traffic and an input parameter to the optimization model. We have also 
defined the decision variable γi, i ∈ N  , the actual departure time of trip i that enables 
us to manage the uncertainty of the environment by strategically planning the bus fleet. 
Consequently, the total time delay, κ , is the sum of delays at the start of each trip with 
respect to the scheduled departure time (Eq. 5a). 

(3a)γi ≥ tsi ; ∀i ∈ N ,

(3b)
(

γi + Ŵi,j − γj
)

∑

b∈B

xbi,j ≤ 0; ∀i, j ∈ N ,

(3c)
(

soci +
Ei,j −�ei

cbat

)

xeleci,j = socjx
elec
i,j ; ∀i, j ∈ N ∪ D,

(3d)soci + xeleci,j �soci = socj∀i ∈ N , j ∈ C ,

(3e)soci ≥ socmin∀i ∈ V ,

(3f )ζip
c
i = cbat�soci; ∀i ∈ C ∪W .

(4a)

∑

i ∈ Ds ∪ C ∪W
b ∈ B

xbi,j = 1; ∀j ∈ N ,

(4b)

∑

i ∈ Ds ∪ C ∪W

xbi,j =
∑

p ∈ V

xbj,p; ∀j ∈ V \ D, ∀b ∈ B,

(4c)

∑

i ∈ Ds, j ∈ N
b ∈ B

xbi,j =
∑

i ∈ N ∪ C , j ∈ Dd

b ∈ B

xbi,j .
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We define the variables � and �e as the number of buses and electric buses, respec-
tively. We use these two variables to optimize for the minimum fleet size later. The num-
ber of buses equals the number of arcs emanating from the starting depot (Eq. 6a). The 
number of electric buses equals the number of arcs emanating from the starting depot 
where the bus type is “elec” (Eq. 6b). 

Chance constraints

Chance constraints only apply to the fleet size and mixed fleet trade-off scenarios (refer 
to subsection “Scenario definitions and objective functions”). Chance constraints enable 
us to specify constraints that must be satisfied with a certain probability. With uncertain 
trip durations, it is reasonable to expect some trips to experience delays. Typically, pub-
lic transportation companies can tolerate a certain amount of delays, provided it does 
not significantly tarnish the company’s image. For example, assume we can accept delays 
exceeding five  minutes 90% of the time. In that case, we can represent it as a chance 
constraint. The binary decision variable χi in Eqs. (7a) and (7b) is set to one if the delay 
is less than or equal to five minutes and zero otherwise. M is sufficiently large value and 
| N | is the number of trips. 

Scenario definitions and objective functions

We define the following scenarios to evaluate the trade-offs of electric bus planning 
under uncertainty.

•	 Baseline scenario: There is no uncertainty in travel time or energy consumption, 
meaning the electric buses operate precisely per the given schedule. We use the base-
line scenario for comparison purposes and to set up partial solutions for optimizing 
scenarios under uncertainty.

•	 Battery size trade-off: This scenario aims to evaluate the influence of stochastic 
energy consumption on the minimum battery size. Travel times are deterministic 

(5a)κ =
∑

i∈N

(

γi − tsi
)

.

(6a)
� =

∑

i ∈ Ds, j ∈ N
b ∈ B

xbi,j ,

(6b)
�e =

∑

i ∈ Ds, j ∈ N

xeleci,j .

(7a)γi − tsi − 5 ≤ (1− χi)M; ∀i ∈ N ,

(7b)
∑

i∈N

χi ≥ 0.9 | N | .
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as in the baseline case, but the energy consumption in this scenario is stochastically 
modeled. The partial solutions of the variables xbi,j , � , and �e are defined based on the 
solution of the baseline scenario.

•	 Fleet size trade-off: This scenario aims to evaluate the influence of stochastic travel 
time and energy consumption on the minimum fleet size. Therefore, travel duration 
and energy consumption are incorporated into the model in their stochastic form. 
Moreover, we set the value of cbat based on the solution of the baseline scenario.

•	 Mixed fleet trade-off: The third trade-off scenario focuses on mixed bus fleets where 
electric and diesel buses may co-exist. Time and energy uncertainties are present in 
this scenario, and the battery size (for electric buses) and the fleet size are defined 
from the partial solution of the baseline scenario.

The baseline scenario defines the best case for electric bus planning and operation 
with the smallest electric bus fleet, minimum battery capacity, and no deviations from 
the planned schedules. The objective function for the baseline scenario is written as a 
weighted sum (Eq. 8a) where r1 , r2 , and r3 are the costs (weights) associated with each 
component objective.

Each stochastic optimization problem minimizes the expected value of the objective 
function over 20 scenario trajectories. Battery size trade-off scenario is set up by loading 
a partial solution of the baseline solution; therefore, the variables in the partial solution 
should not appear in the objective function (Eq. 8b). r4 is the cost associated with the 
total delay time. Recall that we define κ as the sum of delays at the start of the trips. That 
means even though there are stochastic delays during travel time, a transportation plan-
ner may minimize the delay at the beginning of the next trip by optimally dispatching 
the available vehicle. Similarly, Eqs.  (8c) and (8d) depict the respective objective func-
tions for fleet size trade-off and mixed fleet trade-off scenarios.

Each scenario objective is formulated as a minimization objective. 

Overnight charging

The optimal overnight charging schedule is a charging schedule for each bus that mini-
mizes the total charging cost during the overnight charging period (Eq. 9a). The total 
cost constitutes a demand cost that depends on the peak demand and an energy cost 
that depends on the electrical energy consumed during the charging period.

Let T  be the set of time steps belonging to the charging duration and P be the set 
of indices corresponding to each electric bus. The constraint (9b) states that the sum 
of charging power over the charging horizon should be equal to the energy required to 

(8a)Obase = r1cbat + r2
(

�− �e

)

+ r3�,

(8b)Oto1 = E[r1cbat + r4κ],

(8c)Oto2 = E[r2
(

�− �e

)

+ r3y+ r4κ],

(8d)Oto3 = E[r4κ − r5�e].
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recuperate the batteries of each bus to their total capacity. pit is a decision variable that 
denotes the charging power of bus i at time t, and ψ i is the energy required to recuper-
ate the bus i. We calculate ψ i using the solution for soc at destination depot nodes in 
the optimization model presented earlier. yt is the total charging power at time t that is 
upper bounded by � (Constraints 9c and 9d). 

Constraints (9e) and (9f ) limit extreme charging power fluctuations that could reduce 
the battery lifetime. We assume the maximum ramp rate u to be 20 kWh/min per time 
step in both directions. Lastly, the constraints (9g) and 9h calculate the demand cost and 
energy cost during the charging period where ω1,ω2 are the demand price (CHF/kW) 
and energy price (CHF/kWh), respectively.

Economic assessment

The purpose of economic assessment is to assess and compare electric and diesel buses 
in terms of costs and energy consumption. The economic parameters used in the cost 
calculations are presented in Appendix  2: Table  6 in the appendix. Currently, public 
transport companies in Switzerland are exempted from paying a carbon tax. However, 
we include a carbon tax component in the operating cost calculation, given that there is 
a continuing effort from the Swiss government to introduce a new CO2 law.

Due to the different effective lifetimes of buses, batteries, and charging station infra-
structure, we use the annualization approach in the investment cost analysis. The oper-
ating costs are also evaluated for one year period.

(9a)Minimize c1 + c2,

(9b)s.t.
∑

t

pit = ψ i; ∀i ∈ P ,

(9c)
∑

i

pit = yt; ∀t ∈ T ,

(9d)
∑

i

pit ≤ �; ∀t ∈ T ,

(9e)−u ≥ pit − pit+1; ∀t ∈ T , ∀i ∈ P ,

(9f )u ≤ pit − pit+1; ∀t ∈ T , ∀i ∈ P ,

(9g)c1 = ω1�,

(9h)c2 = ω2

∑

t

yt .
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Case study
The case study presented in this article is based on a public bus line in Ticino, Switzerland, 
with 170 trips per weekday and 146 trips on the weekend, each spanning over 13 km. The 
trips takes place back and forth between two terminal stations, and the average planned travel 
times in the two directions are 39 and 46 min, respectively. The first bus leaves the depot at 
04:27 in the morning (05:27 on the weekend), and the last bus is scheduled to return at 01:02 
(also on weekends). Table 2 gives parameters specific to the bus type. The other input param-
eters used in the model, especially for energy calculations, are summarized in Table 3.

A preliminary assessment confirms that the bus lines under our investigation do not 
require fast-charging pantographs at a terminal station for the feasible operation of elec-
tric buses. In other words, an overnight charging strategy is sufficient to meet the charg-
ing needs of electric buses on this bus line. We use this information to reduce the size of 
the problem by setting C = ∅ . The optimization horizon is one day at a one-minute time 
resolution. The problem constraints and objective functions form a Mixed Integer Non-
linear Problem (MINLP) that we model and solve using the Python-Gurobi (Gurobi 
Optimizer version 9.5.2 under academic licensing) interface. The solver finds a solution 
with a 1% optimality gap for the base scenario in about 720s. The battery size, fleet size, 
and mixed-fleet stochastic models take much longer solution times (1300, 26,900, and 
43,000s, respectively) due to the number of scenarios.4 The minimum memory require-
ment for running the stochastic optimization models is 128 GB.

Table 2  Bus related parameters

Value

Length 18.1 m

Width 2.55 m

Height 3.32 m

Weight at full capacity 29,000 kg

Max. passenger capacity 113

Bus efficiency 0.82

Battery efficiency 0.90

Table 3  Other parameters used in the optimization model

Value

Rolling resistance Cr 0.01

Drag coefficient Cd 0.7

Specific heat capacity of air Cp 1.005 kgK

Air density ρ 1.2 kgm−3  

Air exchange rate—door Qd Function of tem-
perature, refer to 
(Hjelkrem et al. 2021) 
for details

Temperature difference �θ Calculated based on 
a set indoor tempera-
ture of 18 ◦ C

4  If a reader wishes to reproduce the model, we recommend running several experiments to identify tight bounds for the 
variables to improve the solution time.
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We extrapolate the simulation results from one weekday and weekend day for the eco-
nomic cost calculations, assuming it represents each weekday and weekend day of the 
year.

Results
Table 4 provides an overview of the key results for each scenario. The baseline condi-
tions result in a minimum fleet of nine electric buses, each with a 610 kWh battery.5

As demonstrated by the battery size trade-off scenario, the buses require a larger bat-
tery size to accommodate the energy consumption uncertainties for the same fleet size. 
Uncertainties related to energy consumption result in approximately a 9.7% increase in 
battery size. On the other hand, given the same battery size, accommodating the energy 
consumption and travel time uncertainties requires at least one additional bus in the 
fleet. The mixed-fleet scenario allows the transportation planner to find an acceptable 
trade-off between the fleet and battery sizes but at the cost of increasing CO2 emissions.

The peak charging power demand under the battery size trade-off scenario is the 
highest among all scenarios investigated. Three crucial factors affect the potential for 
peak demand management during overnight charging. Firstly, if the buses require more 
charging due to higher energy consumption during the day, buses may need to charge 
for longer, leading to charging overlaps and higher peak demands. Secondly, if the dura-
tion between the first and the last bus returning to the depot at the end of the day is 
short, there is a higher chance that their charging can overlap. The final ingredient that 
describes the variance of the charging power profile is the fleet composition.

Table 4  Scenario results

Baseline Battery size trade-off Fleet size trade-off Mixed-fleet trade-off

#Buses 9 9 Min. 10 Elect. 5

Max. 11 Diesel 4

Mean 10.95

Battery size (kWh) 610.0 Max. 704.0 610.0 610.0

Min. 662.1

Avg. 669.3

Annual travel distance (km) 843,997 843,997 Min. 845,854 Min. 841,562

Max. 857,438 Max. 846,431

Avg. 852,626 Avg. 844,724

Annual elect. use (MWh) 1454.9 Min. 1591.0 Min. 1547.9 Min. 764.0

Max. 1672.0 Max. 1668.9 Max. 895.9

Avg. 1606.8 Avg. 1660.2 Avg. 876.9

Annual diesel use (liters)  0  0  0 Min. 83,117.3

Max. 83,598.2

Avg. 83,429.6

Peak charging power (kW) 810.8 Min. 887.6 Min. 558.6 Min. 222.9

Max.958.8 Max. 660.7 Max. 334.1

Avg. 899.6 Avg. 640.2 Avg. 276.2

5  The weekend operation requires only seven buses with approximately 590 kWh battery capacity. However, the optimal 
size is determined considering the continuous feasible operation of the fleet on both weekdays and weekends.
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In the battery size trade-off scenarios, the average duration between the first and the 
last bus returning to the depot at the end of the day is 80.25 min. In comparison, the 
average duration between the first and the last bus arriving at the depot in the fleet-size 
trade-off scenario is 143.90 min (minimum: 99, maximum: 248), which is quite substan-
tial and provides an extra time window for the buses returning early to charge and ramp 
up to maximum charging power. It also means these buses can ramp down  the charg-
ing demand later to keep the peak demand under control. In the mixed-fleet scenario, 
fewer buses require charging, naturally leading to lower charging peaks.

The grey area between the confidence intervals in Fig. 5 shows the variance of the total 
charging power that occurs mainly due to the uncertain return times of electric buses. 
The cause of this uncertainty in the fleet-size trade-off scenario is the trip delays and 
the number of electric buses. Observe that, on average, the fleet size trade-off scenario 
results in a lower charging peak, despite having a larger fleet size. A larger fleet size 
impacts the total charging energy demand primarily because the buses perform more 
dead-head trips from and to the depot. On the other hand, a larger fleet offers additional 
flexibility for charge scheduling. For instance, as seen in the case study, some buses can 
return to the depot earlier and begin charging, reducing the  charging time overlap with 
other buses and reducing the peak electricity demand. The mixed-fleet scenario induces 
high variance in the return times of the electric buses, which also contributes to the vari-
ance of peak charging power .

Uncertainties in travel time influence the total travel distance of buses. This is primar-
ily due to the adjustments made in dispatch schedules to minimize trip delays, leading 
to different sequences of trips undertaken by each bus. A vital planning insight from 
these observations is the importance of having flexibility over fleet dispatch. Tradition-
ally, fleet dispatch schedules are fixed and often very hard to change. As a result, we may 
observe increased battery capacities and overnight charging profiles such as the one in 
Fig. 5b that incur high demand costs and higher investments and network infrastructure. 
Transitioning towards an electric bus fleet means that a transportation company has to 
rethink its existing dispatch schedules and update them to have more flexibility in deal-
ing with environmental uncertainties, optimize operations, and reduce costs.

In each scenario, the initial SOC when buses leave the depot is 1.0, and during over-
night charging, the batteries are fully recovered such that the strategy is repeatable. It is 
essential to highlight the relationship between this initialization and the minimum bat-
tery and fleet size. Some studies investigate electric bus scheduling problems with ini-
tial SOC set to values less than 1.0, for example, 0.5. Without feasible diurnal charging 
options such as pantographs, such initialization can lead to unrealistically high battery 
capacity requirements or oversized bus fleets. The strategy we present minimizes both 
the battery and fleet sizes while being repeatable over time.

Figure  6 shows the annualized investment cost and operation cost calculated for 
each scenario. The total investment annualized over the lifetime is much lower for the 
case of mixed-fleets. At the same time, operating a mixed-fleet is also more expensive 
compared to other scenarios. However, mixed fleets offer an economically attractive 
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transition strategy for many transportation companies that wish to electrify their fleets. 
It is important to note that as bulk energy consumers, transportation companies may 
have the option to negotiate more favorable tariff conditions from their local electric-
ity suppliers. Moreover, given the present geo-political conditions, fossil fuel prices can 
show higher volatility and may increase significantly in the future. Such conditions, if 
transpires, further the economic argument in favor of electrifying the bus fleets.

Conclusion
In this article, we attempted to evaluate and understand the impact of environmental 
uncertainties on the planning and operation of an electric bus fleet. In particular, we 
examined several trade-off scenarios. Based on the results, we observe that stochastici-
ties related to energy consumption and travel time significantly impact some of the plan-
ning and operational decisions a transportation planner should make.

Uncertainties of the world induce adversity, leading to larger battery capacity require-
ments in electric buses. In particular, in situations where an overnight charging strategy 
is used, the fleet size, composition, and travel delays can influence the extent of our abil-
ity to manage the charging peaks. However, larger electric and mixed bus fleets provide 
more demand-shifting flexibility at the expense of more investment costs or environ-
mental damage. It is important to note that while the general reasoning is still valid, the 
magnitude of such trade-offs depends on the specific use case that needs to be examined 
by the planners and decision-makers case by case.

Fig. 5  Total overnight charging power of the buses for each scenario. a Baseline, b Battery size trade-off, 
c Fleet size trade-off, d Mixed fleet. The red line shows the average charging power, and the dotted lines 
indicate the 95% confidence intervals
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Mixed fleets can be an attractive solution for organizations that seek to shift from a 
diesel to an electric bus fleet. Nonetheless, mixed fleets require effective operational 
planning, owing to the significant variances in charging profiles and operating costs. In 
particular, whether to run an electric or a diesel bus at a given time is a question that has 
several dimensions, such as minimizing dead-heading, the return and recharge sched-
ules of electric buses, and mitigating the potential risk of critical battery depletion under 
extreme conditions.

Does investing in electrification (including renewable energy integration) of public 
transportation lead to a positive net return? Public transportation in Switzerland has 
long been considered a service with many social benefits, and the Swiss government 
subsidizes up to 50% of public transport costs on average.6 The sales of tickets, subscrip-
tions, and advertising alone are insufficient to cover the costs of transportation compa-
nies. Therefore, traditional measures such as net present value and return on investment 
cannot accurately evaluate the value of the public bus electrification projects without 
properly quantifying the associated social benefits. In this article, we assumed that all 
evaluated scenarios lead to the same social benefits. We also showed that electrification 
could generate the same social benefits but at a lower operational cost, which leads to 
the recovery of the initial investment over a period of time. More research can be done 
in this direction to understand better and quantify the social benefits of electrified pub-
lic transport and propose more suitable means and metrics to evaluate projects whose 
primary objective is to provide a service.

In conclusion, the uncertainties of the environment play an essential part in the opti-
mal planning and operation of electrified bus fleets. By considering these uncertainties 
through proper modeling and optimization techniques, we can enable public transpor-
tation networks that are more responsive to changing conditions, more profitable, and 
more supportive of the broader goals of sustainable urban mobility.

Fig. 6  a Annualized investment cost and (b) operation cost for each scenario

6  These subsidies include both buses and railways. Buses, especially those serving rural areas, may receive a significantly 
higher share of incentives from the government.
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Appendix 1
See Table 5.

To maintain brevity, the scenario dimension of the stochastic variables is not explicitly 
stated; however, it is understood that each scenario-dependent variable incorporates an 
extra dimension to accommodate for different scenarios within the stochastic program-
ming model.

Table 5  Nomenclature for sets, parameters, and variables

Symbol Description

Sets

N Set of nodes that describes the trips

D Set of nodes that describes start and end depots

C Set of nodes that describes charging actions at a terminal station

W Set of nodes that describes dead-heading and charging at the depot

B Set of bus types

V Set of all nodes

P Electric bus indices

T Set of time steps

Parameters

Ti,j Sum of the planned service time of trip i and relocation time from destination node of i to start node 
of j

tsi Planned start time of trip i

Ei,j Planned energy consumption of serving trip i and relocation to the starting node of trip j.

�ei Stochastic deviation of energy consumption related to trip i.

ψ i Energy required to recharge bus i

u Ramp rate

Variables

xbi,j Bus of type b reaches node j after serving node i.

Ŵi,j Sum of the actual service time of trip i and relocation time from destination node of i to start node 
of j

γi Actual start time of trip i

soci State of charge at node i

�soci State of charge change corresponding to the charging event at node i

cbat Battery size

ζi Charging time at node i

pci  , p
d
i

Charging and depot charging power at node i

κ Total trip delay time

� , �e Total number of buses and electric buses.

χi Decision variable corresponding to delayed trips.

pit Overnight charging power of bus i at time step t

yt Total overnight charging power at time step t

� Maximum power demand
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Appendix 2
See Table 6
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