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Abstract 

In the smart grid of the future, accurate load forecasts on the level of individual clients 
can help to balance supply and demand locally and to prevent grid outages. While 
the number of monitored clients will increase with the ongoing smart meter rollout, 
the amount of data per client will always be limited. We evaluate whether a Trans-
former load forecasting model benefits from a transfer learning strategy, where a global 
univariate model is trained on the load time series from multiple clients. In experi-
ments with two datasets containing load time series from several hundred clients, we 
find that the global training strategy is superior to the multivariate and local training 
strategies used in related work. On average, the global training strategy results in 21.8% 
and 12.8% lower forecasting errors than the two other strategies, measured across fore-
casting horizons from one day to one month into the future. A comparison to linear 
models, multi-layer perceptrons and LSTMs shows that Transformers are effective 
for load forecasting when they are trained with the global training strategy.
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Introduction
Climate change is one of the biggest challenges facing humanity, with the risk of dra-
matic consequences if certain limits of warming are exceeded (Pörtner et  al. 2022). 
To mitigate climate change, the energy system must be decarbonized. A difficulty in 
decarbonization is that renewable energy supply fluctuates depending on the weather. 
However, supply and demand must be balanced in the grid at every moment to prevent 
outages (Machowski et al. 1997). In addition, with the ongoing decentralization of the 
renewable energy supply and the installation of large consumers, such as electric vehicle 
chargers and heat pumps, low-voltage grids are expected to reach their limits (Çakmak 
and Hagenmeyer 2022). Thus, to balance the grid and to avoid congestions, advanced 
operation and control mechanisms must be installed in the smart grid of the future 
(Ramchurn et al. 2012; Haben et al. 2021). This requires accurate forecasts on various 
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aggregation levels, up to fine-grained low-voltage level load forecasts (Haben et al. 2021; 
Ordiano et al. 2018). Such fine-grained load forecasts can be used for demand-side man-
agement, energy management systems, distribution grid state estimation, grid manage-
ment, storage optimization, peer-to-peer trading, peak shaving, smart electrical vehicle 
charging, dispatchable feeders, provision of feedback to customers, anomaly detection 
and intervention evaluation (Haben et al. 2021; Yildiz et al. 2017; Voß et al. 2018; Grab-
ner et al. 2023; Werling et al. 2022). Moreover, the aggregation of fine-grained load fore-
casts can result in a more accurate forecast of the aggregated load (Hong et al. 2020).

With the smart meter rollout, fine-grained electrical load data will become available 
for an increasing number of clients. In such a scenario where load time series from mul-
tiple clients are available, different model training strategies are possible. The goal of our 
work is to compare training strategies for the Transformer (Vaswani et al. 2017), which 
was recently used for load forecasting (Zhang et al. 2022; Hertel et al. 2022a, b; Cao et al. 
2022; Giacomazzi et al. 2023; Huy et al. 2022).

Task definition

We address the following multiple load time series forecasting problem: At a time step t, 
given the history of the electrical load of C clients xc0, . . . x

c
t  with 1 ≤ c ≤ C , the goal is to 

predict the next h electrical load values xct+1, . . . , x
c
t+h for all clients 1 ≤ c ≤ C , where h 

is called the forecast horizon.

Contribution

We compare three training strategies for the Transformer in a scenario with multiple 
load time series. The training strategies are depicted in Fig. 1. 

1. A multivariate model training strategy, where a single model gets all load time series 
as input and forecasts all load time series simultaneously.

2. A local model training strategy, where a separate univariate1 model is trained for 
each load time series.

3. A global model training strategy, where a generalized univariate model is used to 
forecast each load time series separately.

We compare our models with the models from related work (Zhou et al. 2021; Wu et al. 
2021; Zhou et al. 2022; Nie et al. 2022), as well as with multiple baselines. In particular, 
we compare with the linear models used in Zeng et al. (2022), to figure out if Transform-
ers are effective for load forecasting and which training strategy is the most promising 
one.

Paper structure

First, we describe the "Related work". Then, the Transformer architecture and the train-
ing strategies are described in the "Approach". This is followed by the "Experimental 

1 By ’univariate’ we mean models which produce a forecast for a single time series. We still call models ’univariate’ when 
they have multiple input variables, such as exogenous time and calendar features.
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setup", "Results" and a "Discussion". Finally, the paper concludes with the "Conclusion 
and future work".

Related work
This section first presents related work on long time series forecasting and load forecast-
ing with Transformers. Most of the load forecasting literature uses local models, but few 
works use global models, which are presented next. The global training strategy can be 
understood as a transfer learning technique. We therefore discuss transfer learning in 
the field of load forecasting at the end of this section.

As Transformer are often used for long time series forecasting with up to one month 
horizon, various extensions to the Transformer architecture exist that aim to reduce the 
time and space complexity. This is done by the Informer using ProbSparse self-atten-
tion (Zhou et al. 2021), by the Autoformer using auto-correlation (Wu et al. 2021), by 
the FEDformer using frequency enhanced decomposition (Zhou et  al. 2022) and by 
PatchTST using patching (Nie et  al. 2022). The proposed models are multivariate or 
local, except for the global PatchTST (Nie et al. 2022). The experiments in these works 
are conducted on six datasets from different domains, including one load forecasting 
dataset, which we also use in our experiments (see section Datasets). A global linear 
model called LTSF-Linear (Zeng et al. 2022) gives better results than the aforementioned 
multivariate Transformers. Parallel to our work, global Transformers were shown to beat 
the aforementioned multivariate Transformers (Murphy and Chen 2023). However, this 
work does not optimize the model’s lookback size and therefore achieves sub-optimal 

Fig. 1 The three training strategies, with models depicted as networks. An example with three load time 
series, four days input and one day output is shown. a Multivariate: one model processes all load time series 
simultaneously; b local: separate models (blue, orange, green) process each load time series; c global: one 
model (black) processes all load time series one at a time
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results. PatchTST (Nie et al. 2022) is a global Transformer with patched inputs and is 
superior to LTSF-Linear (Zeng et al. 2022) on the six datasets.

Transformer architectures for short-term load forecasting are designed to use exter-
nal calendar and weather features (Wang et al. 2022; Huy et al. 2022). An evaluation of 
different architectures is undertaken in Hertel et al. (2022a). Further work modifies the 
architecture for multi-energy load forecasting (Wang et al. 2022). Upstream decomposi-
tions are used to improve the forecast quality (Ran et al. 2023). These models are not 
compared on a common benchmark dataset, but evaluated on different datasets on city 
or national level. There, usually only one load time series is available, which only allows 
for local models. Furthermore, the models are not compared to the Transformer archi-
tectures for long time series.

Global load forecasting models are already used with convolutional neural networks 
(Voß et al. 2018) and N-BEATS (Grabner et al. 2023). A mixture between a multivariate 
and a global model is investigated in Shi et al. (2017), where a single recurrent neural 
network (RNN) model is trained on randomly pooled subsets of the time series. Some 
works cluster the time series and then train global or multivariate models for each clus-
ter (Han et al. 2020; Yang and Youn 2021). PatchTST (Nie et al. 2022) is a global Trans-
former with patched inputs. We compare to this approach in our experiments.

The authors of Pinto et al. (2022) and Himeur et al. (2022) present current literature 
on transfer learning in the domain of energy systems. They define a taxonomy of transfer 
learning methods and discuss different strategies of using transfer learning with build-
ings from different domains. Two works (Nawar et al. 2023; Gao et al. 2022) use transfer 
learning by pre-training and fine-tuning Transformers. Transferability from one building 
to another is tested in Nawar et al. (2023), and from one district to another in Gao et al. 
(2022). In contrast to these works, our transfer learning approach is to train a general-
ized model on the data from many clients, without fine-tuning for a target time series.

Approach
We use an encoder–decoder Transformer (Vaswani et  al. 2017) as a load forecasting 
model. This model architecture has self-attention and cross-attention as its main com-
ponents and was initially used for machine translation. It was used as a forecasting 
model in Wu et al. (2020) and later adopted for load forecasting (Zhang et al. 2022; Her-
tel et al. 2022a, b). We use the model implementation from Hertel et al. (2022a).

The encoder gets L vectors as input, which represent the last L time steps, where L is 
called the lookback size. Each input vector consists of one (in the case of local and global 
models) or C (in the case of multivariate models) load values, and nine additional time 
and calendar features. The features are the hour of the day, the day of the week and the 
month (all cyclically encoded with a sine and a cosine function), whether it is a workday, 
whether it is a holiday and whether the next day is a workday (all binary features). The 
input to the decoder consists of h vectors, which represent the following h time steps for 
which a forecast will be made. In the decoder input, the load values are set to zero, so 
that each value is forecasted independently from the previous forecasted values, allow-
ing for a direct multi-step forecast instead of generating all values iteratively. The input 
vectors to the encoder and the decoder are first fed through linear layers to increase the 
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dimensionality to the hidden dimension of the model dmodel . Both the encoder and the 
decoder consist of multiple layers with eight self-attention heads and the decoder lay-
ers have eight additional masked cross-attention heads. Finally, a linear layer transforms 
the h decoder output vectors into a forecast with h× 1 (for local and global models) or 
h× C (for multivariate models) values. We varied the number of encoder and decoder 
layers and the hidden dimension dmodel , and found three layers with dmodel = 128 to give 
the best results. The full model architecture is shown in Fig. 2.

Training strategies

We compare multivariate, local and global Transformers. The training strategies are 
depicted in Fig.  1 and are further explained in the following. Details on the inputs, 

Fig. 2 Architecture of the Transformer forecasting model. The input and output dimensions differ for the 
multivariate model and the local and global models. The shown dimensions refer to the Electricity dataset 
with 321 clients

Table 1 Training strategy details for the Electricity dataset with 321 load time series, 2.1 years 
training data and nine time and calendar features

For the local models, training data is the amount of training data per model

Training strategy Models Input size Output size Training data

Multivariate 1 L× 330 h× 321 2.1 years

Local 321 L× 10 h× 1 2.1 years

Global 1 L× 10 h× 1 321 ∗ 2.1 years
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outputs, number of models and training data size for each training strategy are given in 
Table 1.

• Multivariate training strategy: In the input to the model, each time step is repre-
sented by a vector of size C + f  , where C is the number of load time series and f is 
the number of calendar features. The model forecasts C values for the next h time 
steps, i.e. its output consists of h vectors of size C. A single model is used to forecast 
all time series simultaneously.

• Local training strategy: Local models get only one time series as input and generate 
a forecast for this time series. In the input, each time step is represented by a vector 
with f + 1 entries for the f calendar features and the electrical load value. C separate 
models are trained for the C time series, each using the training data from one time 
series.

• Global training strategy: The global approach is a single model that generalizes for all 
load time series. The model gets one load time series as input and generates a fore-
cast for that load time series. In contrast to the local models, only one global model 
is trained on samples from all load time series, and this model is used to forecast all 
load time series. This results in C times as many training data for the global model as 
for a local model. To generate forecasts for all C time series, the global model is used 
C times with the history of one load time series as input.

Experimental setup
Datasets

As recommended in recent literature reviews on load forecasting (Haben et  al. 2021; 
Hong et al. 2020; vom Scheidt et al. 2020), we conduct experiments on multiple datasets, 
namely the Electricity and the Ausgrid solar home datasets. For both datasets we make a 
temporal split and use the first 70% of each time series for training, the next 10% for vali-
dation, and the last 20% for testing, as in related work (Wu et al. 2021; Zhou et al. 2022; 
Nie et al. 2022; Zeng et al. 2022).

The Electricity dataset2 is published in Lai et al. (2018) and used in related work on 
long-term forecasting (Zhou et  al. 2021; Wu et  al. 2021; Zhou et  al. 2022; Nie et  al. 
2022; Zeng et al. 2022). It is a subset of the UCI Electricity Load Diagrams dataset3 first 
presented in Rodrigues and Trindade (2018), only containing the time series without 
missing values. The dataset contains hourly electrical load data from 321 clients of a 
Portuguese energy supplier. The clients are from different economic sectors, including 
offices, factories, supermarkets, hotels, restaurants, among others (Rodrigues and Trin-
dade 2018). The time series range from 2012 to 2014.

The Ausgrid solar home dataset4 contains solar generation and electrical load data 
from 300 clients5 of an Australian energy supplier. The clients are private houses with 
rooftop solar systems. The time series range from July 2010 to June 2013. We only use 
the electrical load data transformed into hourly resolution.

2 https:// github. com/ laigu okun/ multi varia te- time- series- data.
3 https:// archi ve. ics. uci. edu/ ml/ datas ets/ Elect ricit yLoad Diagr ams20 112014.
4 https:// www. ausgr id. com. au/ Indus try/ Our- Resea rch/ Data- to- share/ Solar- home- elect ricity- data.
5 We use 299 of the clients because one client had missing data.

https://github.com/laiguokun/multivariate-time-series-data
https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
https://www.ausgrid.com.au/Industry/Our-Research/Data-to-share/Solar-home-electricity-data
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Comparison methods

We compare our models with models from related work (Zhou et al. 2021; Wu et al. 
2021; Zhou et  al. 2022; Nie et  al. 2022; Zeng et  al. 2022), as well as with a persis-
tence baseline, linear regression models, multi-layer perceptrons and long short-term 
memory networks.

• Models from related work: For Informer (Zhou et al. 2021), Autoformer (Wu et al. 
2021), FEDformer (Zhou et al. 2022), PatchTST (Nie et al. 2022) and LTSF-Linear 
(Zeng et al. 2022), we take the results reported in the publications where applica-
ble, and run the code published with the papers otherwise. All parameters except 
for the forecast horizon are left unchanged.

• Persistence baseline: The persistence baseline takes the value from one week before 
the predicted hour as a forecast for the 24 h and 96 h horizons, and the value from 
1 month before the predicted hour as the 720 h forecast.

• Linear regression: For each load time series, we train a linear regression model 
with h outputs. The input consists of the last 336 load values and the nine time 
and calendar features for the current hour when the prediction is made (see 
“Approach” for a description of the features). The main difference to LTSF-Linear 
(Zeng et al. 2022) is that the linear regression models are local models, but LTSF-
Linear is a global model. Furthermore, the two approaches use different training 
algorithms and LTSF-Linear does not use time and calendar features.

• Multi-layer perceptron (MLP): As for the linear regression, we train a local MLP 
for each load time series. The MLPs get the last 168 load values and the nine time 
and calendar features of the current hour as input. Using more than 168 load val-
ues as input did not improve the results. Each MLP has two hidden layers with 
ReLU activation (ReLU 2023) and 1024 neurons per layer.

• Long short-term memory (LSTM): We train multivariate, local and global LSTM 
(Hochreiter and Schmidhuber 1997) models. We use the same architecture as in 
Kong et al. (2017), consisting of two LSTM layers with 20 units each and a linear 
prediction layer. Using larger models did not improve the results.

Training details

All models are trained with the AdamW optimizer (Loshchilov and Hutter 2019) 
using the mean squared error loss. We use a batch size of 128 and a learning rate of 
0.0001 with 1000 warm-up steps and cosine decay with γ = 0.8 . When testing dif-
ferent lookback sizes L, we find one week to be optimal for the multivariate Trans-
former and the local Transformers. For the global Transformer, the results improve 
with increasing lookback size until L = 336 (two weeks), and stay almost the same for 
L = 720 (one month). For Transformer models with two weeks input and one month 
output, the batch size has to be reduced to 64 due to the quadratic memory consump-
tion of the model. For the multivariate Transformer, the batch size is set to 32 as in 
related work (Zhou et al. 2021; Wu et al. 2021; Zhou et al. 2022). The validation error 
is evaluated every 10,000 training steps and at the end of every epoch. We use early 
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stopping to end the training when no more improvement on the validation set is seen 
for ten evaluations. For the MLPs, the initial learning rate is set to 0.001 and decayed 
with γ = 0.5 after every epoch.

Metric

As in related work (Zhou et al. 2021; Wu et al. 2021; Zhou et al. 2022; Nie et al. 2022; 
Zeng et  al. 2022), every load time series is standardized by subtracting its mean and 
dividing by its standard deviation and the metrics are computed on these standard-
ized time series. For every hour t ∈ Ttest in the test set, a forecasting model predicts 
the next h hourly loads ŷct = ŷct,t+1, . . . , ŷ

c
t,t+h for time series c. Then, the mean abso-

lute error (MAE) between the predictions ŷc = {ŷci ∀ i ∈ Ttest } and the ground truth 
yc = yc1, . . . , y

c
Ttest

 is computed. As the final result, the MAE averaged across all C load 
time series, the Ttest evaluation time points and the h forecasting steps is reported.

The mean squared error (MSE) is computed analogously, using the squared residuals 
instead of the absolute residuals.

Results
Forecast accuracy

Table  2 shows the MAE results on the two datasets6. On the Electricity dataset, the 
global Transformer is the best model for the 24  h horizon, and PatchTST is the best 
model for longer horizons. On the Ausgrid solar home dataset, PatchTST is the best 
model for all three horizons. The global Transformer beats the local Transformers and 

MAE(y, ŷ) =
1

C · |Ttest| · h

C

c=1 t∈Ttest

h

i=1

|yct+i − ŷct,t+i|.

Table 2 MAE results on the two datasets, with 24, 96 and 720 h forecast horizon

MV = multivariate, L = local, G = global. The best results are highlighted in bold and the best results per training strategy 
are highlighted in italic

Model Strat- Input Electricity Ausgrid

egy (days) 24h 96h 720h 24h 96h 720h

Informer (Zhou et al. 2021) MV 4 0.399 0.407 0.450 0.582 0.607 0.645

Autoformer (Wu et al. 2021) MV 4 0.289 0.317 0.361 0.579 0.569 0.592

FEDformer (Zhou et al. 2022) MV 4 0.284 0.297 0.343 0.560 0.566 0.609

LSTM MV 7 0.400 0.402 0.407 0.611 0.618 0.613

Transformer MV 7 0.366 0.384 0.382 0.584 0.586 0.576

Persistence L – 0.279 0.279 0.447 0.647 0.647 0.717

Linear regression L 14 0.203 0.233 0.296 0.496 0.524 0.565

MLP L 7 0.199 0.236 0.308 0.499 0.532 0.567

LSTM L 7 0.263 0.283 0.337 0.517 0.541 0.573

Transformer L 7 0.256 0.289 0.354 0.535 0.563 0.583

LTSF-Linear (Zeng et al. 2022) G 14 0.209 0.237 0.301 0.490 0.515 0.553

PatchTST (Nie et al. 2022) G 14 0.190 0.222 0.290 0.468 0.494 0.522
LSTM G 7 0.207 0.239 0.302 0.491 0.525 0.559

Transformer G 14 0.184 0.225 0.312 0.482 0.514 0.533

6 The MSE results show a similar pattern and can be found on GitHub.

https://github.com/KIT-IAI/transformer-training-strategies
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the multivariate Transformer across all tested horizons. On average, it reduces the error 
by 21.8% compared to the multivariate Transformer and by 12.8% compared to the local 
Transformers. Compared to the best local model, the linear regression, it reduces the 
error by 2.9%. Compared to the best multivariate model, FEDformer, it reduces the error 
by 15.4%. All multivariate models, including Informer, Autoformer, FEDformer and 
the multivariate Transformer, perform poorly and do not beat the persistence baseline 
with a lag of one week. The local linear regression models are slightly better than the 
global linear model, LTSF-Linear, on the Electricity dataset, but it is vice versa on the 
Ausgrid solar home dataset. The MLP is in five out of six cases a bit worse than the lin-
ear regression, with a 1.5% larger error on average. The local LSTMs are better than the 
local Transformers, but the Transformer is better as a multivariate model and as a global 
model (except for the one month horizon on the Electricity dataset). The forecast errors 
are lower on the Electricity dataset than on the Ausgrid dataset which is a more fine-
grained dataset containing single private houses.

Computational cost

The training times are given in Table 3. The local Transformer models need by far the 
longest time to train. Their training time increases sharply with longer forecast hori-
zons. The multivariate Transformer trains fast and is even faster than the MLPs for 
short horizons. Training a global Transformer is much faster than training the many 
local Transformers but takes longer than the linear regression, MLP and the multivariate 
Transformer. The LSTM always trains faster than the Transformer with the same train-
ing strategy.

Discussion
Best Transformer training strategy: On the two datasets, the global Transformer is supe-
rior to the multivariate and local Transformers. We hypothesize that this is a result of 
the larger number of training samples for the global model (see Table  1). The Trans-
former benefits from more training data, even if the training data comes from different 
sources. The multivariate models on the other hand are prone to overfitting.

Best Transformer architecture: PatchTST is the best model in five out of six cases. 
However, the difference to the global Transformer is small. This shows that the success 

Table 3 Training times in hours, measured on a machine with a Nvidia 3090 RTX GPU

Model Electricity Ausgrid

24h 96h 720h 24h 96h 720h

Linear regression (local) 0.02 0.03 0.08 0.02 0.03 0.07

MLP (local) 0.42 0.42 0.36 0.40 0.39 0.39

LSTM (multivariate) 0.06 0.08 0.30 0.03 0.04 0.10

LSTM (local) 8.25 7.61 7.20 4.27 3.55 3.49

LSTM (global) 1.09 0.82 0.98 1.11 0.84 0.71

Transformer (multivariate) 0.19 0.23 0.88 0.10 0.09 0.39

Transformer (local) 14.20 16.82 102.09 8.33 9.74 62.53

Transformer (global) 3.42 2.00 9.86 3.85 2.85 6.77
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of PatchTST is mainly a result of its global training strategy. Its improvement upon the 
global Transformer can be due to the patching mechanism, a better hyperparameter 
configuration, or the encoder-only architecture. Among the multivariate models, Auto-
former (Wu et al. 2021) and FEDformer (Zhou et al. 2022) give better results than the 
multivariate Transformer. It remains an open question whether these architectures are 
also better global models than the standard Transformer and PatchTST (Nie et al. 2022). 
Another promising architecture is the Temporal Fusion Transformer (Huy et al. 2022). 
In previous work with just one aggregated time series, the Informer (Zhou et al. 2021) 
also gave better results than the Transformer (Hertel et al. 2022a).

Comparison with the state of the art: The global Transformer achieves a better result 
for short-term forecasting on the Electricity dataset than related work (Zhou et al. 2021; 
Wu et al. 2021; Zhou et al. 2022; Nie et al. 2022; Zeng et al. 2022), and achieves close 
results to the best results from PatchTST (Nie et al. 2022) for longer horizons and on 
the Ausgrid solar home dataset. However, to establish a state of the art for short-term 
and medium-term load forecasting, a comparison to other forecasting models must be 
undertaken, including models that are not based on the Transformer architecture and 
that are more sophisticated than our baselines. Using weather data could improve the 
forecasts, because some electrical load patterns, such as the usage of electrical heat-
ing, are weather-dependent. Weather features could affect which model gives the best 
results, because some models might be better in capturing these dependencies than 
others.

Linear models: As in related work (Zeng et al. 2022), we observe that linear models are 
strong baselines. The linear regression is in five out of six cases the best local model and 
only outperformed by the local MLP for the one day horizon on the Electricity dataset. 
No general answer can be given on whether the local linear regression models are better 
or the global LTSF-Linear is better, because each variant is better on one dataset.

Task complexity: For longer horizons, the global Transformer’s performance compared 
to the linear models deteriorates. This can be due to the increasing complexity when the 
model forecasts many values simultaneously. We chose a direct multi-step forecasting 
model because good results were achieved with this procedure before (Nie et al. 2022; 
Zeng et  al. 2022). However, other multi-step forecasting procedures, such as iterative 
single-step and iterative multi-step forecasting (An and Anh 2015; Sahoo et  al. 2020), 
could be beneficial for long-term forecasting because they reduce the number of fore-
casted values per model run.

Transfer learning: According to the definition of transfer learning in Pinto et al. (2022), 
the global training strategy can be seen as a transfer learning method, because the model 
must transfer knowledge between different types of buildings with different consump-
tion patterns. Pre-training on other tasks than forecasting or on less similar data from 
domains other than electricity, as well as fine-tuning for a time series of interest, could 
improve the results. An advantage of the global model is that it can be applied to new 
time series without retraining. In Hertel et al. (2022b) it was shown that the Transformer 
generalizes better to new time series than other approaches, but the forecasts are still 
better when training data from the target time series is available.
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Other forecasting tasks: The Transformer model and the different training strategies 
are not designed for load forecasting in particular, but can also be applied to other fore-
casting tasks. We hypothesize that the global training strategy can also be beneficial for 
other datasets containing multiple time series with similar patterns.

Conclusion and future work
We compare three Transformer training strategies for load forecasting on two datasets 
with multiple years of data for multiple hundred clients. We show that the multivari-
ate training strategy used in related work on forecasting with Transformers (Zhou et al. 
2021; Wu et al. 2021; Zhou et  al. 2022) is not optimal, and it is better to use a global 
model instead. This shows that the right training strategy is crucial to get good results 
from a Transformer. Our approach achieves better results than related work (Zhou 
et al. 2021; Wu et al. 2021; Zhou et al. 2022), and comes close to the best results from 
PatchTST (Nie et al. 2022). In particular, our approach gives better results than the lin-
ear models from Zeng et al. (2022) for one day to four days forecasting horizons, which 
shows that, with the right training strategy, Transformers are effective for load forecast-
ing. However, simple linear models give decent results for both short-term and medium-
term horizons and train much faster than the Transformers.

In the future, more sophisticated Transformer architectures could be tested with the 
global training strategy. A comparison to other forecasting methods could be under-
taken, and weather data could be incorporated into the models to see how it affects the 
results. Experiments with other datasets and varying amounts of training data could 
show under which circumstances the global Transformer model is better than other 
approaches. Additionally, transfer learning from other tasks and datasets could be 
tested. Future work could experiment with different datasets with varying amounts of 
data to see how much training data is needed for the global model to surpass the local 
models. A compromise between local and global models could be established by first 
clustering similar time series and then training one global model per cluster. The cluster-
specific models would have less training data than the global model, but could benefit 
from the training data being more similar. Potentially, the global training strategy could 
also be beneficial for other forecasting tasks than load forecasting.
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