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Abstract 

In the course of digitization, there is an increased interest in sensor data, includ-
ing data from old systems with a service life of several decades. Since the installation 
of sensor technology can be quite expensive, soft sensors are often used to enhance 
the monitoring capabilities. Soft sensors use easy-to-measure variables to predict 
hard-to-measure variables, employing arbitrary models. This is particularly challeng-
ing if the observed system is complex and exhibits dynamic behavior, e.g., transient 
responses after changes in the system. Data-driven models are, therefore, often 
used. As recent studies suggest using Transformer-based models for regression 
tasks, this paper investigates the use of Transformer-based soft sensors for modelling 
the dynamic behavior of systems. To this extent, the performance of Multilayer Per-
ceptron (MLP) and Long Short-term Memory (LSTM) models are compared to Trans-
formers, based on two data sets featuring dynamic behavior in terms of time-delayed 
variables. The outcomes of this paper demonstrate that while the Transformer can map 
time delays, it is outperformed by MLP and LSTM. This deviation from previous Trans-
former evaluations is noteworthy as it may be influenced by the dynamic character-
istics of the input data set, and its attention-based mechanism may not be optimized 
for sequential data. It is important to mention that the previous studies in this area did 
not focus on time-delayed dynamic variables.

Keywords: Supervised learning, Transient response, Time series, Regression, Dynamic 
systems

Introduction
Soft sensors are models that use easy-to-measure variables to predict hard-to-meas-
ure variables. They are often used where conventional physical sensors cannot be 
used or are too expensive. Since there is an increased interest in obtaining addi-
tional data from systems and equipment in the course of digitization, the latter often 
applies to legacy systems that are already in operation. For many systems, it is not 
uncommon to have a service life of several decades, such as converter stations in the 
power grid. Thus, a lot of sensor technology is not installed in these systems, which 
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makes the enhancement of the sensing capabilities particularly costly (Kabugo et al. 
2020; Maschler et al. 2021). However, even if physical sensors are available, soft sen-
sors are often used in parallel for condition monitoring or anomaly detection pur-
poses (Alzawaideh et al. 2021; Filios et al. 2022).

The development of soft sensors is not always straightforward. Especially when the 
exact physical conditions and relationships of the system are unknown or compli-
cated, data-driven soft sensors rather than physics-based soft sensors (like Kalman 
filters) are more convenient (Maschler et al. 2021; Sun and Ge 2021).

A particular challenge in modeling data-driven soft sensors is the calculation of 
dynamic behavior, e.g., transient states after changes in the system. These so-called 
transient responses occur when a process variable of a system has been changed, and 
the system has not yet reached the updated steady state again.

Transient responses exist in almost all technical systems. They can be caused by 
thermal inertia (e.g. heat capacity of a hotplate), rotational inertia (e.g. of a spinning 
generator), electric capacitance/inductance (e.g. of circuit boards) or the speed of 
chemical reactions. A simple example of a transient response is a hotplate, which 
is not immediately hot after switching on, but has a warm-up phase due to its heat 
capacity, causing the temperature to lag. Consequently, transient target variables can 
often not, or only moderately, be determined with the current snapshot of the sys-
tem. Hence, past measured values in the form of time series have to be included (Ge 
et al. 2017).

The use of Long Short-term Memory (LSTM) networks, which represent a form of 
recurrent neural networks, has become particularly established in this context.

However, in 2017, Transformer networks were introduced (Vaswani et  al. 2017). 
Transformers were initially developed for natural language processing, where they 
have become best practice, offering substantially better performance than LSTMs 
(Karita et al. 2019). In recent years, several studies have been presented suggesting 
an application of Transformers for regression problems, which seem to be on par or 
even better than LSTMs, at least for forecasting applications (Wen et al. 2022; Wu 
et al. 2020; Zhou et al. (2021).

Therefore, the research question that motivates this work is: How well can Trans-
formers-based soft sensors be used to estimate time-delayed variables?

To answer this question, a Multilayer Perceptron (MLP), a LSTM, and a Trans-
former model are trained from two real-world data sets. The target variable of each 
data set is the temperature of the system, which reacts delayed to changes in the 
system and thus represents an overdamped transient response. To compare the three 
models, the hyperparameters are optimized to evaluate the performance in terms of 
accuracy, training time, and amount of training data needed.

The remainder of the paper is structured as follows: In section Related Work, 
the related work and state of the art are discussed. The used Transformer model 
is presented in section Estimation of Time-delayed Variables. Section Experimental 
Study explains the approach of the intended comparison, followed by a presenta-
tion and discussion of the results. In section Conclusion, a summary of the results is 
presented.
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Related work
In recent years, neural networks have shown great promise in modelling dynamic vari-
ables. One such application is in the field of wind turbine anomaly detection and fail-
ure prediction, where Alzawaideh et al. (2021) proposes the use of LSTM networks to 
estimate the operating temperature of wind turbine modules (e.g. the gearbox). Another 
application is proposed by Chen et al. (2020), who demonstrates the efficiency of LSTMs 
in very short-term forecasting of photovoltaic power generation, and Azman et  al. 
(2020), who uses LSTMs to predict the transient stability of a power system subjected to 
disturbances.

Multiple data-driven methods are compared by Kabugo et  al. (2020) to train a soft 
sensor to predict the syngas heating value and hot flue gas temperature in a biomass 
waste-to-energy plant. This analysis shows that the neural network-based nonlinear 
autoregressive model performs better than the other static models tested due to the abil-
ity to use time series.

In 2017, Vaswani et  al. (2017) proposed the Transformer model architecture, which 
utilizes the attention mechanism to improve natural language processing significantly 
(Karita et  al. 2019). Transformers do not rely on a sequential structure and allow for 
parallel processing, which can dramatically accelerate computation time when using 
GPUs. Based on the attention mechanism multiple network architectures and use cases 
are proposed. Wu et al.  (2020) demonstrates the superiority of Transformer-based time 
series forecasting over LSTMs in predicting influenza prevalence. Zhou et  al. (2021) 
shows that the Transformer outperforms LSTMs in long sequence time series forecast-
ing, highlighting the benefits of the non-sequential processing of Transformers in reduc-
ing computation time during inference. Lim et al. (2021) presents the Temporal Fusion 
Transformer to fuse data for multi-horizon forecasting. A review by Wen et al. (2022) 
presents a taxonomy of Transformer network modifications and application domains, 
analyzing the performance of various proposed architectures on time series forecasting 
tasks.

In addition to forecasting, Transformers have also been applied in anomaly detection, 
with Tuli et  al. (2022) reporting that their Transformer-based approach outperforms 
various competitors, including LSTMs, with less data and reduced training times. Geng 
et al. (2021) uses a combination of gated convolutional neural networks and Transform-
ers for dynamic soft sensor modelling to measure the solvent content of two industrial 
chemical processes. The results indicate that, albeit omitting hyperparameter optimiza-
tion for LSTM and Transformer, the Transformer outperforms the LSTM.

To move away from specialized applications, a generalized framework called Time 
Series Transformer is proposed by Zerveas et al. (2021), which can be used for various 
multivariate modelling problems, including regression, classification, forecasting, and 
sample imputation. It is shown that the proposed framework outperforms comparable 
models on nearly all occasions, especially with limited training data. However, the focus 
is not on dynamic variables, whereby no comparison with an LSTM for regression is 
addressed.

Regardless of the grand reception, not everyone agrees on the superiority of Trans-
formers to LSTMs. For example, Zeng et al. (2022) question the necessity of Trans-
formers in long time series forecasting, presenting an empirical study in which a 
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Transformer-based network is outperformed by a simpler one-layer linear MLP-
based model.

In summary, in the field of regression, Transformers are mainly used for forecasting 
applications focusing on long time series, leveraging the particular advantage over the 
sequential architecture of LSTMs. Outside of long time series forecasting, the approach 
of Zerveas et al. (2021) is the most popular. For example, Agrawal et al. (2022) uses the 
approach to predict the maximum power point for solar photovoltaic cells, showing 
promising results, albeit not comparing it to other approaches as a baseline. However, 
the usability of transformers for dynamic variables has not yet been covered.

Estimation of time‑delayed variables
Time-delayed variables are variables, whose value does not react immediately to changes 
in the system, but require a certain amount of time to adjust. An example of such a vari-
able is temperature measurement. When ambient temperature changes occur, the ther-
mometer requires a certain amount of time to register and display this change. This time 
delay is called response time. The length of the response time depends on the system and 
can be in the microsecond range, as in the case of voltage spikes in electrical circuits, or 
in the minutes to hours range in the case of temperature changes.

Most physical systems do not respond instantaneously to changes in the system 
by jumping to the steady state, but have an inertia that delays the adaptation to the 
changes. This results in a period of dynamic state in the system between the initial 
static state tsteady,1 and the steady state after the change tsteady,2 , during which the sys-
tem transitions. Depending on the number of changes in the system and the dura-
tion of the transient response, it is possible that the target variable permanently lags 
behind the actual system state. Figure 1 shows an example of a time-delayed variable’s 
response to a system change.

The temporal aspect must be integrated into the model for soft sensors of dynamic 
variables. Otherwise, the model is not able to know that the response time has not yet 
elapsed after a system change, and thus the system is in a dynamic state.

For the integration of temporal dependencies, the input data are divided into a 
sequence of time points. The distance between points and the number of past points 
of time to be included in the model is defined by the response time and must be suf-
ficient to capture it.

Fig. 1 Typical response of a time delayed variable to a change in system state
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LSTMs are a particular type of recurrent neural network used for modeling time series 
data. It is capable of learning the pattern of past input variables and making a prediction for 
the current values of the output variables. LSTMs thus offer good possibilities for modeling 
time-delayed variables. Transformer architectures can also be used, but these must first be 
adapted to multivariate sequences.

Transformers for multivariate regression

The Transformer architecture presented by Vaswani et al. (2017) originates in natural lan-
guage processing and is designed and optimized for these applications. At an abstract level, 
language processing applications are univariate sequence-to-sequence learning tasks in 
that a sequence in the form of a text is given the model, and also a text is obtained. How-
ever, the regression problem addressed here for the estimation of transient variables is a 
multivariate sequence-to-one problem. Each input sample X consists of w feature vectors 
xt : X = [x1, x2, ...xw] with t being the time steps t = 0, ...,w of a multivariate time series 
of length w. Each feature vector x consists of m different variables. Thus, each sample X is 
of dimensions X ∈ R

m×w . The predicted value is of size ŷ ∈ R
n , where n is the number of 

scalars to be estimated, here n = 1.
For the structure of the Transformer, the architecture presented by Zerveas et al. (2021) 

is used in this paper, being one of the most established architecture designed for regres-
sion tasks. Unlike the original Transformer for natural language processing, the Time Series 
Transformer architecture does not consist of an encoder and decoder part, but uses only 
the encoder. However, the core of the encoder, and the encoder blocks are identical. A 
detailed description of the encoder blocks is referred to Vaswani et al. (2017).

In the following, we discuss the most important properties of the used Transformer 
model for multivariate time series. However, Zerveas et al. (2021) provides more detailed 
descriptions. The basic structure of the Transformer is shown in Fig. 2.

Upstream of the positional encoding, a linear layer is used to linearly project each feature 
vector x into a d−dimensional space, where d is the model dimension of the Transformer. 
The resulting model input vector corresponds to the word vectors of natural language pro-
cessing Transformers.

(1)ut = Wpxt + bp withWp ∈ R
d×m

, bp ∈ R
d

(2)U = [u1,u2, ...xw]

Fig. 2 Schematic of the used Transformer architecture, based on the architecture proposed by Zerveas et al. 
(2021)
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The positional encoding is followed by a sequence of encoder layers, consisting of multi-
headed attention, normalization, a fully connected feed-forward network, and another 
normalization (cf. Fig. 2).

Lastly, a linear layer acting as an output layer is added to the model. The 
encoder layer output vectors zt ∈ R

d are concatenated into a single vector 
Z ∈ R

d·w = [z1; ...; zw] , serving as the input. The layer linearly projects the encoder 
output to the scalars ŷ ∈ R

n to be estimated, where n is the number of scalars to be 
estimated for the regression problem.

The parameters of both linear layers are learnable parameters, optimized during model 
training.

Experimental study
In this section, the used data sets and models are described first. Subsequently, the 
training scenarios are presented, and the results are discussed.

Data sets

All tests are performed on two different data sets.
The first data set is a publicly available data set from a PV array (Boyd et al. 2017). 

The array consists of 312 PV modules, which provide 73.3 kW of power. From the 
data set, 100,000 samples are used, consisting of 13 features with a resolution of 0.1 
Hz. The target variable is the back sheet temperature of one of the PV modules, which 
changes only slowly and with a time delay due to the heat capacity of the material. An 
abnormal increase in back sheet temperature might be caused by deteriorating solder 
bonds or partial shading, and in extreme scenarios, it has the potential to result in 
fire hazards (Bosman et al. 2020). Wind speed, outside temperature, solar radiation, 
and power are examples of used input values. A detailed list of the used features and 
which pre-processing steps were taken can be found in the Appendix: PV-Dataset. 
Since the time delay of the temperature is approximately 1  min, sequences with a 
length of 18 samples (3 min) are generated from the data set. In the remainder of this 
paper, the data set will be referred to as PV-Data.

The second data set is a proprietary data set of sensor values of a high-power 
inverter. The temperature of the insulated-gate bipolar transistor (IGBT) module of 
an inverter is used as the target variable. Physically, this is interesting in that a high 
IGBT temperature indicates internal losses in the IGBT, and a too-high temperature 
can lead to the destruction of the inverter. Due to the heat capacity of the module, 
the temperature is also time-delayed. Again 100,000 samples were used, which were 
recorded within 1 year, at a rate of 0.2 Hz. Since the time delay of the temperature is 
about 30 s, sequences with a length of 18 samples (1.5 min) are generated from the 
data set. In the following, this data set is referred to as Inv-Data.

A summary of the properties of both data sets is shown in Table 1.

(3)ŷ = WoZ + bo withWo ∈ R
n×(d·w)

, bo ∈ R
n
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Models

In the following, the structure of the three model architectures is described. For all mod-
els, an “Adam” optimizer with an initial learning rate = 0.001 and a 80/20 train/test-split 
are chosen. The root-mean-square error (RMSE) is used as loss function. To compare 
the model performance, a hyperparameter optimization is performed for each model 
architecture. All optimized hyperparameters can be found in Table 2.

The MLP models are networks of ordinary fully connected dense layers. All hidden 
layers have dropout and a “ReLu” activation function. As MLPs are not capable of pro-
cessing multivariate sequences X ∈ R

m×w , the input to the model is flattened first to 
X ∈ R

m·w.
For the LSTM, the implementation of PyTorch is used, which is based on the archi-

tecture presented by Sak et al. (2014). As each LSTM-layer outputs a sequence, the last 
layer is followed by a linear layer to project the output sequence into the desired scalar 
value. The dropout is applied to every layer except the last.

For the Transformer, the architecture presented in section Transformers for Multivari-
ate Regression is used. Additionally, the recommended learnable positional encoding 
and batch normalization instead of layer normalization is applied and a “gelu” activa-
tion function is used (Zerveas et  al. 2021). In addition, models are trained which are 

Table 1 Summary of properties of the used PV and inverter data sets

PV-Data Inv-Data

Target variable Module back sheet temperature IGBT temperature

Input features 13 32

Samping rate 0.1 Hz 0.2 Hz

Sequence length 18 samples (3 min) 18 samples (1,5 min)

Number of samples 100.000 100.000

Table 2 Evaluated hyperparameter for the different model architectures

The best hyperparameters are bold

PV-Data Inv-Data

Multilayer Perceptron

 Batch size 16, 32, 64, 128, 256 16, 32, 64, 128, 256, 512

 Number of layers 1, 2, 3, 4 1, 2, 3, 4

 Layer size 128, 256, 512, 1024 128, 256, 512, 1024

 Dropout 0.1, 0.2 0.1, 0.2

Long Shot-term Memory

 Batch size 16, 32, 64, 128, 256 16, 32, 64, 128, 256

 Number of layers 2, 3, 4 2, 3, 4

 Layer size 64, 128, 256, 512 32, 64, 128, 256, 512

 Dropout 0.1, 0.2 0.1, 0.2

Time Series Transformer

 Batch size 64, 128, 256, 512 64, 128, 256, 512

 Model dimension 32, 64, 128 32, 64, 128

 Number of attention heads 8, 16, 32, 64 8, 16, 32, 64

 Number of encoder blocks 2, 4, 6, 8 2, 4, 6, 8
 Feedforward layer size 32, 64, 128, 256 32, 64, 128, 256
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previously subjected to an autoregressive unsupervised pretraining. For this purpose, 
the input is subjected to a binary noise mask and the model is set to predict the masked 
values (Zerveas et al. 2021).

Results and discussion

After the hyperparameters were optimized, 10 models were trained for each architec-
ture. For this purpose, an early stopping was used, which terminated the training if no 
improvement of the loss was achieved within 5 epochs. The course of the training is 
shown in Fig. 3.

Looking at these progressions, it is noticeable that the loss of the Transformer seems 
to change a lot from epoch to epoch. A possible reason for this could be the selection 
of the wrong hyperparameters. This cannot be ruled out completely, since a complete 
analysis of the hyperparameter is not feasible and, therefore, inherently limited. In order 
to minimize the negative influence of untested hyperparameters, values described by 
Zerveas et  al. as “reasonably well performing” were used, such as the learnable posi-
tional encoding (Zerveas et  al. 2021). However, this behavior was observed across all 
hyperparameters tested, including the pretrained models. The most likely responsible 
hyperparameter is the learning rate. To investigate this, a one magnitude smaller learn-
ing rate (0.0001) was tested, but without influence on the result. Another reason could 
be an over-fitting of the model. To minimize over-fitting, different amounts of dropout 
([0.1, 0.5]) and weight decay of the Adam optimizer ([0.1, 0.5]) were tested as regulariza-
tion. Both with no influence on the result.

Subsequently, the best performing model from each training run was selected and 
compared in terms of loss and training time. The results regarding loss are shown in 
Table 3. They indicate that if only the best performing model per training run is con-
sidered, the loss of each run is comparable. Even though the Transformers performance 
during training fluctuates from epoch to epoch. Nevertheless, the Transformers are out-
performed by LSTM and MLP in both data sets. The LSTM performs best in each case. 
In the case of time delayed variables it also seems to be the case, that an unsupervised 
pretraining has no beneficial effect on the model. However, this is not beyond expecta-
tion, since also Zerveas et al. report positive effects in only about half of the data sets 
Zerveas et al. (2021). When comparing the training time, it can be seen that the LSTM 

Fig. 3 Model performance progress during training on Inv-Data (left) and PV-Data (right) data set. For each 
architecture, 10 models were trained
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has the longest training time. This is expected, due to the sequential data processing (cf. 
Table 4).

Lastly, the performance of the models was investigated in dependence on the amount 
of training data. For this purpose, the number of training samples was reduced, while 
the test set remained unchanged. Again, 10 models were trained per architecture. The 
results are presented in Fig. 4. As expected, they indicate that the performance of LSTM 
and MLP deteriorates with decreasing sample number. However, the performance of 
the Transformer does so to the same extent. Therefore, a particular suitability of Trans-
formers for smaller data sets cannot be determined. Individual outliers in the Trans-
former performance also suggest that some Transformer models only converge to a local 
minimum.

The presented results are not in line with the majority of publications about Trans-
formers for regression (cf. Related work). However, said publications do not appeal 
to dynamic variables, but mostly long time series forecasting (e.g. Zhou et al. (2021)). 
In their proposal of the used Transformer architecture, Zerveas et  al. also used 

Table 3 RMSE of best-performing models from each of the 10 training runs

Bold values indicate the best result in comparison to the different model types

PV-Data Inv-Data

Average Best Average Best

MLP 0.0250 ± 0.0013 0.0234 0.0201 ± 0.0014 0.0186

LSTM 0.0240 ± 0.0016 0.0228 0.0173 ± 0.0013 0.0151
Transformer 0.0260 ± 0.0013 0.0241 0.0215 ± 0.0025 0.0191

(pretrained) Transformer 0.0287 ± 0.0010 0.0273 0.0246 ± 0.0029 0.0208

Table 4 Average total training time (until maximum accuracy is recorded) in seconds

For each architecture 10 models were trained

PV-Data Inv-Data

MLP 892 ± 283 2058 ± 251

LSTM 10916 ± 2793 6032 ± 1977

Transformer 4635 ± 1263 4834 ± 1267

Fig. 4 Dependence of model performance on the amount of training data in the Inv-Data (left) and PV-Data 
(right) data sets. A fraction of 1 is equivalent to using the complete training data set of 80,000 samples. For 
each data fraction 10 models were trained
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non-forecasting data sets, showing superior performance of the Transformer. However, 
results may vary as no LSTM was used for comparison, and no dynamic variables were 
considered (Zerveas et al. 2021).

Apart from the superior performance of sssLSTMs, Transformers are more chal-
lenging to train, being more complex and less researched and established. In retraining 
models, the high performance fluctuation also might open up questions regarding trace-
ability and robustness when deployed as soft sensors. This could be relevant for con-
tinual learning approaches.

The research question “How well can Transformers-based soft sensors be used to 
estimate time-delayed variables?” can therefore be answered in that Transformers are 
indeed usable and have a reasonable performance, but more convenient solutions are 
available.

Conclusion
This study investigated the performance of Transformer models in comparison to LSTM 
and MLP architectures for two data sets focused on time-delayed variables. The results 
showed that despite efforts to optimize hyperparameters, the Transformer model was 
more difficult to train and tended to fluctuate during training. However, when consider-
ing only the best-performing model per training run, the loss of each model was com-
parably consistent. Nevertheless, the LSTM and MLP architectures outperformed the 
Transformer for both data sets. Moreover, an investigation of the models’ performance 
with decreasing sample size showed that the Transformer did not exhibit any particular 
advantage for small data sets compared to LSTM and MLP. Whether the performance 
fluctuation during training of the Transformer might cause problems for retraining 
models when deployed as continual learning soft sensors, has to be further investigated.

It should be noted that the results and conclusions of this study are specific to the 
investigated data sets and might not be generalizable to other types of data sets, featur-
ing long time series or non-time-delayed variables.

In conclusion, for the investigated data sets with medium-range sequence length and 
time-delayed variables, LSTM and MLP architectures are better suited than Trans-
former models considering consistency, performance, and training time.

Appendix: PV‑Dataset
The PV data set is a publicly available data set from a PV array located on the NIST cam-
pus in Maryland, USA Boyd et al. (2017). The array consists of 312 PV modules, which 
provide 73.3 kW. The data is recorded every second over a period from 2015 to 2018. 
Many of the 115 recorded sensor values and features in the data set are irrelevant for 
determining the backsheet temperature. Therefore, only 13 feature are used. Addition-
ally, the time period is narrowed down to 2016 and the sampling rate of the data set is 
adjusted to match that of the temperature sensors (0.1 Hz). The timestamp of the meas-
ured values is only used to create the sequences. The feature “WindValid” is also only 
used for filtering. Both are not used as input features for the models. The formation of 
hotspots in the module is only relevant under solar irradiation, since no electricity can 
be produced without it. Therefore, all samples with no power at the inverter input are 
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dropped. Subsequently, outliers per feature are filtered out of the data set by defining 
lower and upper bounds, taking physical plausibility into account. As a last step all fea-
tures are normalized between 0 and 1 and the number of samples is reduced to 100,000 
using random sampling. An enumeration of the used features and value boundaries is 
shown in Table 5.
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