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Abstract 

The steadily increasing usage of smart meters generates a valuable amount of high-res-
olution data about the individual energy consumption and production of local energy 
systems. Private households install more and more photovoltaic systems, battery stor-
age and big consumers like heat pumps. Thus, our vision is to augment these collected 
smart meter time series of a complete system (e.g., a city, town or complex institutions 
like airports) with simulatively added previously named components. We, therefore, 
propose a novel digital twin of such an energy system based solely on a complete 
set of smart meter data including additional building data. Based on the additional 
geospatial data, the twin is intended to represent the addition of the abovementioned 
components as realistically as possible. Outputs of the twin can be used as a decision 
support for either system operators where to strengthen the system or for individual 
households where and how to install photovoltaic systems and batteries. Meanwhile, 
the first local energy system operators had such smart meter data of almost all residen-
tial consumers for several years. We acquire those of an exemplary operator and discuss 
a case study presenting some features of our digital twin and highlighting the value of 
the combination of smart meter and geospatial data.

Keywords: Digital twin, Simulation, Local energy system, Decision support system, 
Smart meter data utilization, Future energy grid exploration

Introduction
In this and the next decade, local energy systems that supply residential households and 
small companies face with major challenges. For instance, the number of rooftop and 
open-space Photovoltaic (PV) installations has to increase to fulfill the ambitious expan-
sion targets for PV systems. The Federal Network Agency of Germany (2022) expects 
the installed rooftop PV power to be 172.7 GW in 2037 resulting in 4.8 times the value of 
2021. Furthermore, the coupling of the electricity and heat sectors will increase, mainly 
driven by the expansion of heat pumps to reduce fossil fuel consumption (Sterchele and 
Palzer 2017). For example, the share of heat pumps among the heating systems of newly 
constructed buildings broke through the 50% mark for the first time in 2021 according 
to the Federal Statistical Office of Germany (2022), displacing traditionally used gas boil-
ers and oil heating. Such future energy systems also involve the intelligent and sector-
coupled control of all components (Gharavi and Ghafurian 2011).
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Another development in current and future energy systems is the expansion of smart 
metering infrastructure. According to Kerai (2022), over 50% of all residential electricity 
meters are smart meters in the United Kingdom at the end of 2021. This development 
leads to a large amount of data about electricity demand and feed-in with a high spatial 
resolution, which gets very valuable in the context of energy system decarbonization. 
For instance, this data can be used for load profiling, forecasting or demand response 
tasks on individual building level (Wang et al. 2019). Suppose this data is collected for an 
entire town or city. In this case, the question arises of how this data can be used in con-
junction with geospatial data for simulating future grid states and how the data can be 
utilized in decision support systems for analyzing where residential PV installations or 
community batteries are profitable, or where grid expansion or a retrofit of substations 
are required.

Energy systems research is a vivid field of research. There are many publications on 
single aspects of future energy systems, e.g., optimal component sizing based on smart 
meter data, sector coupling using heat pumps, or optimal control of heat pumps and 
battery storage systems. We identify a lack of theoretical approaches focusing on a full 
combination of these aspects. As highlighted in the related work, existing approaches do 
not integrate smart meter data in combination with corresponding building conditions 
while performing individual expansion decisions model endogenous.

An upcoming trend in the application of computer science is the creation of digital 
twins, which originates in Product Lifecycle Management (Grieves 2005). A digital twin 
is a virtual model of an existing product or system with an information exchange both 
from the existing system to the virtual model and vice versa (Singh et  al. 2021; Jones 
et al. 2020). A good overview of the digital twin concept can be found in VanDerHorn 
and Mahadevan (2021). As publications like Petrova-Antonova and Ilieva (2020) pro-
mote digital twins for decision support on a general level, we contribute a digital twin 
of a complete local energy system for exploring future grid states, such as higher PV or 
heat pump penetration rates, especially with the focus on the residential sector. The twin 
is based on the complete smart meter data of a residential energy system and additional 
data about roof sections and the heat demand of the existing buildings. The goal is that 
additional simulated components imitate the expected behavior as they would have in 
reality. So, the digital twin is used as a decision support system to assist 

1) residential customers where a PV installation (and potentially combined with a bat-
tery storage system) is profitable,

2) local system operators with the evaluation of grid related issues like where to expand 
the grid and the assessment of community batteries, and

3) researchers for the evaluation of different control strategies concerning the charg-
ing and discharging of the batteries as well as the exploitation of flexibility potentials 
resulting from sector coupling.

The described methodology can be used to model a digital twin of an arbitrary local 
energy system, from a larger company with many buildings and individually metered 
consumers like airports or harbors over small towns to big cities or counties. The only 
requirement is smart meter time series availability and additional information about 
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roof areas and building heat demand. We demonstrate our digital twin using data from 
our project partner Stadtwerk Haßfurt GmbH.

The remaining part of this publication has the following structure. First, we review 
the literature about the usage of smart meter data and simulation methods in energy 
systems research in the Related work section. Thereupon, we describe the modeling of 
our digital twin in the Methodology section. In the subsequent main part, we present 
an exemplary case study that exemplifies some of the capabilities of the digital twin and 
demonstrates the value of geospatial information. Finally, we end with a Conclusion and 
Outlook on future work.

Related work
Literature pertaining to energy systems based on a large amount of smart meter data 
presents a wide range of use cases. For the use case of data analysis, Iyengar et al. (2016) 
utilize data from over 14,000 smart meters widely spread across one city and analyzes 
impacts on energy consumption, for example hot summer or cold winter days. Other 
authors like McLoughlin et al. (2015), Khan et al. (2018) or Haben et al. (2016) use smart 
meter data for characterizing residential customers according to their daily energy usage 
patterns utilizing clustering techniques. In Miyasawa et al. (2021), the smart meter data 
of a major city is used for forecasting the spatial demand in the next hours.

Fewer papers address the simulative enrichment of smart meter data with PV instal-
lations or battery storage systems. Nyholm et  al. (2016) investigate how battery stor-
age can increase self-sufficiency and self-consumption of more than 2000 households 
distributed throughout Sweden. For every investigated household the authors obtained 
the smart meter profiles from the Distribution Network Operator (DNO). They prove 
that a residential battery storage can increase self-sufficiency by 12.5–30% compared to 
the case without storage. Based on the smart meter data of more than 4000 households 
Schopfer et al. (2018) present a predictor giving the optimal PV and battery configura-
tion. In both examples, the effect of PV and battery storage on the local energy system 
remains an open question. The effect of an expansion of residential PV installations and 
heat pumps based on a large amount of smart meter data is investigated by Nigmatu-
lina et al. (2020), where the authors analyze the increase in peak loads at the household 
and local substation level caused by higher PV penetration rates. Therefore, they use real 
data from around 15,000 buildings. The authors conclude that peak reduction can be 
more profitable in some cases than only increasing self-consumption. In Klonari et al. 
(2016) smart meter data is used to predict the maximum installable rooftop PV power 
that can be installed to prevent substation overloading. Douglass et al. (2019) use smart 
meter data from 300 households with PV and battery storage to predict system load if 
tariff regulations are changed. We notice that all these approaches do not respect indi-
vidual roof conditions. Nevertheless, Khan et al. (2019) emphasize that roof orientation 
should be considered when simulating new PV systems.

An early approach of modeling a digital twin imitating the electrical behavior of 
households, especially with a focus on whiteware and electric mobility is presented by 
Karnouskos and de  Holanda (2009). As there was neither smart meter data nor good 
data about mobility behavior available, the authors present a way to simulate the usage 
of whiteware and mobility demands, including a control for maximizing the usage of 
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renewable energy generation. Moreover, aspects like the realistic planning of PV instal-
lations for rooftops have not been considered. Francisco et al. (2020) present how smart 
meter data can be used for almost real-time building energy benchmarking. The authors 
propose an energy management system on city-level for detecting building renovation 
potential and real-time energy efficiency strategies. In contrast to our approach, the 
energy management system does not consider the possible integration of renewable 
energies. Moreover, the effects of possible renovations, for example by heat pumps, are 
not in the focus of their publication. Ruohomaki et al. (2018) present a digital twin of the 
city of Helsinki where sensor data about air quality and building energy consumption 
is combined with a 3D model of all buildings. One goal is to compare similar buildings 
among each other and discover savings opportunities. Moreover, urban designers use 
a digital twin to analyze the solar energy potential in a part of Helsinki (Hämäläinen  
2020). A methodological framework for building universal digital twins of smart cities 
is presented briefly by Petrova-Antonova and Ilieva (2020) on a general level without 
concrete implementations. Shahat et al. (2021) present a review of city digital twins and 
highlight gaps in knowledge, like the combination of energy-related data with geospatial 
data.

In energy systems research, simulation methods are commonly used to support com-
ponent planning and sizing decisions or control strategy evaluation. Pruckner et  al. 
(2014) present a combination of an optimization and simulation model to support the 
decision of when to build and how to size new gas-fired power plants to replace tradi-
tional coal or nuclear power plants. Blasi et al. (2019) evaluate the effect of higher PV 
penetration rates on substation level using a power flow calculation. Von Appen et al. 
(2015) analyze the grid impact of residential PV installations in Australia and Germany 
and probable changes if a battery storage system is added to individual households. 
Lazzeroni et al. (2015) present a study on the impact of general PV penetration on a dis-
tribution grid in the Middle East.

A first analysis of the effects of higher heat pump penetration rates in exemplary dis-
tribution systems is presented by Akmal et al. (2014), noting the threat of overloads at 
substations. Overloads due to higher heat pump penetration rates can also occur at the 
transmission level (Waite and Modi 2020). As a higher penetration of heat pumps might 
impact local energy systems, Ali et al. (2022) compare different strategies for planning 
local energy system strengthening, especially on power line level. Edmunds et al. (2021) 
evaluate the maximal hosting capacity in local energy systems for added heat pumps 
and optimized electric vehicles. A combination of PV and a heat pump including bat-
tery or thermal storage is evaluated in different climate zones for one exemplary resi-
dential house by Bee et al. (2019). Table 1 lists the most important references focusing 
on local energy systems and categorizes them according to the criteria considered in this 
publication.

Gaps in knowledge and research questions

Summarizing, we can say that the combination of real smart meter data, PV systems and 
additional heat pumps including individual component sizing, different control strate-
gies and grid topology is the essence for building a digital twin of a local energy system. 
This combination has not yet been fully worked out in the references. In this context, 
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we highlight that all references in Table 1 are not able to integrate constructional condi-
tions, namely roof orientation and size. Moreover, we find that most of the considered 
references focusing on distribution system level add simulated components to random 
households, which does not represent the system or customer behavior realistically 
(Palm 2020; Schopfer et al. 2018).

The concept of digital twins seems to be a promising approach to build a model of a 
local energy system for the joint answering of individual component sizing and expan-
sion recommending, grid analysis and the potential to integrate different control strate-
gies. The need for research on digital twins based on smart meter data and geospatial 
data is reinforced by the fact that first reviews on the use of digital twins by cities like 
Onile et al. (2021) do not yet list approaches that integrate smart meter data and geospa-
tial data, but do highlight the potential benefits of such approaches (Shahat et al. 2021).

Hence, our research question is how to model a digital twin of a local energy system 
based on smart meter data and additional building information to be able to act as a 
decision support system for the aspects highlighted in the introduction. Our particular 
focus is on model-endogenous individual decision-making for PV and storage addition 
based on metrics such as Self-Sufficiency Rate (SSR) in conjunction with system analy-
sis capabilities. The latter includes, for example, an analysis of the grid load or different 
storage configurations and the possibility to evaluate different control strategies.

Methodology
Modeling of the digital twin

We take an existing local energy system as a starting point for modeling the digital 
twin. Our granularity level is the system level, i.e., we model individual households, but 
the household consumption is modeled as one entity given by the data. This approach 
includes the consideration of power flows only at a balanced level. We explicitly mir-
ror the spatial system structure, including the allocation of the metering points to their 

Table 1 Classification of the related work in the energy systems research

Column ‘level’: considered system level, i.e. household (H), local energy system (D) or transmission system (T). The other 
columns are self-explanatory

Reference Level PV Network 
structure 
included  

Smart 
meter 
data

Different 
control 
strategies

HPs 
considered

Indiv. 
comp. 
sizing

Blasi et al. (2019) D � � No No No No

Nigmatulina et al. (2020) D � � No No No No

Schopfer et al. (2018) H � - � No No �

Nyholm et al. (2016) H � - � No No �

Paolo et al. (2015) D � � No No No No

Von Appen et al. (2015) D+T � No No � No �

Klonari et al. (2016) D � � � No No No

Douglass et al. (2019) D � No � � No No

Ali et al. (2022) D No � No No � No

Edmunds et al. (2021) D � � No No � No

Bee et al. (2019) H � - No No � �

Our proposed digital twin H+D � � � � � �
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corresponding substations besides the individual roof and heating demand conditions. 
A metering point has one smart meter that measures an individual household or special 
components such as wind farms or open-space PV installations. Moreover, some resi-
dential rooftop PV installations and heat pumps have an individual meter and are not 
connected to the households’ meter. So, we model a metering point and the informa-
tion about the metered components as one unit, called a measurement unit. For every 
measurement unit we have a time series. Thus, a more detailed look at the components 
and stuff metered behind is not required. In general, the components we consider in this 
paper are:

• PV installations
• battery storage systems
• heat pumps

We model an intermediate layer between the substations and the measurement units, the 
so-called control units. These units aim to enrich the collected smart meter data stored 
in the measurement units with added simulated components, i.e., PV installations, bat-
tery storage systems and heat pumps. So, a control unit reflects the level where decisions 
regarding the simulative addition and the control of such simulated, added components 
are made. Regardless of the building type, i.e., a single-family detached home or a multi-
family residential, a rooftop PV installation and a heat pump will be installed on build-
ing level, not on apartment unit level. Moreover, we can assume that all components 
inside a building could potentially communicate with each other. Thus, every building 
is modeled as a single control unit in our digital twin. Only multiple buildings on the 
same property belonging to each other are merged into one single control unit, like a 
detached house with a separate garage. The correspondence of the real energy system 
and the mapping in the digital twin are presented in Fig. 1. The concept of adding com-
ponents on building (or property) level, but not on a flat level, follows the idea of Steber 
et al. (2017), where PV or battery is added once per building only.

We notice that a control unit can have multiple measurement units due to different 
reasons. First, an existing PV installation or heat pump can have an individual meter. Or 
second, a multi-family residential holds a meter for every apartment unit. Figure 1 visu-
alizes some examples. The definition of the control unit also allows the representation of 
open-space PV installations and local wind farms inside the digital twin. A real energy 
system always shows a tree structure on local system level (Lakervi and Holmes 1995, 
ch.  10). Each consumption point is connected to exactly one substation. So, a control 
unit is connected to exactly one substation in our digital twin.

Simulated addition of components and virtual smart meters

The addition of new, simulated components takes place inside the control units. Since 
the measurement units know which components they are measuring, the control unit 
can use this information united over all connected measurement units to know which 
simulated components can be added, or in the case of PV installations the size of an 
existing system. As simulatively added components will change the demand from or 
feed-in to the energy system, we introduce a so-called virtual smart meter that measures 
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the energy balance inside the control unit. Figure 2 illustrates the connection between 
the real smart meter data inside a measurement unit and the virtual smart meter of the 
complete control unit. The control unit can be expanded with a PV installation, a battery 
storage system, a heat pump or arbitrary combinations of these three components.

Simulation concept inside the digital twin

All variables and sets used in the further course are listed in Table 2. To simulate the 
system behavior given an arbitrary addition of simulated components over the com-
plete time span for which data is available, the digital twin incorporates a discrete 
simulation with fixed time steps. The step size must be equidistant and has to fit the 
temporal resolution of the smart meter data. The simulation repeats the same proce-
dure in each time step t ∈ T  , where T  is the ordered set of all time steps. In principle, 
the load at every virtual smart meter PvSM

c (t) is first calculated for each control unit 
c ∈ C , where C is the set of all control units. Subsequently, the active power is calcu-
lated for each substation by summing the readings of the virtual smart meter of all 
control units connected. By summing the power of all substations, we get the total 
active power of the system.

For computing the power of the virtual smart meters PvSM
c (t) as illustrated in Fig. 3, 

the simulation does the following steps for every control unit c: First, every measure-
ment unit connected to c reads the value of the real smart meter from the data provided 
for the current time step. Thereupon, the demand or feed-in of all simulatively added 
components of c is computed giving a fixed order according to their flexibility potential, 
starting with the PV installation as an uncontrollable component and ending with the 
battery storage system as the one with most flexible control capabilities. The individual 

Fig. 1 The correspondence of the real energy system and the abstraction in the digital twin. The real 
modeled system is shown above. Below, the correspondence to the concepts of our digital twin are depicted: 
Turquoise boxes represent control units, and gray boxes represent measurement units. Additionally, the 
possible representation of local wind farms and open-space photovoltaic installations is illustrated on the 
right. Grey arrows represent the transformation of smart meters to measurement units, blue arrows represent 
the transformation of real entities to control units, crimson arrows depict the transformation of substations
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Fig. 2 Concept of a virtual smart meter: Distinction of measurement units as smart meter data input and 
control units that combine all smart meters in one house and potentially add simulated components. Red 
lines depict control unit internal energy flows. Crimson lines represent the local energy system

Table 2 List of frequently used sets and variables

Set name Set description

C Set of all control units

Mc Set of all measurement units per control unit c

S Set of all substations

T Set of all time steps

Variable name Variable description

PrSMc,j (t) Real smart meter reading at time step t for control unit c and 
measurement unit j

P
vSM
c (t) Virtual smart meter reading at time step t for control unit c

P
HP
c (t) Power of the heat pump at time step t for control unit c

P
PV
c (t) Power generation of the PV installation at time step t for control 

unit c

PBatact ,c(t) Power of the battery at time step t at control unit c

E
self cons.
c (t) Self-consumed energy at time step t for control unit c

Fig. 3 Visualization of the virtual smart meter load computation and the ordering of component calculations 
inside of a control unit. The battery action is determined by the controller inside the unit
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computations inside the simulated components will be presented later. First, we sum the 
load of all connected measurement units per control unit. Thereupon, we compute the 
power generation PPV

c (t) of the connected PV installation. If no PV installation is simu-
lated, we set PPV

c (t) = 0.
Next, we compute the electricity demand of the heat pump PHP

c (t) or set PHP
c (t) = 0 

if no heat pump is simulated. Finally, the demand or feed-in PBat
act, c(t) of the battery 

storage system is computed if present. The concrete action of the battery storage sys-
tem is given by a control strategy, for example a rule-based one maximizing PV self-
consumption, inside the control unit. So, the power at the virtual smart meter of a 
control unit c at time step t is given by

where Mc indicates the set of all measurement units connected to control unit c. Please 
note, that the value of PBat

act, c(t) is negative while discharging.
Furthermore, the power Pself cons.

c (t) , that is produced and also consumed on site c, 
is computed following the idea of Luthander et al. (2015). Per time step Pself cons.

c (t) is 
the minimum of the power of first all local consumers and second the PV installation 
including the battery, formally

where �c(t) = j∈Mc
PrSM
c, j (t) is the sum of all real smart meter readings at time step 

t for control unit c. Please note, that PPV
c (t)− PBat

act,c(t) ≥ 0 holds always following the 
above arguments. The directly consumed energy per time step is the power multiplied 
with the time step duration, i.e. Eself cons.

c (t) = Pself cons.
c (t) · △t

After the last time step has been computed, metrics such as SSR (see Eq. 5) are cal-
culated on control unit level. The simulation outputs detailed time series on the load 
of all substations, virtual smart meters and the simulated components. In the follow-
ing subsections, we describe how the components are modeled and how control units 
are selected for the simulated addition of components.

Data concept of the digital twin

Our modeled digital twin requires multiple data sources. Besides the smart meter 
time series, the model requires the address of the meters to combine multiple meters 
installed at the same address to one control unit. Moreover, information about exist-
ing roof sections including their orientation has to be given per address. This roof 
data is taken from cadastral data or 3D geographical data in the CityGML format with 
a Level of Detail (LoD) of two. Further information about CityGML and the possi-
ble LoD can be found in Löwner et al. (2013). Additionally, the digital twin requires 
the knowledge which components are measured by a smart meter. This information 
should be available to the system operator. Otherwise, we can conclude the existence 

(1)PvSM
c (t) =

∑

j∈Mc

PrSM
c, j (t)− PPV

c (t)+ PHP
c (t)+ PBat

act, c(t)

(2)Pself cons.
c (t) = min







�c(t)+ PHP
c (t)

� �� �

Local demand

, PPV
c (t)− PBat

act,c(t)
� �� �

Local production
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of components from the smart meter time series. For example, Weigert et al. (2020) 
present an approach to detect heat pumps in smart meter data, and Neubert et  al. 
(2022) detect private charging stations and PV installations. Finally, the estimated 
annual electricity demand of a heat pump is required per building. The data is pro-
cessed inside the digital twin. Details on preprocessing are presented in the next sec-
tion. All required data is depicted schematically in Fig. 4.

Simulation of the individual components

PV installations

We use existing feed-in profiles for simulating the feed-in of a residential, rooftop PV 
installation. The profiles are taken from the meters where we know they exclusively 
measure a rooftop PV installation. The metered data is turned into a profile by divid-
ing every element of the time series through the nominal power of the installation. 
The orientation of the measured installation is taken from the roof data. The advan-
tage of real measured PV is that special effects, such as snow covering the PV installa-
tion in winter, or cloud cover reducing PV feed-in, are already included in the profiles 
without simulating the PV feed-in from historic sun radiation profiles. Literature like 
Klonari et al. (2016) already exists where PV profiles are generated from smart meter 
data. The PV installation consists of one or more subcomponents, each representing 
one roof section where a covering with PV modules is simulated. Information about 
existing roof sections and their orientation must be given in the data.

For computing the maximum installable power per control unit c, we iterate over 
all roof sections attributed to c taking the area of every section. Roof windows and 
dormers reduce the available area of a roof section for installing PV panels. Moreover, 
roofs have different shapes that rectangular PV modules cannot fully cover. There-
fore, we introduce a hyper-parameter r measured in kWp/m2 saying which nominal 
PV power can be installed per roof area. The nominal power PN

c,i per roof section i per 
control unit c ∈ C with area Ac,i is thus computed by  PN

c,i = Ac,i · r . Consequently, the 

Fig. 4 Required data used by the digital twin and conceptual data flow including the input and output for 
the simulation
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nominal power of the entire PV installation is the sum of all nominal powers of the 
subsections. Generally, we can exclude small roof sections or sections with an inap-
propriate orientation, like north roofs in Europe.

During the simulation run at time step t, the PV component computes the current 
generation per roof section as the product of the profile with the correct orientation Sc,i 
and the nominal power of the section. The sum over all sections i per control unit c

gives us the total generation of the component for unit c.

Battery energy storage systems

The battery storage system is implemented as an input–output-model with the capacity 
Emax in kWh, the maximum available power Pmax in kW and the initial state of charge 
as parameters. In such models, the charge level E(t + 1) of the battery at time step 
t + 1 is calculated by adding the energy fed into or taken from the battery per time step 
E(t + 1) = E(t)+ P

Bat
act,c(t) · △t . They are vividly used for simulating battery storage at 

a systematic level, e.g. in Nyholm et  al. (2016) or Martins et  al. (2016). Some authors 
also refer to these models as so-called simple storage models, like Lyden et al. (2018). 
During the simulation, the controller of the control unit can set a charging (or discharg-
ing) request Preq . If Preq > 0 , the battery should be charged, if Preq < 0 it should be dis-
charged. An internal logic inside the battery model checks if this request can be fulfilled. 
That is the case if there is enough free or available capacity and the requested power 
does not exceed the maximum power. If the request cannot be fulfilled, the internal logic 
calculates how much energy can be taken from the battery until it is empty or fed in until 
reaching the maximum. The flowchart in Fig. 5 illustrates this logic. A similar idea for 
deciding when to charge or discharge the battery can also be found in Li et al. (2019).

Heat pumps

The simulation requires a set of normalized heat pump profiles, at least one profile. The 
profile is expected to be normalized to an annual electricity consumption of 1000 kWh. 
Besides that, the expected annual energy demand of the heat pump must be included in 
the data. Each expanded control unit gets a randomly selected heat pump profile, which 
is scaled with its individual annual heat pump energy demand divided by 1000 kWh. An 
advantage of simulating the heat pump using real measured profiles is that these profiles 
fit temporarily with the used PV feed-in profiles. Thus, weather conditions such as cold 
winter days with a thick blanket of snow consistently affect all profiles.

Remarks on component control strategies

 Even though the battery storage system currently has a rule-based control strategy, the 
design is not limited to those. It is possible to merge existing cellular approaches like 
those presented by Dengler et al. (2022) into our model, where a control unit would rep-
resent a so-called energy cell following their wording.

(3)PPV
c (t) =

∑

i

Sc,i(t) · P
N
c,i =

∑

i

Sc,i(t)Ac,i · r
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Computed metrics

To measure the effectiveness of a PV installation, we use two measures, the Self-Con-
sumption Rate (SCR) and the Self-Sufficiency Rate (SSR) following the definition of Ste-
ber (2018). The SCR of an arbitrary control unit c is defined as the quotient of the total 
self-consumed energy of c and the total PV generation over the period considered, for-
mally noted following the definitions of Eq. 2:

Analogously, the SSR of an arbitrary control unit c is defined as the quotient of the total 
self-consumed energy of c and the total consumption of c over the period considered:

(4)SCR(c) =

∑

t∈T

Eself cons.
c (t)

∑

t∈T

PPV
c (t) · △t

(5)SSR(c) =

∑

t∈T

Eself cons.
c (t)

∑

t∈T

(

�c(t)+ PHP
c (t)

)

· △t

Fig. 5 Internal logic of the battery for charging or discharging. △t is the step size between two time steps in 
hours. Eold is the current battery charge at the end of the last step, Enew the battery charge at the end of the 
step, Preq is the charge request and PBatact ,c the actual power that can be delivered from or fed into the battery. 
Above, Pact is also noted as PBatact , c(t) , but for the sake of clarity indices are not shown in this figure
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Planning of the addition of simulated components

As illustrated in Fig.  4, we have to define a scenario of how simulated components 
should be added and where this should happen. We notice, that all considered compo-
nents (i.e. residential PV installations, battery storage systems and heat pumps) might 
already exist in any combination in existing buildings. For the further course, we denote 
the set of all possible component combinations as Q ⊂ P({PV ,BS,HP}) assuming a fixed 
order of the combinations. Now, we define a matrix Mexp , where each row denotes the 
existing component combinations and each column represents the target combinations. 
In each cell (i, j) we can define the portion of control units with current combination i 
that get extended to combination j. The extension happens by adding the missing com-
ponents. We note, that some matrix combinations are impossible, as components would 
get removed. These combinations have to be zero. The absolute number of control units 
expanded from combination i to j, denoted as Nexp(i, j) , is the product of the Mexp(i, j) 
and the total number of control units having combination i in reality.

Control unit selection modes

For selecting concrete instances, several selection modes are possible. For instance, a 
simple approach could be a random selection of the control units.

Some publications cited in Related work section like Schopfer et al. (2018) report that 
the addition of new PV installations is more profitable for some households than for oth-
ers. Thus, we present a more sophisticated mode of selecting the control units for new 
component addition using the SSR defined in Eq. 5 as a metric. In this mode, we expand 
all units with all possible combinations and run the simulation for the complete time 
span, noting the results of the metric per unit and expansion combination. Finally, we 
select the Nexp(i, j) control units per (i, j)th combination achieving the best value of the 
metric. We call this mode Best-SSR-Selection-Mode.

Implementation and verification of the simulation

We use an object-oriented design, where all components and units are designed as an 
individual class. This is a common approach that is also used by Bazan and German 
(2012). The class diagram in UML notation is illustrated in Fig. 6.

To verify our simulation implementation, we use a very small, hand-crafted data 
set with artificially generated data for the period of one day. To do so, we define three 
sequential scenarios for which we verified the output by hand. The first one is a scenario 

Fig. 6 The UML class diagram of the implementation with the cardinalities given. Orange boxes depict 
simulated components, green boxes depict units representing real objects
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without any expansion. The test can be accepted as the input equals the output. The sec-
ond one is a scenario where we equip the control units with a PV installation. The last 
scenario finally includes all active components, i.e., we equip the control units not only 
with PV installations but also with a battery storage system. All outputs are checked via 
hand, which is still possible for 24 time steps. On top of that, we verified the results of an 
exemplary case during an expert call with our project partner.

As the digital twin simulates new PV installations and heat pumps based on existing 
profiles, we have to check the plausibility of the profiles before using them. Since nor-
malized PV feed-in time series are expected to show a temporarily similar profile, we 
compare the time series of all PV installations with the same orientation among each 
other using mean squared error and the Pearson correlation coefficient. Profiles show-
ing a low correlation coefficient or a mean squared error high above the mean will be 
excluded. Heat pump profiles may diverge in their temporal patterns, thus we compute 
the energy consumed per month and remove all series that do not show a typical sea-
sonal profile.

Details on preprocessing
In this section, we define the way the data is preprocessed by the digital twin to pass 
them into the simulation. Before processing the existing smart meter data, the start, the 
end and the temporal resolution of the recorded data are noted. With this information, 
the preprocessing of the digital twin creates a list of all time steps for which data is avail-
able and numbers them consecutively. The temporal alignment of the smart meter data 
is checked against this list of time steps.

This means that missing values are interpolated, and duplicated entries are removed. 
Later during the simulation, the load value of a measurement unit can easily be read 
from these files with the help of the time steps. The simulation requires additional infor-
mation on which measurement units are at one place and thus form a control unit. 
Furthermore, the preprocessing also requires information about existing PV installa-
tions, battery storage systems and heat pumps per measurement unit to assign a value 
to RE(m) per measurement unit m. Based on this information, the preprocessing of the 
digital twin creates a list S of all substations, a list C of all control units and a list Mc of 
all existing measurement units per control unit c. It also outputs the interconnections 
between these components. Subsequently, all existing PV installations and heat pumps 
measured by an individual smart meter exclusively are used to generate a set of nor-
malized PV feed-in profiles and heat pump profiles. Finally, we compute the difference 
between the recorded smart meter data and the real measured system load per time 
step. A difference can appear as it could happen that some meters are not smart meters 
and we thus lack this data, but for the calculation of the total system load it is still of 
interest. The whole preprocessing procedure is illustrated in Fig. 7. Except for the large-
sized smart meter time series, the preprocessing stores the output in one single place, an 
SQL database. This idea can be found in the literature, for example, in Karnouskos and 
de Holanda (2009). We, therefore, use SQLite (Kreibich 2010).
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Case study
In this case study, we present the capabilities of the above-defined digital twin. We, 
therefore, take real data from our project partner, which is fed into the digital twin. The 
case study investigates two exemplary aspects of our digital twin: First, we investigate 
how the selection of the control units for adding a PV installation works. Therefore, we 
study which control units are expanded with a simulated PV or PV-battery-combination 
using different computation modes for the control unit expansion selection. In this con-
text, we also demonstrate the value of geospatial data. Second, we analyze the effect of 
the added PV(-battery)-installations and heat pumps on the total grid load of the energy 
system.

Used smart‑meter data and preprocessing

We acquired real measured smart meter data for all residential households from Haßfurt 
and Theres, two small towns located next to each other in northern Bavaria, Germany. 
This unique data set contains the data of over 8000 smart meters over a period of three 
years, i.e., 2019 until 2021, with a time resolution of one hour, and including the sys-
tem topology. Thus, the time step size for the simulation is one hour. Moreover, we have 

Fig. 7 Overview of the preprocessing pipeline. The orange boxes in the top line depict the different classes 
of input or output data - i.e., smart meter data from residential households, additional information about 
addresses, connected components, roof areas etc. of these households, the real measured grid load and PV or 
heat pump profiles. Green boxes represent processing steps
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all information as illustrated in Fig. 4. The data about the existing properties, buildings 
and roof sections are delivered from the Bavarian state land surveying office with a LoD 
of 2 (Aringer and Hümmer 2011). During preprocessing, we remove all control units 
at an unknown location or a location without roof information. Removing households 
with unknown locations or missing data points is a common approach that has already 
been done, for example, by Nyholm et al. (2016). Finally, we have 3903 control units each 
located at a different location (i.e., address). Almost all considered locations, exactly 
3642, have at least one residential building. 441 control units already possess a PV instal-
lation without battery storage, and 86 units have both components.

Profile filtration

As defined in Section Simulation of the individual components, we search all meas-
ured time series for  exclusively measured heat pumps or PV installations for generat-
ing PV and heat pump profiles. The data shows 49 meters that exclusively measure a 
PV installation. For all of those, we take a look at a satellite photo given the address of 
the meter to identify the orientation of the PV installation using two different sources, 
Bing Maps (2022) and Google Maps (2022). In the end, we obtain 15 meters where we 
can determine the orientation. The real measured time series are normalized by dividing 
all measured values by the nominal power of the installation to obtain proper profiles. 
Figure 8 depicts the exemplary feed-in time series per orientation for two consecutive 
days in May 2021. We can see that the different roof section orientations show their peak 
accordingly to the solar trajectory for both days and that the peak value changes for dif-
ferent orientations.

Scenario definition

In order to present the capabilities of the digital twin we define the following five sce-
narios. Our scenarios aim to reflect the expected expansion state at the end of 2029.

Progress of PV expansion in Haßfurt und Theres up to now and future plans

We set the nominal power installable per roof area r (see Eq. 3) to the median obtained 
from the data, which is 66.2 Wp/m2 . For the sake of clarity, we will not evaluate different 

Fig. 8 Plot of exemplary feed-in time series per roof orientation for two days in May 2021
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values. The interested reader may conduct Wiginton et al. (2010) or Hopf et al. (2017) for 
a more detailed discussion of the usable area.

We furthermore need to make an assumption about the expansion state at the end 
of 2029. In 2021, new rooftop PV installations with a total power of 1.2  MWp were 
installed resulting in a total nominal power of 9 MWp. Assuming that the 2021 addition 
rate will continue, by the end of 2029 we will have nearly 19 MWp of installed rooftop 
PV power. Between 2013 and 2020, many newly installed rooftop PV installations had a 
power lower or equal to 10 kWp. The reason for this past development is a massive tax 
benefit for residential installations below 10 kWp, as highlighted in Truong et al. (2016). 
From the beginning of 2023, the limit will be raised to 30 kWp (Federal Gazette of Ger-
many 2022). Our projected target of 19 MWp installed rooftop PV capacity goes along 
with the plans of the Federal Network Agency of Germany (2022).

Scenarios in detail

Scenario A  represents the addition of PV power from 2021 linearly extrapolated to 
2029. So we simulatively add a PV installation in combination with a 
battery storage system to 45% of all control units that neither have a PV 
installation nor a heat pump. The control units used for expansion are 
selected using the Best-SSR-Selection-Mode as defined in Section Plan-
ning of the addition of simulated components. Per simulatively added PV 
installation we limit the added power upwards to 10 kWp, even though PV 
installations with more power could be installed on a given roof, repre-
senting the situation in 2021.

Scenario B  represents the addition of PV power from 2021 linearly extrapolated to 
2029. However, in contrast to Scenario A, we increase the maximal power 
per PV installation to 30 kWp which seems to be better for estimating the 
future development in Germany as noted above. Still, we limit the addition 
of PV systems to 10 MWp in order to achieve the target of an installed PV 
power of 19 MWp in 2029. This leads to a reduction of expanded control 
units to 908 (about 33% expansion).

Scenario C  equals Scenario B, but we use no battery storage system. It is used to 
answer the first question of the case study, i.e., to investigate how the 
choice of control units selected for addition changes when only PV sys-
tems are added instead of PV-storage combinations.

Scenario D  expands Scenario A by adding additional heat pumps to every control 
unit which gets an added PV installation. The total annual electricity con-
sumption of all heat pumps is 7.1 GWh. Following an idea presented by 
Edmunds et al. (2021), we estimate the annual consumption for a simu-
lated heat pump based on the building volume using existing annual con-
sumption values as ground truth.

Scenario E  equals Scenario A except that we replace the roof data to understand 
the value of the geospatial data. This means that all installed PV systems 
face south with a power of 10 kWp. The added PV power is limited to 
10 MWp, this equals the added PV power in Scenario A.
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Settings for all scenarios

For all of the above-defined scenarios, we use the following parameters for the PV instal-
lation and the battery: 

PV installations  The size of the installation is determined by the individual 
roof conditions but might be limited to a maximal power 
depending on the scenario definition. Roof sections where 
less than 2 kWp can be installed, are ignored.

Battery storage system  For ease of comparison, we have set the capacity for all sim-
ulatively added battery storage systems to a fixed value of 
7.5 kWh and use a C-rate of 1.

An overview of the defined scenarios can be found in Table 3. It also contains the abso-
lute number of expanded control units per scenario.

Metrics

To measure the first investigation goal of this case study, we inspect the installed PV 
power and the mean annual energy consumption of an individual control unit in combi-
nation with the gain of the PV installation measured by using the above-defined SSR (see 
Eq. 5). For the second investigation goal, the metric to investigate is the grid load.

Results
The last two columns of Table 3 show how many control units are expanded by a PV-
(battery)-combination. In the further course, we compare Scenario A, B and C in terms 
of the selection of control units for PV addition. We also compare Scenario A and E to 
highlight the value of geospatial information. For the analysis of the grid load, we use all 
defined scenarios.

Selection of control units

The number of expanded control units declines in Scenario B and C compared to Sce-
nario A, because the upper power limit for the newly created PV installations is much 
higher than in Scenario A. Moreover, a statistical analysis of the total power of the added 
PV units per control unit reveals that many roof topologies allow larger PV installa-
tions than only 10  kWp in total, which are cut off in Scenario A. Whereas the mean 
power over all added PV installations is 7.62 kWp in Scenario A, this value rises up to 

Table 3 Overview of the defined scenarios and some results: the number of Control Units (CUs) 
with added components and the total sum of added PV power

Max. kWp battery heat pumps Number of Total added
Scenario per installation added added expanded CUs PV power

Scenario A 10 kWp yes no 1 313 10 007 kWp

Scenario B 30 kWp yes no 908 10 009 kWp

Scenario C 30 kWp no no 632 10 001 kWp

Scenario D 10 kWp yes yes 1 185 10 000 kWp

Scenario E 10 kWp yes no 1 000 10 000 kWp
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11.02 kWp for Scenario B. The added PV peak power distributions of Scenario A and B 
are very similar with values between 0 kWp and 9 kWp. For higher values, we can see 
that the modus of this distribution for Scenario A is at the 0.75-quantile, which is at a 
level of 10 kWp. A histogram and a violin plot of the added peak power distributions 
for Scenario A, B and C is depicted in Fig. 9. A comparison between Scenario A and E is 
given in the next subsection.

When comparing the control units selected between Scenario A and Scenario B, 
456 equal units get expanded in both scenarios. Whereas 452 units are expanded in Sce-
nario B but not in A, and 857 are expanded in Scenario A but not in B. As the simulation 
selects those units with best the SSR, we can conclude that allowing bigger PV instal-
lations has a huge impact on which units are selected for expansion and which are not. 
We see the same situation when comparing Scenario B and C. While only 266 control 
units are expanded in B and C, 642 units are only expanded in B but not in C. Moreover, 
366 units are expanded in Scenario C but not in B. Figure 10 shows a parallel plot of the 
combination of how control units are expanded across the different evaluated scenarios.

Fig. 9 Visualization of the distribution of simulatively added PV installations grouped by the defined 
scenarios. Left: The distributions visualized in a histogram. Right: Violin plots of the distributions. Scenario D is 
not evaluated in this context and Scenario E has a fixed PV power of 10 kWp

Fig. 10 Change in expansion group membership (i.e. if expansion took place using a PV- / 
PV-battery-installation or not) for the different evaluated scenarios. The different trajectories are colored 
differently. We can see that the selected control units for adding components changes significantly 
depending on the scenario. Scenario D and Scenario E are not shown for the sake of clarity
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Value of geospatial data

When replacing information about roof shapes and orientations so that they all face 
south with a capacity of 10 kWp, we first notice that the number of expanded control 
units reduces from 1313  units in Scenario A to 1000  units in Scenario E. Moreover, 
884 units get a simulated PV installation in Scenario A that are not selected in Scenario 
E. Vice versa, 490 units get a simulated PV installation in Scenario E, but not in Scenario 
A. This means that roughly half of the units selected for expansion would not be selected 
if roof information was available. In addition, the number of PV expanded units required 
to meet a specified expansion target is underestimated by 24% in our case.

Effects on grid load

As we have data for three complete years, we analyze the result on grid load level per 
year that is assumed to be projected in 2029. For clarity, we will only use data from 2021 
as a baseline scenario for analyzing the effect of more PV penetration on grid load. The 
annual energy import from the upper system level is 22.0 GWh in 2021, while the annual 
feed-in to the upper system level is 26.0 GWh in 2021.

In Scenario A, the annual import is reduced by 3.1 GWh or 14% to 19.0 GWh. In Sce-
nario B we have an annual import of 19.1 GWh (a reduction of 13%) and in Scenario C 
it is 19.2 GWh (a reduction of 12.5%). The feed-in to the upper grid level increases by 
6.2 GWh or 24% to 32.2 GWh in Scenario A and B or 6.3 GWh in Scenario C. Summa-
rizing all scenarios, we see a reduction of the annual electricity import by about 13% in 
our case study, where the installed residential rooftop PV power is approximately dou-
bled. The feed-in to the upper grid level increase by 24%. Between Scenario A, B and C 
we cannot identify significant differences over the complete time span. We shall notice, 
that the feed-in to the upper grid level as present in the baseline is mainly driven by local 
wind farms and big-sized, open-space PV installations. Thus, comparing our results with 
other publications should be based on the absolute changes with respect to the added 
total PV capacity.

There are 5040 hours in the baseline where the local energy system requires import 
from the upper system. The hours with import decrease to 4459 hours or 88% in Sce-
nario A, or 4435 and 4399 in Scenario B and Scenario C, respectively. The inverse situ-
ation occurs for hours with feed-in to upper grid levels, where the hours with feed-in 
increase from 3719 hours in baseline to 4300 or 16% more in Scenario A. Even though 
the sum of electricity feed-in to the upper grid level increases by 24%, the number of 
hours where this happens only increases by 16%. This indicates that feed-in to the upper 
level of the grid is slightly more frequent and, more importantly, stronger. Or in other 
words, if there is a feed-in to the upper grid level already in the baseline, this will be 
more intense in future grid states. But the times when the import is replaced by export 
is much less increased. An overview of the import from and export to the upper system 
level for the different scenarios can be found in Fig. 11. Moreover, in Scenario C, with 
no added batteries, the maximum import cannot be reduced compared to the baseline, 
as the maximum import appears in the evening on March 23. In Scenario A, the maxi-
mum import happens at the same time, but the peak can be reduced by 1.0%. We can 
conclude that system states with more residential PV-battery-installations do not help 
reduce import peaks of the complete local system.
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Another feature of the simulation is the fact that the grid load can be investigated on 
an hourly level. For example, Fig. 11 shows the grid load for different scenarios using the 
data from two days in July 2021. The effect of the PV feed-in is visible. At a closer look, 
we can detect that the grid load in Scenario A and B is slightly higher compared to Sce-
nario C during the morning hours (i.e. between 9:00 and 12:00) and slightly higher in the 
late evening (i.e., between 20:00 and 02:00). This effect can be attributed to the residen-
tial battery storage systems, that are not added in Scenario C.

Effect of heat pumps on grid load

For analyzing the effect of heat pumps on the grid load, we compare Scenario D with 
our baseline. On an annual level, the imported energy rises by 4% compared to the base-
line or even 21% compared to Scenario A (which equals Scenario D except for the pres-
ence of heat pumps). At the same time, the annual energy feed-in to the upper grid level 

Fig. 11 Analytical plots of the total grid load for different scenarios. Top: Grid load in hourly resolution for 
two exemplary days with data taken between  10th until  12th of July 2021. Bottom: The four graphs show the 
annual electricity import sum from and export (i.e. feed-in) sum to the upper system level in MWh besides 
the hours with import from or feed-in to the upper system level per Scenario
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increases by 12% compared to the baseline. The hours with energy import decrease by 
6% compared to the baseline, while the hours with energy export increase by 8%.

As noted above, wind farms have a notable impact on grid load. Based on the results, 
we can analyze this effect using data from  9th February 2021. In the morning, at 7 am, we 
see a feed-in to the upper grid level of 7.2 MW, even though the individual households 
consume 2.6 MW. In Scenario D, the consumption of the households will rise by 121% 
to 5.8 MW due to the added heat pumps. Individual PV installations or battery storage 
systems cannot buffer this demand as they are neither producing nor storing energy on 
this winter morning. This situation is depicted in Fig. 12.

Value of geospatial data

The missing geospatial data in Scenario E compared to Scenario A also affects the simu-
lated grid load. While there is a feed-in to the upper grid level of 11.9 MW using the data 
of  10th July 2021 at 14:00 (Scenario A), the feed-in increases to 12.6 MW when ignoring 
the roof orientations (Scenario E) (see Fig. 11, dotted graph in the upper plot). This is an 
overestimation of approx. 7%. During the summer, this exemplary situation occurs often. 
The mean difference of the daily peak feed-in to the upper grid level for Scenario E com-
pared to A is higher than 500 kW for 30 days between June and August.

Conclusion and outlook
In the past ten years, renewable energy sources have become increasingly popular due to 
the decarbonization of energy production. Private households can nowadays buy a PV 
installation and a battery storage systems at an affordable price. Besides that, there are 
increasingly more big energy consumers present, like heat pumps. Due to the ongoing 
development of the internet of things, a lot of data is available about the current produc-
tion and demand of energy on household level that is recorded by smart meters.

Fig. 12 Effect of the heat pumps (Scenario D) on grid load for two exemplary days in winter of 2021. The 
vertical line is placed at  9th February 2021, 07:00. Top: Gird load in hourly resolution. Bottom: Grid load 
without wind farms and large enterprises, i.e. only residential buildings
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In this paper, we built a novel digital twin of an existing local energy system based 
on smart meter data and supplementary building data, including roof shapes and heat 
demand information. We present an abstraction of the actual system containing con-
trol units and measurement units. The center of the twin forms a data-driven simu-
lation of the system, where different expansion scenarios of local renewable energy 
sources (like residential PV / PV and battery installations) and higher penetration 
rates of big energy consumers like heat pumps can be evaluated. A highlight is the 
model-endogenous selection of control units for adding a PV(-battery)-installation 
based on metrics like the SSR.

We finally present a small case study to present some capabilities of our digital twin. 
There, we first investigate how many control units have to install a PV installation to 
achieve expansion targets where the units are ordered according to their self-suffi-
ciency increase. Second, we analyze the effect of more PV and heat pump penetra-
tion on import from and export to upper system levels over a year. In the context of 
energy systems research, our case study justifies papers like Khan et al. (2019) which 
emphasize the importance of roof orientation for PV simulations. More importantly, 
we extend this information to the grid level, showing that there are days in summer 
when the peak feed-in to the upper grid level is overestimated by 7% if no geospatial 
data is available. In summary, geospatial data combined with smart meter data pro-
vides more detailed information on future energy systems, as if this data is missing, as 
Shahat et al. (2021) expected.

Up to now, electric mobility has yet to be considered. Since literature such as Stro-
bel et  al. (2022) clearly show that a large electric fleet significantly impacts peak 
load, especially on the local distribution level we are concerned with, the next step 
is integrating electric mobility into the digital twin. Moreover, advanced analysis will 
be performed to evaluate different control strategies for the battery storage system 
charging, especially those that include demand and PV production forecasting. Also, 
more economic metrics like the net present value will be integrated to decide where 
to add new simulated components.
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