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Abstract 

Demand-side management, a new development in smart grid technology, has 
enabled communication between energy suppliers and consumers. Demand side 
energy management (DSM) reduces the cost of energy acquisition and the associated 
penalties by continuously monitoring energy use and managing appliance schedules. 
Demand response (DR), distributed energy resources (DER), and energy efficiency 
(EE) are three categories of DSM activities that are growing in popularity as a result 
of technological advancements in smart grids. During the last century, the energy 
demand has grown significantly in tandem with the increase in the global population. 
This is related to the expansion of business, industry, agriculture, and the increasing 
use of electric vehicles. Because of the sharp increase in global energy consumption, 
it is currently extremely difficult to manage problems such as the characterization of 
home appliances, integration of intermittent renewable energy sources, load categori-
zation, various constraints, dynamic pricing, and consumer categorization. To address 
these issues, it is critical to examine demand-side management (DSM), which has the 
potential to be a practical solution in all energy demand sectors, including residential, 
commercial, industrial, and agricultural. This paper has provided a detailed analysis 
of the different challenges associated with DSM, including technical, economic, and 
regulatory challenges, and has proposed a range of potential solutions to overcome 
these challenges. The PRISMA reviewing methodology is adopted based on relevant 
literature to focus on the issues identified as barriers to improving DSM functioning. 
The optimization techniques used in the literature to address the problem of energy 
management were discussed, and the hybrid techniques have shown a better perfor-
mance due to their faster convergence speed. Gaps in future research and prospective 
paths have been briefly discussed to provide a comprehensive understanding of the 
current DSM implementation and the potential benefits it can offer for an energy man-
agement system. This comprehensive review of DSM will assist all researchers in this 
field in improving energy management strategies and reducing the effects of system 
uncertainties, variances, and restrictions.
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Introduction
The mechanism that allows electricity to be transmitted from power plants to energy 
customers is known as the “power grid”. This electricity goes from the power plant 
through the substations in one direction before it reaches the energy user when the volt-
age is changed via the transmission and distribution line (Piette et al. 2004).

The need for energy has expanded significantly along with the increase in the global 
population during the last century. The International Energy Agency predicted that by 
2030, global electricity consumption will have increased by more than 50% (Freeman 
2005). This is related to the growth of business, industry, agriculture, and the increasing 
use of electric vehicles (Martínez-Lao et al. 2017).

Due to the sharp increase in global energy consumption, it is currently extremely chal-
lenging to manage problems such as controlling power loss, dependability, efficiency, 
and security challenges. A “smart grid,” which combines self-monitoring, self-healing, 
pervasive control, adaptive, and islanding mode mechanisms, has been suggested to 
allow for energy transit from the point of production to the site of consumption to solve 
these problems (Fang et al. 2011; Xu et al. 2016b).

The hardware and software components of smart grids provide the utilities the capac-
ity to immediately identify and address any problems that could develop between the 
customers and the producing plants and endanger the consistency and quality of the 
power supply. The smart grid component is classified as shown in Table 1.

Electrical energy management is used to reduce energy expenses and alter the load 
profile on both the supply and demand sides. The goal of supply side management (SSM) 
is to make energy generation, transmission, and distribution more operationally effec-
tive. SSM has many advantages, such as maximizing customer value by ensuring effi-
cient energy production at the lowest practical cost, satisfying demand for electricity 
without the need for new infrastructure, and limiting environmental impact. However, 
supply-side management is affected by fuel price volatility because of its techniques for 
managing thermal generators (Haffaf et al. 2021).

Demand side energy management (DSM) reduces the cost of energy acquisition and 
the associated penalties by continuously monitoring energy use and managing appliance 
schedules (Dranka and Ferreira 2019). In order to lower peak loads, control time of use 
(TOU) levels of power demand, evaluate user profiles for electricity loads, lower car-
bon emissions, and provide consumers a choice of preferred energy source, the electrical 
industry originally developed the DSM in 1970 (Gellings 2017; Maharjan et al. 2014).

Several nations, including the UK (Warren 2014), China (Ming et  al. 2013), North 
America (Wang et al. 2015), and Turkey (Alasseri et al. 2017), have adopted the Energy 
Management System (EMS), which is the most effective way to save energy costs while 
preserving system stability. However, there are still several constraints that prevent EMS 
from being fully implemented in underdeveloped nations. These components might be 
related to:

• Adopting an EMS comes at a significant expense, and the long-term rate of return on 
investment is low.

• Time-varying electricity tariffs are ideal. Making the switch from an older model to a 
newer one is tough for electrical companies and merchants.
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• Not all stakeholders benefit equally from the transformation;
• Population knowledge has a significant impact on implementation speed.
• Upgrading the network infrastructure could be very expensive for the system, and 

bidirectional power flow is still in the research stage, which could delay the idea of 
EMS.

Cappers et  al. examined the prospective benefits of DSM to the electrical power 
system as illustrated in Fig. 1. These enhancements have the potential to provide con-
siderable secondary advantages, such as decreased losses and premature aging (Cap-
pers et al. 2010).

To effectively reduce costs without the involvement of operators, a control system 
that selects the energy sources to power different loads according to the period of 
the energy demand is required. The most frequently used controllers in the literature 
to accomplish the aforementioned goal are programmable logic controllers (PLC), 
supervisory control and data acquisition (SCADA), building management systems 

Table 1 Smart grid component (Moreno Escobar et al. 2021)

S/N Classification Examples Remark

1 Smart Grid Network Topology NAN, SDN, IN, FAN, and WSN NAN, FAN AND THE SDN are widely 
used network topology

2 Smart Grid Technology Blockchain, Reinforcement Learn-
ing, Internet of Things, Machine 
learning, Data mining, Machine 
learning and neural training, Short-
term memory network, Power Line 
Communication Technology, Power 
electronics, Big data, Fog Cloud 
computing, Energy Storage, and 
Power Electronics Technologies

IoT and machine learning are the 
widely used smart grid technology

3 Encryption Multidimensional Data aggregation 
and Cognitive Risk Control

4 Current transmitted Yes and No

5 Data Transmission Yes and No

6 Applications AMI, SA, DA, DER, TP, AD and PP DER, AD, and PP are widely used

7 Connectivity Ethernet, PDH/SDH, WDM/DWDM, 
Fi-Wi/RoF/C-RAN Sensors 2021, 21, 
6978 6 of 41, 2G/3G/4G, 5G, MPLS, 
QoS, WSN

WSN is widely used with less 
emphasis on the 5G connectivity

8 Tools Time series Analysis, Regression 
Model

9 Protocols Applied Green-RPL, Local positive degree 
coupling, IEEE 802.11s, Web Of 
Energy, Dynamic Barrier Coverage, 
IEC61850, Wind-driven bacterial for-
aging algorithm, Data Slicing, TSUBE 
energy trading algorithm, Stochastic 
Geometry, Rectangular quadrature 
amplitude modulation, Policy-based 
group authentication algorithm, 
Mapping interface integration 
COIIoT, Nash Equilibrium (NE) and 
the Bayesian NE, Wireless sensor 
network protocol and Algorithmic 
Approach

Most of the work focused on green 
RPl
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(BMS), energy management systems (EMS), and automation systems (home automa-
tion systems, etc.) (Jabir et al. 2018).

Numerous studies have focused on the load control strategies used by DSM (Jabir 
et  al. 2018), the roles played by DSM in the electricity market (Morgan and Talukdar 
1979), the economic benefits of DS (Conchado and Linares 2012), the impacts of DSM 
on the commercial and residential sectors (Esther and Kumar 2016; Shoreh et al. 2016), 
the interactions between DSM and other smart grid technologies (Khan et al. 2015b), 
the business strategies used by DSM (Behrangrad 2015), the impacts of DSM on the reli-
ability of the power system (Kirby 2006), the optimization strategies used by DSM (Hus-
sain et al. 2015; Vardakas et al. 2014), and the load control strategies (Khan et al. 2016).

The electrical market has just entered a phase of transformation where one of the pri-
mary objectives is to lower peak demand while making the greatest use of all resources 
available. Over the world, incentives have been created to motivate consumers by 
offering them a range of monetary benefits and different power rates at different load-
dependent intervals. Dynamic pricing is an inherent aspect of the home energy sched-
uling problem in this situation since it encourages consumers to move their load from 
the on-peak to the off-peak period. Marginal cost, load pattern, social considerations, 
and the power utility’s capacity are the main variables utilized to define the energy tariff 
structure (Phuangpornpitak and Tia 2013).

All consumers must benefit from greater DSM effectiveness, which requires detailed 
consumer consumption data. With the advent of advanced metering infrastructure 
(AMI), utilities may collect all consumer consumption data, and various DSM programs 
may be developed depending on the data attributes. The scale, complexity, and unpre-
dictability of smart meter data are addressed for use in load forecasting and DSM sys-
tems. When implementing DSM, it is important to consider some important factors, 
including the load profile of an appliance, the integration of renewable energy, load 
categorization, constraints, dynamic pricing, consumer categorization, optimization 
techniques, consumer behaviors, problems with electricity data, enough knowledge, a 

Fig. 1 Benefit achieved by the DSM program (Cappers et al. 2010)
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solid framework, and smart grid technology with its intelligent applications (Khan and 
Jayaweera 2019).

As the load profile of appliances heavily depends on the stochastic behavioral patterns 
of consumers and the surrounding environment, developing a universal DSM optimiza-
tion method that works for all types of consumers is quite challenging. It is also difficult 
to develop a generic forecasting system that can accurately predict the power consump-
tion of various appliances for different users. Thus, the load profile of the consumers’ 
appliances plays a crucial role in the development of a consumer-specific optimization 
algorithm that takes into consideration their preferences for comfort (Sharda et al. 2021). 
Different appliances have different characteristics, power requirements, and operating 
styles. For DSM optimization, the right grouping of home appliances based on consumer 
preferences or behavior is essential. Survey techniques, bottom-up models, top-down 
models, and hybrid methods have all been explored to do accurate appliance forecasting. 
Nonetheless, it is believed that utilizing smart appliances and meters is the best option 
(Proedrou 2021).

The effectiveness of demand scheduling optimization depends critically on customer 
classification. Customers should be made active DR participants by ensuring their 
comfort which is done by arranging various appliances within their own time and tem-
perature ranges. likewise, customers may be grouped according to their behavior and 
demand (Liu et al. 2015). It is necessary to overcome consumers’ resistance to adopting 
and taking part in DSM programs, and this may be done by creating consumer aware-
ness initiatives that will urge customers to use the DSM system. Increased expenses for 
installing and maintaining control devices must also be taken into account. It is neces-
sary to address the impact of the accelerated development of storage systems brought on 
by the availability of cheap local storage. The majority of the increasing energy consump-
tion is caused by thermostatically regulated equipment. Hence, there is a lot of room 
for energy savings via effective management of these devices. The following suggestions, 
which were emphasized in Ming et al. (2015) may truly aid in overcoming the difficulties 
associated with DSM.

• The planning for the power sector and regional economic growth should all use 
DSM as a resource. To be properly implemented, rules, laws, and regulations need to 
be created by the governments and electricity grid businesses.

• It is important to gradually establish the DSM’s assessment and monitoring methods. 
It might be put into practice by constructing a post evaluation system for DSM, an 
expert committee and oversight mechanisms for DSM, an energy efficiency evalu-
ation system for performing energy inspections, and an analysis of the energy effi-
ciency criteria for electrical equipment. It is also necessary to promote the creation 
and improvement of relevant supporting policies for DSM.

To fulfill the expanding energy demand and reduce the rising  CO2 emissions, energy 
generation from renewable energy sources has become more crucial. Several DSM meth-
odologies are utilized to govern distributed energy resources, renewable energy resources, 
and storage devices to ensure the overall system operates as effectively as feasible. It is dif-
ficult to plan for optimal energy requirements since renewable energy sources and power 
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costs are unpredictable. Each operating location must be thoroughly analyzed to pinpoint 
the areas where natural capital provides notable advantages for certain types of renewable 
energy consumption. Several optimization techniques, such as mixed-integer linear pro-
gramming (MILP) (Erdinc et al. 2014), two-stage robust optimization (Liu and Hsu 2018), 
and heuristic optimization, have been proposed to enhance the scheduling of distributed 
energy sources (Luo et al. 2018). The ability of the electric vehicle to function as a battery 
energy storage system has also been researched for applications like vehicle-to-home (V2H) 
and vehicle-to-grid (V2G) (Erdinc et al. 2014).

An effective management system for scheduling various smart appliances and integrat-
ing renewable energy (RES) like solar, wind, distributed micro-generators, and energy stor-
age devices, including plug-in electric automobiles and batteries, may be offered to DSM 
to provide an optimal management system (Qureshi et al. 2021; Wang et al. 2019; Wu et al. 
2019). Electricity prices have a big impact on how much energy people use (Rahman and 
Miah 2017; Zhang and Peng 2017). But both the analysis and reshaping of the load profiles 
as well as the load market’s load patterns in SG may be handled by the DSM. This method 
lowers energy prices, carbon emissions, and grid running costs by lowering customer peak 
load demands. It also increases the system’s sustainability, security, and stability (Awais 
et al. 2015).

Numerous studies have been written about the DSM of SG, with the majority of them 
concentrating on distributed generation with renewable energy integration, optimal load 
scheduling of demand response (DR), and innovative enabling technologies and systems 
(Kakran and Chanana 2018; Lu et al. 2018). This paper reviews and examines carefully the 
DSM methods as well as the effects of distributed renewable energy generation and stor-
age systems on SG. These strategies, seek to lessen peak load demands and uphold a highly 
developed synchronization between network operators and customers. This paper major 
contributions is shown below:

• Challenges related to the full implementation of DSM in SG and their accompanying 
solution.

• DSM policy, techniques, and their applications to lessen peak demands and price of 
electricity.

• Recent trends of optimization techniques in the DSM.

The paper’s remaining section is shown as follows: The methodology used for this sys-
tematic DSM process and the existing work from the literature are also covered in depth 
in section “Methodology”. In section “The demand side energy management policies”, the 
DSM policy and related work done on these policies are examined. Section “Demand side 
management techniques” reviewed the DSM techniques extensively. The challenges related 
to the full implementation of DSM in SG are carefully examined in section “Challenges of 
DSM”. The future study is highlighted in chapter “Future work” with the concluding part 
shown in chapter “Conclusion”.
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Methodology
PRISMA stands for Preferred Reporting Items for Systematic Reviews and Meta-
Analyses. It is an evidence-based minimum set of guidelines meant to help sci-
entific writers publish different kinds of systematic reviews and meta-analyses. 
PRISMA focuses on the methods through which authors may ensure accurate and 
comprehensive reporting of this type of research (Cortese et al. 2022). The PRISMA 
standard superseded the previous QUOROM standard by demonstrating the high 
review’s quality, allowing review process replication, and allowing readers to assess 
the review’s benefits and drawbacks. It offers the replication of a systematic literature 
review that will completely examine all papers published on the issue to identify the 
answers to a clearly defined research question. To do this, it will choose the reports to 
be included in the review using a range of inclusion and exclusion criteria, and it will 
then summarize the findings (Sarkis-Onofre et al. 2021).

Any research project’s main emphasis is centered on three crucial elements: the 
purpose, the research technique, and the output with potential future application. 
The planning, executing stage, and reporting are the three stages of the evaluation 
stage that are used. What are potential solutions to the problems encountered when 
implementing DSM in the smart grid? was one of the research questions that were 
developed in the initial step of planning the literature study. Which optimization 
method has recently become popular in DSM? How do DSM’s policies and methods 
affect peak demands and power costs in their use? The goal of the present research is 
to address these issues using the examined literature.

The second step of a systematic review, known as the “executing stage,” comprises 
the inclusive and exclusive criteria. Inclusive criteria give a full and in-depth assess-
ment of current research papers, and an academic database is employed for this 
study, which comprises IEEE Explore, MDPI, ACM Digital Library, Springer, Science 
Direct, Google Scholar, and Taylor and Francis. These databases include reputable, 
excellent peer-reviewed materials including journal articles, conference papers, and 
review articles. To incorporate relevant terms in a single search, boolean operators 
are utilized. For instance, keywords and synonyms are combined using Boolean oper-
ators like “AND” and “OR.”. Hence, any article matching the keywords “Demand Side” 
Management,” “Demand Response,” “Load categorization,” “Optimization methods,” 
“Customer classification,” and “Distributed Energy Sources integration.” will show up 
in the search results. An organized approach based on PRISMA is used to cover the 
published material from the last 10 years. Which provides a guideline with features in 
the form of a checklist to improve openness and clarity in reviews (Page and Moher 
2017) as shown in Fig. 2. Based on keyword searches of published articles during the 
last 10  years, we found 95,736 review papers in the chosen database that were all 
authored in English.

The Selection procedure was carried out based on the paper’s title, abstract, and 
English-written content. The publication should be published in an English journal 
or conference paper, feature a prominent DSM name, and make a significant contri-
bution to the DSM’s practical application. Articles are not excluded based on their 
citation records, as is the case with traditional reviewing processes, and publications 
found in a general database like Google Scholar were tracked down to the relevant 
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publishing journal and counted there rather than under Google Scholar to avoid 
duplicate entries. Parents or unpublished manuscripts are also excluded.

The final collection of papers is summarized, stored in Microsoft Word and Excel 
files, and then utilized in the R-Classify online tools, which help readers find the 
manuscript’s most important idea. In this last phase, the results are described 
together with any possible limits and prospective future study areas. The findings 
of earlier research on energy management systems are summarized in Table 2. The 
total number of works considered and cited in the final analysis is 255. Of the 255 
articles, 24 are peer-reviewed papers while the others are technical papers. The fol-
lowing details were obtained from each article included in this study: The DSM, 
demand response techniques, implementation challenges, customer-driven adop-
tion, methodology, approaches, and upcoming optimization work. Table 3 indicated 
the relationship between the existing and current studies.

Table 3 shows that most review works focused on DSM policy, DSM techniques, 
and optimization techniques, with little or no consideration for the remaining work. 
As a result, this paper thoroughly analyzes optimization techniques while also pro-
viding future directions to bridge these existing gaps.

Demand side management (DSM) is the concept of allowing users to monitor their 
energy consumption while taking peak energy demand into account. This continu-
ous monitoring and management of energy consumption aim to improve system reli-
ability while lowering energy costs. Many studies have been conducted on demand 
side energy management due to its enormous complexity (Li et al. 2018). The follow-
ing is a discussion of the principles, techniques, issues, optimization techniques, and 
future developments used in literature.

Fig. 2 Overview of an articles search strategy
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Table 2 An overview of existing work on energy management system

References Title of publication Main contribution(s) Year of 
publication

Saad et al. (2012) Game-theoretic methods for 
the smart grid: An overview of 
microgrid systems, demand-
side management, and smart 
grid communications

A thorough analysis of game 
theory’s use in smart grid 
systems that is adapted to 
the systems’ multidisciplinary 
nature and incorporates ele-
ments from power systems, 
networking, communications, 
and control

2012

Arteconi et al. (2012) State of the art of thermal stor-
age for demand-side manage-
ment. Applied Energy

In light of the features of DSM 
and their connection to various 
thermal storage systems, this 
study presents the state-of-
the-art of current uses of 
thermal storage for demand-
side management

2012

Gyamfi et al. (2013) Residential peak electricity 
demand response Highlights of 
some behavioral issues

The difficulties with voluntary 
demand reduction in the 
residential sector are reviewed 
in this article

2013

Gelazanskas and Gamage 
(2014)

Demand side management in 
smart grid: A review and pro-
posals for future direction

This article provides an 
overview of DSM and demand 
response (DR), and it also sug-
gests an innovative approach 
for reducing power consump-
tion by utilizing real-time 
pricing

2014

Muratori et al. (2014) Role of residential demand 
response in modern electric-
ity markets. Renewable and 
Sustainable Energy Reviews

In this work, market-related 
issues with contemporary 
electric networks are examined 
along with potential fixes

2014

Harish and Kumar (2014) Demand side management in 
India: action plan, policies, and 
regulations

The document provides an 
introduction to the technique, 
strategy, and concepts for 
implementing and promot-
ing DSM in India. A variety of 
obstacles and difficulties that 
must be solved for DSM in 
India to reach its full potential 
are also covered

2014

Warren (2014) A review of demand-side man-
agement policy in the UK

The authors of this research 
examine several definitions of 
DSM critically, as well as the 
impact of the EU and UK DSM 
policies

2014

Behrangrad (2015) A review of demand side 
management business models 
in the electricity market

The potential business models 
for energy efficiency (EE) and 
demand response (DR) in vari-
ous electrical market sectors 
were studied and assessed 
in this article. The investiga-
tion encompasses renewable 
energy correlation, DSM load 
control, and transactional 
features

2015

Khan et al. (2015a) HEMSs and enabled demand 
response in electricity market: 
An overview

The examination of HEMSs and 
DR programs in various circum-
stances is the main topic of this 
research, which also includes a 
look at several DR designs and 
models used in the smart grid

2015
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Table 2 (continued)

References Title of publication Main contribution(s) Year of 
publication

Zhou and Yang (2015) Demand side management in 
China: The context of China’s 
power industry reform

This paper provides a summary 
of the research on load-sched-
uling methods, residential DR 
applications, and DR systems 
for individual homes. The 
issues that are expected to be 
important research subjects 
regarding the residential DR of 
the smart grid are also empha-
sized and examined

2015

Samad et al. (2016) Automated demand response 
for smart buildings and micro-
grids: The state of the practice 
and research challenges

The purpose of demand 
response (DR) is discussed in 
this paper along with the archi-
tectural models, technological 
foundation, and communica-
tion and control protocols that 
are currently in use

2016

Zhang and Grossmann (2016) Enterprise-wide optimization 
for industrial demand side 
management

In-depth operational flex-
ibility modeling, production 
and energy management 
integration, decision-making 
at various time and space 
scales, and optimization under 
uncertainty are the main topics 
of the review

2016

Shoreh et al. (2016) A survey of industrial applica-
tions of Demand Response. 
Electric Power Systems 
Research

A thorough analysis of the 
uses and prospects for DR in 
the industrial sector, including 
any possibility for additional 
services

2016

Meyabadi and Deihimi (2017) A review of demand-side 
management: Reconsidering 
theoretical framework

This study compiles the 
terminology, classifications, 
and techniques related to the 
DSM approach that has been 
utilized in the literature

2017

Sharifi et al. (2017) A review on Demand-side tools 
in electricity market

Review of the energy market’s 
demand-side tools, load clas-
sification, difficulties with DSM, 
DR, purchase allocation, and 
bidding method

2017

Shareef et al. (2018) Review on home energy 
management system consider-
ing demand responses, smart 
technologies, and intelligent 
controllers

Examining HEMS with different 
DR applications, smart tech-
nologies, and load controllers

2018

Jabir et al. (2018) Impacts of demand-side man-
agement on electrical power 
systems: A review

The evaluation of numerous 
projects, methods, effects, 
dependability and new 
advancements with prospec-
tive advantages of the DSM 
of electrical power systems is 
presented in this study

2018

Shafie-Khah et al. (2019) A comprehensive review of the 
recent advances in industrial 
and commercial DR

Survey of the most current 
developments in industrial and 
commercial DR, obstacles, and 
problems

2019
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The demand side energy management policies
Energy Efficiency (EE), Demand Response (DR), and Distributed Energy Resources 
(DER) are three categories into which the strategies used to manage energy on the 
demand side are divided (Sharifi et al. 2017; Wu and Xia 2017).

Energy efficiency

Energy efficiency provides energy consumers with a comparable and superior service 
to lower the quantity of energy needed in an economically effective manner since these 
methods eliminate excessive power loss in the power network (Bukoski et  al. 2016). 
Among the energy-efficient tactics are shown by (Jabir et al. 2018).

• Using energy-efficient equipment and buildings, as well as promoting consumers’ 
energy-conscious behavior, to reduce energy usage. Typical instances are switching 
to energy-saving lights from incandescent bulbs and switching to variable-speed air 
conditioning from standard air conditioning.

Table 2 (continued)

References Title of publication Main contribution(s) Year of 
publication

Rajendhar and Jeyaraj (2019) Application of DR and co‐simu-
lation approach for renewable 
integrated HEMS: a review. IET 
Generation, Transmission & 
Distribution,

Interaction of smart grids, 
renewable energy, and HEMS. 
Techniques for controlling, 
communication protocol, 
methods for optimizing, the 
functioning of current HEMS, 
and their viability

2019

Vázquez-Canteli and Nagy 
(2019)

Reinforcement learning for 
demand response: A review 
of algorithms and modeling 
techniques

In this study, a machine learn-
ing technique called reinforce-
ment learning is examined for 
demand response applications 
in the smart grid

2019

Antonopoulos et al. (2020) Artificial intelligence and 
machine learning approaches 
to energy demand-side 
response: A systematic review

The purpose of this paper is 
to provide an overview of AI 
methods used in DR applica-
tions

2020

Sarker et al. (2021) Progress on the demand side 
management in smart grid and 
optimization approaches

This paper outlines the practi-
cal difficulties encountered 
when implementing DSM 
for IoT-enabled home energy 
management systems (HEMS)

2021

Panda et al. (2022) Residential Demand Side 
Management model, optimiza-
tion and future perspective: A 
review

This review, which was con-
ducted based on the relevant 
literature, focuses on modeling, 
optimization techniques, key 
goals, operational restrictions, 
key variables affecting overall 
system performance, and 
potential improvements to 
residential DSM operation

2022

Menos-Aikateriniadis et al. 
(2022)

A Review on Scheduling and 
Control Algorithms for Demand 
Response Provision

When taking into account dif-
ferent approaches, models, and 
applications, this study helps 
to provide a more comprehen-
sive knowledge of residential 
demand-side management

2022



Page 12 of 59Bakare et al. Energy Informatics             (2023) 6:4 

Ta
bl

e 
3 

Su
m

m
ar

y 
of

 c
om

pa
ris

on
 b

et
w

ee
n 

th
e 

cu
rr

en
t a

nd
 e

xi
st

in
g 

w
or

ks

Re
fe

re
nc

es
Ec

on
om

ic
 

be
ne

fit
 o

f 
D

SM

Po
te

nt
ia

l 
of

 D
SM

In
te

ra
ct

io
n 

be
tw

ee
n 

D
SM

 a
nd

 
SG

 te
ch

no
lo

gi
es

Bu
si

ne
ss

 
st

ra
te

gi
es

 in
 

D
SM

D
SM

 p
ol

ic
y

D
SM

 
te

ch
ni

qu
es

D
SM

 
ch

al
le

ng
es

O
pt

im
iz

at
io

n 
te

ch
ni

qu
es

Ro
le

 o
f D

SM
 in

 
th

e 
el

ec
tr

ic
it

y 
m

ar
ke

t

M
ac

hi
ne

 
le

ar
ni

ng
 

m
od

el

A
pp

lic
at

io
n 

in
 D

SM

Sa
ad

 e
t a

l. 
(2

01
2)

√
√

√

A
rt

ec
on

i e
t a

l. 
(2

01
2)

√
√

G
ya

m
fi 

et
 a

l. 
(2

01
3)

√
√

G
el

az
an

sk
as

 a
nd

 
G

am
ag

e 
(2

01
4)

√
√

M
ur

at
or

i e
t a

l. 
(2

01
4)

√
√

H
ar

is
h 

an
d 

Ku
m

ar
 

(2
01

4)
√

√
√

√

W
ar

re
n 

(2
01

4)
√

√

Be
hr

an
gr

ad
 (2

01
5)

√

Kh
an

 e
t a

l. 
(2

01
5a

)
√

√

Zh
ou

 a
nd

 Y
an

g 
(2

01
5)

√
√

√

Sa
m

ad
 e

t a
l. 

(2
01

6)
√

√
√

√

Zh
an

g 
an

d 
G

ro
ss

-
m

an
n 

(2
01

6)
√

√
√

Sh
or

eh
 e

t a
l. 

(2
01

6)
√

√
√

M
ey

ab
ad

i a
nd

 D
ei

-
hi

m
i (

20
17

)
√

√
√

Sh
ar

ifi
 e

t a
l. 

20
17

)
√

√
√

√

Sh
ar

ee
f e

t a
l. 

(2
01

8)
√

√
√

√

Ja
bi

r e
t a

l. 
(2

01
8)

√
√

√

Sh
afi

e-
Kh

ah
 e

t a
l. 

(2
01

9)
√

√
√

Ra
je

nd
ha

r a
nd

 J
ey

ar
aj

 
(2

01
9)

√
√

√
√



Page 13 of 59Bakare et al. Energy Informatics             (2023) 6:4  

Ta
bl

e 
3 

(c
on

tin
ue

d)

Re
fe

re
nc

es
Ec

on
om

ic
 

be
ne

fit
 o

f 
D

SM

Po
te

nt
ia

l 
of

 D
SM

In
te

ra
ct

io
n 

be
tw

ee
n 

D
SM

 a
nd

 
SG

 te
ch

no
lo

gi
es

Bu
si

ne
ss

 
st

ra
te

gi
es

 in
 

D
SM

D
SM

 p
ol

ic
y

D
SM

 
te

ch
ni

qu
es

D
SM

 
ch

al
le

ng
es

O
pt

im
iz

at
io

n 
te

ch
ni

qu
es

Ro
le

 o
f D

SM
 in

 
th

e 
el

ec
tr

ic
it

y 
m

ar
ke

t

M
ac

hi
ne

 
le

ar
ni

ng
 

m
od

el

A
pp

lic
at

io
n 

in
 D

SM

Vá
zq

ue
z-

Ca
nt

el
i a

nd
 

N
ag

y 
(2

01
9)

√
√

A
nt

on
op

ou
lo

s 
et

 a
l. 

(2
02

0)
√

√
√

√

Sa
rk

er
 e

t a
l. 

(2
02

1)
√

√
√

√

Pa
nd

a 
et

 a
l. 

(2
02

2)
√

√
√

√
√

M
en

os
-A

ik
at

er
in

ia
di

s 
et

 a
l. 

(2
02

2)
√

√
√

√

Cu
rr

en
t s

ur
ve

y
√

√
√

√
√

√
√

√



Page 14 of 59Bakare et al. Energy Informatics             (2023) 6:4 

• Enhancing and performing routine maintenance on electrical equipment by recover-
ing heat from waste, improving maintenance techniques, using contemporary equip-
ment with optimum designs, and implementing cogeneration.

• Increasing the efficiency of power transmission and distribution networks by utiliz-
ing distributed generation, advanced control systems for voltage regulation, three-
phase balancing, power factor correction, data acquisition and analysis in supervi-
sory control and data acquisition systems, and modern technologies such as low-loss 
transformers, gas installation substations, smart meters, fiber-optics for data acquisi-
tion, and high transmission voltages.

Demand response

Customers’ energy expenses are reduced through demand response, an optional altera-
tion to the load pattern in response to a change in the electricity tariff (Aghaei and Ali-
zadeh 2013). However, it may create inconvenience during appliance waiting periods. 
Price-based and incentive-based DR policies are the two categories. The split and subdi-
vision of the incentive-based DR are shown in Fig. 3. The emergency demand response 
(EDR) program, which pays users for voluntarily decreasing power during crises, and the 
direct load control (DLC) program, which enables the utility to remotely regulate cus-
tomers’ appliances to fulfill demand, are both components of the voluntary program. It 
should be emphasized that under the voluntary initiative, consumers who decide not to 
participate in energy adjustment will not suffer sanctions (Chen et al. 2014; Imani et al. 
2018).

Energy consumers who violate utility company rules under the mandatory program, 
which consists of the Interruptible Curtailable Service (ICS) and the Capacity Market 
Program (CMP), are fined (ICS). Another scenario is where the utilities set a prede-
termined load reduction that the capacity market participants must strictly adhere to 
maintain a balance between supply, demand, and system dependability. Interruptible/
curtailabe uses the emergency response paradigm to stabilize the system, but this para-
digm is different from the latter in that users are still required to participate despite the 
inconvenience involved (Aalami et al. 2010; Conteh et al. 2019).

The last component of the incentive basis for DR is the market clearing scheme, in 
which users that participate are compensated with load reduction profits. When 

Incentive base

Emergency 
DR Program

Direct load 
control 

Voluntary program Mandatory Market clearing 

Demand 
bidding 
buyback

Ancillary 
service 
market 

Capacity 
market 

program

Interruptible 
curtailable 

service

Fig. 3 Incentive based Demand Response (Aalami et al. 2019)
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attempting to balance energy output and consumption in a market clearing program, 
procedures like demand bidding/buyback (DBB) and auxiliary service market service 
(ASM) programs are utilized (Aalami and Khatibzadeh 2016). Large energy users, such 
as industrial and commercial customers, favored this strategy because it gave them a 
way to bargain for the cost of energy for the load they would be prepared to reduce dur-
ing a system outage. A negotiated quantity of load reduction with the related rates serves 
as the electric grid’s reserve energy in an ancillary service market program (Elma and 
Selamoğullari 2017; Yan et al. 2018).

Price-based DR is used to persuade energy users to participate in different electricity 
pricing signals with the aim of lowering energy usage. The primary goals of these regula-
tions are to reduce energy prices and shift demand away from peak times. Several signs 
related to power price are shown in Fig. 4.

The cost of producing energy at a certain time of day depending on consumer demand 
is reflected in the time of use (TOU). The price signal of TOU, which is broken down 
into on-peak, mid-peak, and off-peak times, is determined by demand and cost. It has 
the excellent benefit of being simple for customers to follow, comprehend, and arrange 
for their schedule demands. Countries including China (Zeng et  al. 2008), Ontario 
(Adepetu et al. 2013), Italy (Torriti 2012), USA (Faruqui and Sergici 2010) and Malaysia 
(Hussin et al. 2014) have implemented TOU after it was recommended in (Moon and 
Lee 2016; Vivekananthan et  al. 2014) to minimize costs and energy consumption pat-
terns in residential structures.

Critical peak pricing (CPP) is a price control signal that uses higher power charges to 
restrict energy usage at a peak time. It offers two time frames (the peak and off-peak). 
Customers were advised that CPP is granted on days that are predicted to have higher 
energy use in advance of this period. Since the system is not constantly subject to this 
constraint, CPP is not a daily DP, but it is also ineffectual at reducing energy costs and 
carbon emissions. Customers of energy have been urged to participate in DR via CPP, 
and significant energy and cost reductions have been noted (Kim et al. 2015; Yang et al. 
2016). Most especially in countries like North America (Faruqui and Sergici 2010) and 
Sweden (Renner et al. 2011).

Fig. 4 Price based Demand Response (Shewale et al. 2020)
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The real-time pricing (RTP) scheme is subject to frequent changes due to the util-
ity price signal, which is made available to consumers an hour or day in advance. It is 
difficult for the consumers to actively participate in it due to its high level of intricacy 
and the fact that there are two lines of communication between the parties. This pricing 
strategy is recommended by (Yoon et al. 2014a, b) as a way to increase system stability 
at a reduced cost and with favorable environmental impacts in a country like the USA 
(Yoon et al. 2014a, b).

When Inclined Block Rate (IBR) is paired with RTP or TOU, both price signals may 
be utilized. Customers’ energy use and electricity prices are connected, thus if energy 
consumption falls below a certain point, so will the price. The RTP and TOU pricing 
scheme works well in terms of energy cost and stability when the IBR is utilized to boost 
its efficacy (Zhao et al. 2013).

A fixed price is a form of pricing indication that is consistent throughout the day or 
season and is not negotiable. Fixed power pricing in a nation like Nigeria makes it almost 
difficult to actively engage in any suggested fixed tariff to reduce the cost of energy (Faria 
et al. 2013; Pan et al. 2014).

Distributed renewable energy

An integrated decentralized power generating system that is connected to the electri-
cal grid is known as a distributed energy resource (DER). With the increasing integra-
tion of DER into the grid, a variety of benefits and opportunities, including affordability, 
reliability, efficiency, power quality, and energy independence for the power system 
and its stakeholders emerge. The classification of DER into Distribution Generation 
(DG) and Electric Energy Storage is shown in Fig.  5. The DER is powered by convec-
tion and renewable energy sources (RES). Conventional energy sources including die-
sel, gas, microturbines, and combustion turbines still make up the bulk of the energy 
market despite their limited availability. These sources, nevertheless, are constrained by 
high production costs, transmission loss, anthropogenic climate change, the greenhouse 
effect, and acid rain (Bongomin and Nziu 2022).

Despite being stochastic in nature, intermittent, unexpected, and uncontrolled, renew-
able energy sources (RES) including solar, biomass, wind, solar thermal, geothermal, and 
small hydro turbines have grown to be a popular source of energy (Platt et  al. 2014). 
According to their storage concept, electrical energy may be transformed into mechani-
cal, electrochemical, electromagnetic, thermodynamic, and chemical energy. The pre-
sent energy storage methods, prices, guiding principles, benefits, and kinds of ESS 
applications can be found in Oskouei et al. (2022).

Demand side management techniques
As illustrated in Fig. 6, Demand Side Management (DSM) techniques for load shaping 
include peak clipping, valley filling, load shifting, strategy conservation, strategic load 
growth, and variable load shape (Macedo et al. 2015).

• Peak clipping is a concept used in poor countries to decrease the effect of peak 
demand during peak hours when the installation costs of additional power units 
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are prohibitive. This strategy simultaneously reduced demand and the peak time by 
directly reducing user appliance loads (Al-enezi 2010).

• Load shifting involves changing the demand for loads from peak hours to off-peak 
hours by applying filling and clipping strategies. The TOU and storage devices are 
used in this method with a constant level of total energy consumption (Chokpan-
yasuwan et al. 2015).

DER 

Renewable 
Energy

Convectional 
energy

Distribution 
Generation

Electric Energy 
Storage

Gas 
turbine

Reciprocating 
Engine

Small 
hydro 

Wind

Biomass

Solar 
thermal

Geothermal

PV

Micro 
turbine

Combustion 
turbine

Gas 

Diesel

Stationary EES Movable 
Electric 

Electrochemic
al

Mechanical 

Electric and 
magnetic

Chemical 

Thermal 

Plug EV

Hybrid EV

Battery 
EV

PHS, CAES 
&Flywheel

Lead acid, Ni-Cd, 
Ni-Mh, NaS, Li-ion 

SMES, 
capacitors & 

Latent heat & 
Sensible heat

Hydrogen fuel & 
synthetic natural 

Fig. 5 Classification of distributed energy resources (Oskouei et al. 2022)

Fig. 6 Demand side management techniques (Macedo et al. 2015)
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• To preserve system balance, valley filling requires a structure during off-peak times, 
especially when the average cost is lower than the load cost. This often occurs when 
a plant’s energy production is not fully used and its running expenses are minimal. 
Even if the peak demand is unaltered, this leads to an increase in total energy usage. 
By using thermal storage to apply this technology, system efficiency is greatly raised 
at a reduced energy cost.

• Strategic conservation reduces energy loss and consumption efficiency of seasonal 
energy consumption through technological change incentives. This technique is 
quite comprehensive and less considered as a technique in load management because 
it involves a reduction in sales that is not necessarily accompanied by peak reduction.

• Strategic load growth increases peak demand in a particular season by managing the 
seasonal energy usage and a drastic rise in both effect of the energy usage and peak 
demand is recorded. However, the utilities make use of a more intelligent system to 
meet their target, especially in the electrification of industrial and commercial heat-
ing processes.

• Flexible load shape uses load limiting devices to reduce energy consumption at the 
user’s end without affecting the actual system conditions, the utility interrupts the 
loads when necessary to reduce the peak demand and change the total energy con-
sumption.

This paper reports some of the work on demand side energy management strategies 
and takes into account the three main categories of energy consumers, namely residen-
tial (R), commercial (C), and industrial (I) energy users. As indicated in Table 4, certain 
authors in some of the examined works took into account all (A) energy users at once.

Challenges of DSM
Planning and managing decision parameters and operating constraints are necessary for 
the implementation of DSM and depend on several important factors, including the load 
profile of an appliance, the integration of renewable energy, load categorization, con-
straints, dynamic pricing, consumer categorization, optimization techniques, consumer 
behaviors, issues with electricity data, adequate knowledge, a reliable framework, tech-
nology-smart, and grid-intelligent appliances, appropriate control strategies, and these 
challenges encountered during the DSM’s deployment are briefly mentioned below:

Load profile of appliance

Smart appliances are an essential part of creating an accurate and efficient load manage-
ment system since they come with built-in communication sensors that can link with 
the smart meter to analyze their energy usage. This is accomplished by collecting ambi-
ent data and operating in accordance with the power and tariff parameters provided 
to them. To create a more precise and trustworthy system, the energy profiles of smart 
appliances must be taken into consideration during the deployment phase. A normal 
survey load profile may take the role of smart meters, although it is less accurate. If you 
are aware of every piece of equipment your clients use, setting up a DR program is easy. 
To assess load profile management, a survey of various energy consumers is conducted, 
with an emphasis on quality of service (QoS) (Pilloni et al. 2016). Similar in approach, 
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the authors (Vivekananthan et al. 2014) urge users to discuss their preferences for using 
controlled appliances and place greater emphasis on scheduling appliances according to 
time and preferences. According to a study published in (Yilmaz et al. 2019), the vari-
ables used to construct the experimental load profiles for 60 residential structures were 
consumer availability, occupant population, and age. The deployment of smart meters 
with specific devices, as well as the methodology for monitoring and analysis, are pre-
sented in Issi and Kaplan (2018), Teng and Yamazaki (2018). The writers in Yilmaz et al. 
(2020) investigate the major appliances that are responsible for this high energy con-
sumption at the designated time of day to lower peak demand to 38% by implement-
ing energy-efficient equipment. The stochastic ambient environment and user behavior, 
according to the currently available literature, make it challenging to develop a gener-
alized load profile optimization algorithm that can accurately predict the energy con-
sumption of various electrical appliances for various consumers.

In conclusion, compared to the usage of smart appliances and smart meters, load pro-
filing assessment techniques like surveys, questionnaires, bottom-up, and top-down 
approaches are less technically complex, accurate, and time-consuming. However, per-
forming this assessment comes at a far higher cost. By using the data produced by these 
smart devices, stakeholders may have a better knowledge of how they consume electric-
ity. This is a crucial tactic to raise the power grids’ dependability and effectiveness.

Renewable energy integration

Since the use of renewable energy sources (RES) in the current power system seems to 
have a bright future, it is one of the factors considered while using DSM. Integration 
is very difficult, although encouraging, it may sometimes be irregular and intermittent 
(Elma et  al. 2017). But in order to deal with the problems of power instability, power 
quality, and reliability brought on by RES’s intermittent nature, battery energy storage 
systems (BESS) are especially helpful (Elma et al. 2017). To address these difficulties, four 
battery consumption management techniques using centralized, decentralized, and dis-
tributed control structures have been investigated (Worthmann et al. 2015). The authors 
in (Yao et  al. 2015) suggested an autonomous energy scheduling strategy to solve the 
problem of voltage escalation in HEMS. The DSM has recommended the optimal charg-
ing methods for plug-in electric cars (PHEV) and BESS to reduce the peak load demand 
(Mou et al. 2014). To assess how well the system uses its batteries, two metrics of battery 
efficiency factor and utilization factor have been created. It has been shown that system 
operating costs may decrease as battery efficiency increases (Nguyen et al. 2014). Since 
RES is rapidly evolving into one of the fundamental elements of DSM, it is imperative to 
develop cutting-edge optimization solutions for efficient load scheduling with the lowest 
cost while maintaining customer satisfaction.

By reducing system strain, which lowers the likelihood of power outages, diversifying 
the generation mix, and possibly improving power quality, it can be deduced from the 
literature that the integration of renewable energy can increase power network reliabil-
ity. Moreover, it may help countries with climate change mitigation, energy cost reduc-
tion, and improving resistance to price volatility. Decentralized energy production, less 
environmental impact, and improved energy security are advantages of RES in DSM 
(Dincer and Bicer 2020). Yet, because the efficiency is lower than that of the conventional 
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energy grid, synchronizing energy production and consumption is a significant issue for 
the energy sector. Nonetheless, the development of batteries has positively impacted the 
aforementioned constraint. The cost of production and the quantity of space needed for 
the use of this various energy are further barriers to the full integration of RES (Basit 
et al. 2020).

Load categorization

Electrical appliance classification is vital for efficient load management. These electrical 
loads may be categorized according to three standards:

• Based on the appliances’ time of operation (Puente et al. 2020).
• Based on power rating of appliances (Kim and Lee 2019).
• Based on appliances’ total energy consumption (Ibrahim et al. 2023).

Deferrable and nondeferrable operated appliances make up the first standard’s loads, 
adjustable and nonadjustable operated appliances make up the second standard’s load, 
and basic and heavy operated appliances make up the third standard’s loads. It is impor-
tant to note that there is presently no approved worldwide classification system for home 
appliances (Leitao et al. 2020). It should be noted that despite writers using the catego-
rization suggested in Beaudin and Zareipour (2015), there is still no agreement on the 
appliances that belong to each group.

The literature classifies various smart home appliances based on user comfort and 
classification clarity. For scheduling home appliances, authors in the literature have used 
their own classification. Faisal et  al. classified fifteen appliances as interruptible, non-
interruptible, or base appliances. Among the interruptible appliances are the vacuum 
cleaner, sensors, PHEV, dishwasher, stove, microwave, and other intermittent loads. The 
clothes washer and spin dryer are non-interruptible appliances, while the oven, TV, PC, 
laptop, radio, and coffee maker are basic appliances (Faisal et al. 2019).

Shuja et  al. classified fifteen appliances as shiftable, non-shiftable, or fixed. Water 
pumps, water heaters, vacuum cleaners, dishwashers, steam irons, air conditioners, 
and refrigerators are all shiftable appliances. Washing machines and tumble dryers are 
non-shiftable appliances, while TV, oven, desktops PC, blender, laptops, and ceiling 
fans are fixed appliances (Shuja et al. 2019). Thirteen smart home appliances were uti-
lized (Rahim et al. 2016b), including eight shiftable and five non-shiftable items. Shift-
able appliances include an air conditioner, clothes dryer, washing machine, dishwasher, 
refrigerator, coffee maker, water heater, and space heater, whereas non-shiftable appli-
ances include a fan, lamp, iron, toaster, and microwave oven. Abbasi et al. utilized eleven 
items divided into three categories: fixed appliances, shiftable appliances, and interrupt-
ible appliances. Fixed appliances include a lamp, oven, blender, and coffee maker. Shift-
able appliances include the clothes dryer, washing machine, and dishwasher, whereas 
interruptible appliances include the water heater, iron, vacuum cleaner, and space heater 
(Abbasi et al. 2019). Eight shiftable appliances (dishwasher, refrigerator, air conditioner, 
clothes dryer, water heater, coffee maker, space heater, dishwasher) and six non-shifta-
ble appliances (fan, light, blender, clothes iron, oven, and vacuum cleaner) were utilized 
(Rahim et al. 2018).
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Deferrable and nondeferrable operated appliances

The time of operation of a deferrable appliance can be stopped, and restarted at other time 
slots. This is simply subdivided into interruptible and non-interruptible operated appli-
ances (Abideen et al. 2017; Li et al. 2017).

• Interruptible operated appliances may be stopped, interrupted, and resumed for a brief 
time without affecting the quality of the energy services provided, provided that it is 
completed before the deadline. Air conditioners, electric heaters, cold appliances, and 
hybrid electric automobiles are a few examples of interruptible operated equipment 
(PHEV). These appliances are also referred to as adjustable, shiftable, thermostatically 
controlled, and limitable operated equipment. These loads may be scheduled using a 
demand response system. Depending on the cost of the power or a financial incentive, 
they might be shifted from peak to off-peak hours, which will reduce the demand for 
peak load.

• Non-interruptible operated appliances must finish their scheduled operation within 
a certain time frame. Non-interruptible appliances, also known as regular, fixed, non-
adjustable, and non-controllable operated appliances, include lighting and kitchen sys-
tems. These loads are unsuitable for DR programs since they do not permit a time shift 
or interruption.

Adjustable and nonadjustable operated appliances

Most thermal loads are examples of adjustable operated appliances since they may be set to 
a lower level. These kinds of loads may actively take part in DR programs by reducing their 
total energy usage in line with energy pricing and financial incentives. However, it’s crucial 
to be informed that the DR software employed for these sorts of devices might make you 
uncomfortable while you wait. The overall consumption for non-adjustable loads is fixed 
(e.g., TVs and computers). An algorithm for demand response cannot plan for non-deferra-
ble or non-adjustable loads (Li et al. 2017).

Basic and heavy operated appliances

An electrical appliance’s rating decides which categories it will fall under. Appliances with 
simple operating systems are those that use less energy. Lighting systems, televisions, lap-
tops, and other basic operated appliances are just a few examples, and they hardly ever take 
part in DR programs. In contrast, appliances that require a lot of power consumption are 
more likely to be included in DR programs. The heavily operated appliances include things 
like air conditioners, electric cookers, and washing machines. The control of various appli-
ances, particularly thermostatically controlled loads like air conditioning systems and elec-
tric water heaters, has already been the subject of several studies created by various authors 
(Du and Lu 2011; Goh and Apt 2004; Ibrahim et al. 2023; Ilic et al. 2002; Pedrasa et al. 2010).

Constraint

The scheduling optimization problem involves many constraints. These restrictions 
apply to the system level as well as the appliance level. The restrictions listed below are 
addressed:
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• Electrical demand supply balance (Tasdighi et al. 2013):

The balance between the need for and supply of electricity at any given hour is 
shown in the equation below, which also accounts for power from batteries and the 
grid, load shifting, and both shiftable and non-shiftable load demands. Without con-
sidering load shifting

Considering Load Shifting

• Temperature constraints (Tasdighi et al. 2013):

In this case, it is necessary to schedule thermostatically controllable loads (TCLs) 
with the understanding that the water and room temperatures must be maintained 
within a certain range.

The water temperature at the outlet is given as:

The HVAC room temperature is given as:

• Battery constraints (Huang et al. 2016):

The manufacturer’s recommended range for battery level maintenance should be 
followed. As a result, the following constraints are put in place

Battery maximum charging and discharging power limit can be represented as:

• Charge and discharge rate constraints for Electric vehicles (Zhao et al. 2012)

(1)Pgrid(t)− Pbat(t) = De(t)

(2)Pgrid(t)− Pbat(t) = Dnsh(t)+

n=1

Nsh

Dn
sh

(3)Tmin
≤ T ≤ Tmax

(4)Tmin
outlet ≤ Ti

outlet ≤ Tmax
outlet

(5)Tmin
room ≤ Ti

room ≤ Tmax
room

(6)SoCmin(t) ≤ SoC(t) ≤ SoCmax(t)

(7)SoC(t) =
Et
bat

E
cap
bat

(8)0 ≤
Pch
bat(t)

ηch
≤ Pch

max

(9)0 ≤ Pdch
bat (t).ηch ≤ Pdch

max
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Electric vehicles (EVs) are supposed to be charged and discharged at residential 
locations in this scenario. When parked at homes, EVs are typically wired into the 
residential metering systems.

During the charge cycle:

During the discharge cycle:

• Grid constraints (Wong 1991):

Each time slot’s energy import from the grid must be upper bound by a predeter-
mined limit to avoid overloading the utility.

• User comfort-enabling constraints (Tamilarasu et al. 2021):

The wants and satisfaction of the users are given precedence in various circum-
stances. Certain limitations must be met to guarantee that the optimization process 
moves forward without significantly sacrificing comfort

Total daily load requirement:

Instantaneous power demand:

Idle constraint:

• Phase wise energy requirement of appliances (Sou et al. 2011):

Since controllable appliances such as washing machines, and dishwashers have dif-
ferent power requirements at each operation cycle. This limitation guarantees each 
appliance’s operational cycle gets adequate energy for its functioning

• Power safety (Sou et al. 2011):

(10)0 ≤ Pch(t) ≤ Pmax(t)

(11)0 ≤ Pdch(t) ≤ Pmax(t)

(12)0 ≤ Pgrid(t) ≤ Pmax
grid (t)

(13)dr =

24∑

i=1

n∑

r=1

Sr(i)

(14)
24∑

i=1

n∑

r=1

D1(i)r =

24∑

i=1

n∑

r=1

D2(i)r

(15)PDi ≤ PDmax∀i ∈ [1, 24]

(16)Sr(i)∀i < st, i > et and i ∈ [1, 24]r ∈ [1, n]

(17)
m∑

k=1

Pk
ij = Eij,∀i, j
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This constraint places a maximum on the total energy allotted during any period, 
requiring that it always be less than the maximum energy from the grid.

• Prioritization of appliance constraints (El-Metwally et al. 2006):

In this instance, the DSM optimization places a focus on the appliance priority. A pri-
ority index (PI), which is inversely proportional to the appliance’s load factor and pro-
portionate to the peak demand of the appliance, is used to classify the loads

• Up time required to finish a task (Paudyal and Ni 2019; Tasdighi et al. 2013):

When an appliance is switched on, it shouldn’t be shut off until the associated task is 
finished, for example, a dishwasher

where Wn(t) is the operation state of nth shiftable load at a time (t) 1: on, 0: off and TOPn 
is the number of nth shiftable load’s time of operation.

• Operation ordering of appliances (Paudyal and Ni 2019; Tasdighi et al. 2013):

The maintenance of the appliance’s operational ordering should be ensured. For 
instance, it is best to use the dryer after the washing machine has done its work. If shift-
able load m is activated after shiftable load in such a scenario:

Dynamic pricing

Another element that exacerbates DSM challenges is dynamic pricing. One of the main 
goals of the reform of the energy market is to lower peak demand while increasing the 
use of all resources. Through various incentives provided by the utilities, customers are 
encouraged to participate in different dynamic pricing schemes. Since dynamic pricing 
encourages consumers to transfer their load from peak to off-peak periods, the schedul-
ing issue for home energy usage must be addressed in this situation. The key elements 
influencing the structure of the electricity tariff are marginal cost, load pattern, societal 
considerations, and the profitability of the power company (Phuangpornpitak and Tia 
2013). Numerous pricing strategies have been used, as can be shown in Fig.  6 to bal-
ance the supply and demand for energy. To preserve customer happiness and boost the 
system’s overall cost efficiency, advanced optimization algorithms must be developed to 
allow efficient energy consumption scheduling in addition to the reduction of dynamic 
tariffs (Panda et al. 2022).

(18)
N∑

i=1

m∑

j=1

Pt
ij ≤ Pmax

grid (t),∀i, j

(19)PI ∝
Pmax

loadfactor

(20)
Wn(t)+Wn(t+1)+....+Wn(t+TOPn−1) ≥ (TOPn−1)(Wn(t−1)−Wn(t−2)),∀t ∈ tn

(21)startm ≥ startn + operating_durationn + gap
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Customer categorization

A thorough examination of numerous consumer categories may aid in a better under-
standing and design of DR. The customers are divided into four categories including the 
residential, commercial, industrial, and transportation sectors. In any of these catego-
ries, transportation is not a key problem for DR.

The residential sector is more challenging because of the diverse appliance consump-
tion patterns, consumer dispersion, and individual user preferences. This suggests that 
rather than treating customers equally, each one is treated differently. Because the load 
profile and appliance use data are not readily available, DR adoption for industrial cli-
ents is quite challenging. Even with access to this data, the activities’ dependency on 
time makes it difficult to change energy use. Commercial users’ energy profiles may be 
modified with ease if they are identical. The most commonly used equipment, including 
air conditioners, heaters, ventilators, and lights, may be managed in line with the estab-
lished specifications. It is crucial to remember that the DR is simple to deploy in the 
commercial and industrial sectors, allowing the system to react to DR fast.

Consumer behaviors

Some customers don’t respond well to price changes and it is unclear how people will 
respond to these programs. Customers have a variety of reactions to the price of electric-
ity, and these reactions can be categorized as extremely flexible and unassuming behav-
ior (Sharifi et  al. 2017). Although there are many ways to implement DR and it offers 
many advantages, if the end user encounters any kind of difficulties, they may become 
disillusioned and leave the program or demand more money or incentives (Duncan and 
Hiskens 2011). The motivations behind these difficulties posed by each consumer’s deci-
sion to install microgeneration in their home are examined by the authors (Balcombe 
et al. 2014). They assert that inconveniencing people can prevent them from adopting 
technology.

The study by (Balcombe et  al. 2014) does highlight an important aspect of end-use 
customers, namely that financial considerations are frequently more important than a 
desire to contribute to environmental change, even though micro-generation is a distinct 
but related problem. It is important to emphasize the importance of financial motiva-
tions, particularly in light of the high level of uncertainty previously mentioned regard-
ing the potential financial benefits of enrolling in a DR program. The possibility is raised 
in (Boisvert and Neenan 2003), and raises a related financial concern, that the electricity 
bill savings from customers may not be sufficient to support equipment investment and 
make up for the inconvenience of continuously monitoring electricity prices when they 
may only need to react in exceptional circumstances. Naturally, this will depend on the 
type of software being used and the required level of customer interaction.

There will be little interest in DR if financial considerations are the primary factors 
influencing the adoption of DR programs and it is demonstrated that consumers will 
not be able to save money on their future power bills or recover their initial invest-
ment in DR technology. This dissuades people from using DR programs extensively. 
Despite receiving feedback on their energy use from in-home displays, most study 
participants continued with their regular routines and habits, according to research 
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published in (Herrando et al. 2014). This is a great example of unanticipated or pos-
sibly irrational customer behavior, a challenge that needs to be taken into account 
when evaluating the DR implementation.

This study also emphasizes the importance of promoting greater DR knowledge 
and giving consumers the right information about DR programs for them to make 
informed decisions. As a result, utility companies won’t frequently send the DR 
resource (Cutter et al. 2012). This is a crucial factor to take into account when esti-
mating the resource’s worth. It is crucial to take into account when estimating DR 
resources because it is connected to the traits and physical composition of electrical 
loads.

The main challenges are recognizing and properly accounting for the DR resource’s 
limitations as a result of end-user behavior and preferences in DR deployment. Under-
standing the variables that affect customers’ choices to accept or reject a DR program, 
as well as how these restrictions are reflected in the assessment study, is essential. Rec-
ognizing the potential effects that unanticipated consumer behavior may have on the 
DR features is essential as it successfully manages it throughout the evaluation process 
(Nolan and O’Malley 2015). Overall, different lifestyles and household activities have 
a significant influence on how much energy is used since it is predictable. Both long- 
and short-term trends are easily predicted. Participants reduce their electricity bills and 
Non-participating users may also save money since the programs shift power consump-
tion from times when demand is highest to times when energy is least expensive.

Optimization techniques

Numerous optimization strategies have been used to address the problems related 
to energy management. However, demand-side optimization methods are further 
divided into deterministic, stochastic, and hybrid approaches as illustrated in Fig. 7.

The goal of this method of optimization is to find a universally optimal solution by 
using the analytic properties of the problem. It is also important to note that as the prob-
lem constraint shrinks, the likelihood of discovering global solutions increases, as well 
as the assurance of the quality of the optimal solutions attained. Linear programming 
(LP) (Erol-Kantarci and Mouftah 2011; Zhu et al. 2012), nonlinear programming (NLP) 
(Althaher et  al. 2015), gradient base (GB) (Huang et  al. 2015), Lagrangian algorithms 
(Boyd; Gatsis and Giannakis 2011), Lagrange–Newton (Dong et al. 2012), interior point 
method (Samadi et al. 2012) and Lyapunov techniques (Guo et al. 2012), and mixed inte-
ger nonlinear programming (MINP) (Behrangrad et al. 2010) are few examples of deter-
ministic methods used in energy management to reduce the amount of electricity used.

Zhu et  al. (2012) proposed an integer LP system to schedule electrical appliances, 
together with power sources and operating time, in accordance with user preferences to 
decrease peak loads. Similarly to this, Wang et al. developed the ideal dispatching model 
for a smart HEMS with distributed energy resources and smart home appliances using 
the MINLP methodology (Wang et al. 2012). The cost of electricity and total energy used 
are both decreased. Due to consumers’ unexpected, impulsive, non-linear, and complex 
energy usage behaviors, the MINLP was unable to regulate some appliances. Existing 
work on Deterministic Optimization Techniques is shown in Table 5.
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Stochastic approach

The stochastic method is an iterative algorithm that makes use of the unpredictable 
nature to identify the optimal solution from the parent solution. It employs a variety 
of techniques to the problem in an attempt to identify the best answer conceivable 
because of the high dimensional nonlinear objectives issue; however, unlike the deter-
ministic method, the optimal solution is not guaranteed. Even though the problem 
where determinism methods have several local solutions, its singularity makes it a 
powerful tool in engineering. This approach is broken down into heuristic, meta-heu-
ristic, and artificial intelligence categories in Fig. 7.

Every strategy has advantages and disadvantages that vary depending on the opti-
mization problems. Because of this, there isn’t a perfect answer to every optimiza-
tion problem. The fundamental weaknesses and advantages of each random method 
examined in this work are summarized in Table 6. A fuzzy inference system (FIS) is 
recommended by Hasaranga et  al. (2017) for the management of an energy storage 
system that utilizes renewable energy sources and a storage unit. Comparison with 
a rule-based control method demonstrated the recommended system’s efficiency in 
lowering fluctuation and prolonging the lifetime of energy storage devices (ESS).

Optimization 
techniques

HybridStochasticDeterministic

Meta-
heuristicHeuristic

Bio 
inspired

Linear 
program

Physics 
inspired

Swarm 
basedEvolutionary Plant 

based

Artificial 
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Non linear
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GF

TS 

DP

HS
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ANFIZ

HGWD

BPSO

GAPSO

RL
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ANN

TPO GA
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DE

BA
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SFL
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Fig. 7 Optimization techniques
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Ambreen et al. published a heuristic technique for cost, PAR, and the load reduction 
in the smart grid in 2017. The recommended algorithms provide the appliances in a 
home with the best schedule possible, Cost savings, reduced PAR, and user comfort are 
all obtained when appliances are designed. Costs are cut by 52% using GA scheduling, 
while PAR is cut by 23% (Ambreen et al. 2017). Hsu et al. developed a DPbased opti-
mization strategy to reduce the system’s energy-producing costs for the DLC dispatch. 
As a consequence, the dispatch DLC approaches and the unit commitment issue were 
integrated, and a DP strategy was developed to address both issues (Hsu and Su 1991).

A model predictive control strategy based on weather forecasts is offered to reduce the 
amount of energy required and improve the utilization of renewable energy sources for 
energy management in residential microgrids. The established MPC control approach 
is based on a constrained optimal control problem for a certain time horizon. The pro-
posed approach was contrasted with conventional rule-based control logic. Primary 
fossil energy usage has dropped by 14.5% on average while home comfort levels have 
increased (Bruni et al. 2015).

Noor et  al. proposed a GTA technique for a demand-side management model that 
includes storage components in distinct research. In addition to reducing the peak to 
average ratio for the benefit of the electric grid, the suggested model can smooth out 
dips in the demand profile caused by supply restrictions. This was decided by every 
player who took part, their strategies, and the awards they received. Customers are the 
participants in this strategy, and the reward is determined by the lowest cost (Noor et al. 
2018).

For a variety of consumer loads, BFO was used to reduce peak load and energy expen-
ditures by 7% and 10%, respectively. This method outperforms earlier evolutionary 
algorithms for controlling controlled devices (Priya Esther et al. 2016). Similarly to this, 
Bharathi et al. recommend combining GA with an appropriate load shifting technique to 
reduce and reconfigure the load needs of all sorts of energy consumers (Bharathi et al. 
2017). Based on TOU and IBR, Rahim et al. employed ACO to decrease energy usage 
at the residential load. The recommended approach may dramatically lower peak load, 
PAR, and energy expenditures without affecting customer satisfaction (Rahim et  al. 
2016a).

Mahmood et  al. recommended a HEMC model to control the scheduling of appli-
ances, lowering user comfort, PAR, and electricity costs. However, energy is wasted sig-
nificantly when appliances are used unnecessarily, and environmental concerns are also 
disregarded (Mahmood et al. 2016).

Another study advises evaluating a HEMS’s ability to control its energy expenses using 
GWO and BFO. These proposed techniques resulted in 45% and 55% energy reductions 
respectively (Barolli et al. 2020). Furthermore, (Elmouatamid et al. 2020) evaluated the 
performance of a HEMS by using three meta-heuristic optimization techniques and the 
HS, BFO, and EDE algorithms. Existing work on Stochastic Optimization Techniques is 
shown in Table 7.

Another sub-category of stochastic optimization techniques worth discussing due to 
its constantly evolving field is machine language. Machine learning (ML) is an evolving 
branch of computational algorithms that are designed to emulate human intelligence by 
learning from the surrounding environment. They are considered the working horse in 
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the new era of the so-called big data, which has been used to address different issues in 
DSM as shown in Table 8 (Antonopoulos et al. 2020). The main types of machine learn-
ing are supervised learning, unsupervised learning, and reinforcement learning as stated 
(Murphy 2012). Figure 8 shows the subtypes of machine learning used in DR.

Supervised machine learning (SML) is the task of generating meaning from labeled 
training data that includes a set of training examples. In supervised learning, each 

Table 8 Application of machine learning in DSM

References Approach Objectives

Forecasting Power 
consumption

Consumer 
comfort

Appliance 
control

Cost reduction

Price Load

Giovanelli et al. 
(2017), Pal and 
Kumar (2016), 
Yang et al. (2018)

Support Vector 
Regression (SVR)

√ √

Weng and 
Rajagopal (2015), 
Weng et al. (2018)

Gaussian process 
regression

√ √

Tang et al. (2018) Linear regression 
forecast

√ √

Bina and Ahmadi 
(2015a, b)

Gaussian Copulas √ √ √ √

Mekhilef et al. 
(2012), Simmhan 
et al. (2013), Yang 
et al. (2018)

Tree-based √ √

Goubko et al. 
(2016)

Bayesian learning √

Cao et al. (2013) K-means, √

O’Neill et al. 
(2010), Wen et al. 
(2015)

Q-learning √ √ √

Patyn et al. (2018), 
Ruelens et al. 
(2014), Xu et al. 
(2016a)

Use Fitted 
Q-iteration (FQI)

√ √

Fig. 8 Machine language used in DSM (Antonopoulos et al. 2020)
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example is a mainstay that contains an input object (typically a vector quantity) and an 
enforced output value (may also be referred to as a supervisory signal) (Praveena and 
Jaiganesh 2017). The authors in Giovanelli et al. (2017), Pal and Kumar (2016), Yang et al. 
(2018) proposed Support Vector Regression (SVR) to forecast the price of energy. This 
technique is also used for short time load forecasting for non-aggregated loads (Zhou 
et al. 2016).

Unsupervised machine learning (UML) approaches are very beneficial in description 
tasks because they try to discover links in a data structure without requiring a quan-
tifiable output. Because there is no response variable to oversee the study, this kind of 
machine learning is referred to as unsupervised (Gareth et al. 2013). Cao et al. exam-
ine the clustering of 4000 households from the Irish CER dataset over 18 months using 
K-means, SOM, and hierarchical clustering algorithms with various distance calcula-
tions based on the 17 most significant PCA components (Cao et al. 2013).

Reinforcement learning (RL) is the task of determining how agents should perform 
actions in a given environment to maximize cumulative rewards. Q-learning is com-
monly used at the HEMS level to optimize appliance scheduling by using cost and user 
comfort as reward functions (O’Neill et  al. 2010; Wen et  al. 2015). O’Neill et  al. con-
sider pre-specified disutility functions for customers’ dissatisfaction with job scheduling 
(O’Neill et al. 2010), but Wen et al. address this limitation (Wen et al. 2015). A state in 
this context is made up of a price sequence from the retailer or aggregator, a vector that 
reflects the user’s consumption of specific appliances over time, and sometimes the pri-
ority of the considered device.

Hybrid approach

The hybrid approaches have been used in numerous engineering applications to get 
beyond the drawbacks of each optimization strategy and enhance their efficacy and 
accuracy to give a greater performance of the system (Tsipianitis & Tsompanakis). Sev-
eral of the hybrid approaches used in DSM are briefly described below:

First, the teacher and learning-based optimization (TLBO) and the shuffling frog leap 
(SFL) methods of optimization are recommended. In this concept, the load is separated 
into three categories: shiftable, sheddable, and non-sheddable loads. The recommended 
strategy aimed to bring down the cost of electricity. This research employs ToU, RTP, 
and CPP as three alternative pricing models. The findings demonstrated that the rec-
ommended approach was successful in reducing consumption costs (Derakhshan et al. 
2016).

Rahim et al. (2016a, b) investigated the efficacy of binary particle swarm optimization 
(BPSO), ant colony optimization (ACO), and genetic algorithm (GA). Lowering power 
prices and the peak-to-average ratio (PAR) while taking into consideration RESs and 
storage systems is the main objective of the proposed effort (Rahim et al. 2016b).

However, the validation results showed that GAPSO performed better than GA 
and BPSO in terms of cost and discomfort, lowering peak power use by 7.8532% and 
27.7794%, respectively. While GA and BSPO reduced the cost of energy consumption by 
24.0470% and 29.9702%, respectively, while GAPSO decreased peak power consumption 
(PAR) by 36.39%. While needing the least amount of waiting time, GAPSO was able to 
reduce consumption expenses by up to 25.2923% (Javaid et al. 2017a).
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In Küçüker et al. (2017), a hybrid energy management strategy is proposed by using 
a hierarchical genetic algorithm (HGA) to alter the fuzzy inference system’s rule base. 
The fuzzy-HGA method seems to be more effective than the conventional fuzzy-GA 
approach, even with just 47% of the total rules in the rule base. By purchasing a more 
basic fuzzy logic controller, the entire control system can be implemented in real time 
on low-cost embedded electronic devices. A fuzzy logic-based EMS is presented in Pan-
war et al. (2017) to lower the fluctuations and peak powers of a grid-tied microgrid. In 
a similar line, the study (Pascual et  al. 2015) proposes the conventional fuzzy-genetic 
algorithm approach.

A hybrid power system for residential structures was the subject of an energy manage-
ment strategy developed by Zenned et al. (2017). When compared to buying electricity 
from the grid, this plan’s results show a decrease in energy use, however, the modeling 
fails to take energy costs into account (Zenned et al. 2017).

A nonlinear MPC approach is recommended (Merabet et al. 2016). Using a synthetic 
NN, the loading trough was estimated. Voltage stability may be maintained by regulat-
ing the battery state of charge (SOC) and planning the load. Grid Connected based MPC 
EMS is used to reduce energy expenses (Arcos-Aviles et al. 2017).

Javaid et  al. developed a hybrid genetic wind-driven (HGWD) technique to build a 
DSM controller for a residential area in an SG. The result shows that the HGWD algo-
rithm performed the best. By lowering the cost of power use by 33% and 10%, respec-
tively, when compared to the WDO algorithm and GA. To get the best results, the 
HGWD reduced user comfort by 40%, PAR by 17%, and electricity costs by 30% (Javaid 
et al. 2017b). A hybrid method that combines PSO and Gray wolf optimization (GWO) 
is suggested using day-ahead scheduling (Hussain et al. 2016).

The hybrid GA/PSO method (HGPSO) was introduced by Ahmad et  al. who also 
showed that it outperformed the GA, BPSO, BFO, and WDO algorithms. For the GA, 
BPSO, BFO, and WDO algorithms, the percentage of power bill decrease was 9.80%, 
19.50%, 15.40%, and 15.80%, respectively. Each algorithm’s percentage of PAR reduction 
was 14.09%, 3.30%, 22.10%, and 33.54%. The PAR and the electric cost were reduced by 
25.12% and 24.88% respectively by the HGPSO (Ahmad et al. 2017). In another inves-
tigation, the GA was put up against a more advanced PSO algorithm (IPSO). The peak 
load was reduced with the IPSO by about 30.26% while it was reduced with the GA by 
25.78% (Yang et al. 2015).

The simulation results show how efficiently the proposed algorithm GHSA minimizes 
user discomfort while decreasing PAR and power costs. The GHSA reduces the peak 
load at 3.73 kWh in contrast to the present heuristic methods (13.84 kWh). According to 
the findings, smart home (SH) expenses have been decreased by WDO, HSA, GA, and 
GHSA to 2.61, 1.72, 1.12, and 1.34 cents/h, respectively (Javaid et al. 2017b).

Manzoor et al. introduced the teacher learning genetic optimization (TLGO) method 
and compared it to the teacher learning-based optimization (TLBO) and GA for resi-
dential load scheduling with a day-ahead pricing scheme. Cost reductions of 31%, 31.5%, 
and 33% were produced by the GA, TLBO, and TLGO, respectively. User discomfort 
was lowest with TLGO when compared to GA and TLBO. User discomfort with the 
GA, TLBO, and TLGO had corresponding values of 2.37, 2.14, and 1.83 (Manzoor et al. 
2017).
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The hybrid algorithm known as the bat-crow search algorithm (BCSA) was developed 
by Javaid et  al. by combining a meta-heuristic bat algorithm (BA) and a crow search 
algorithm (CSA). Using the critical peak pricing (CPP) system for HEMS, they compared 
the outcomes of BCSA with BA and CSA in terms of the amount of power cost reduc-
tion. According to the findings of optimization, the BCSA algorithm lowered power 
expenses by 31.19%, while the BA and CSA cut costs by 28.32% and 26.70%, respectively. 
The description above suggests that hybrid algorithms perform better than single algo-
rithms because they are more adaptable and effective (Javaid et al. 2018). Existing work 
on Hybrid Optimization Techniques is shown in Table 9.

Future work
The majority of the review focused on thermal comfort and appliance waiting time to 
address customer satisfaction. The user’s experience at a DR event, their social comfort, 
and other social variables should be taken into consideration as they can boost user sat-
isfaction. It’s crucial to model EVs as both a load and a generator to make the most out 
of the system. Peer-to-peer trade between prosumers may result in flexible assets with 
lower costs. Most of the work that was examined represented EVs as interruptible or 
storage systems.

Fairness between users, standardization, and SG interoperability must be guaranteed 
while developing a DSM program. For the real-time synchronization and integration of 
security, safety, smart appliances, and monitoring, extensive research is needed to secure 
the security and privacy of customers’ data. In addition to this, the agencies, sharehold-
ers, and policymakers need to step up and enact new rules and policies to increase the 
trust of the public. A thorough evaluation of the technical, economic, and environmen-
tal performance of current and upcoming DSM systems is required. This is needed to 
compare DSM and conventional treatments fairly.

The convergence and computation times of DSM optimization problems are improved 
by the hybrid algorithms-based optimization models. However, while choosing an algo-
rithm to solve DSM optimization issues, other factors such as problem types (such as 
single- or multi-objective), optimization types (such as local or global), robustness, and 
accuracy should be taken into account.

As DSM, as previously said, enables both system operation and system development, it 
offers versatile advantages and value. However, the business case for DSM has not been 
well established since there are no tools for weighing costs and advantages. There is still 
a lot of work to be done in this area.

The primary system operating variables will often determine the DSM value’s size (i.e., 
the value of demand controllability). The system stress, or how close the system is to 
being loaded to its full capacity and hence needing reinforcement, should be taken into 
account in this situation. Even though it is often low in systems with significant spare 
capacity, the value of DSM will be high in system components that need reinforcement.

Conclusion
This paper provides a comprehensive analysis of the different technologies, approaches 
used in DSM as well as the impact of distributed renewable energy generation and 
storage technologies in SG. The main goal of these methods is to decrease peak load 
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demands and achieve advanced synchronization between network operators and cus-
tomers via the development and application of power-saving technologies, financial 
incentives, the price of energy, and government rules. This research thoroughly investi-
gated DSM implementation issues that must be overcome for DSM to be effectively inte-
grated into the SG with some proposed solutions, DSM optimization methodologies, 
and their related solutions, which were not included in the earlier review article. As a 
consequence, a comprehensive comparison of many algorithms used in DSM optimiza-
tion problems is provided in terms of a variety of factors such as energy cost reduction, 
PAR, waiting time, power scheduling, Voltage limitations, DR, risk management, client 
privacy, and carbon emission. We determined, after examining multiple DSM-based 
research, that a single strategy is not the best solution to handle the high complexity of 
the DSM optimization problem due to its poor performance and low convergence rate. 
As a consequence, hybrid algorithms may outperform single algorithms in terms of con-
vergence rate, complexity, noisy environment, imprecision, uncertainty, and ambiguity. 
Furthermore, these tactics may be improved in the future to improve SG’s efficiency by 
balancing supply and demand. Even though these current breakthroughs in the use of 
optimization techniques in DSM are widely known, extra research is undoubtedly neces-
sary to discover the optimal solutions in many real-world scenarios.

The power system’s functioning will become more difficult if corrective control is 
used. This is just another obstacle to the adoption of DSM. Yet, given that adaptability 
is increasingly seen as a key tool for coping with the unpredictability of future develop-
ments, together with the ongoing cost reductions of DSM technologies, it is anticipated 
that DSM will become noticeably more competitive in the near future. Increasing trust 
in the employment of DSM schemes for the provision of system security will benefit 
from the establishment of targeted trial schemes. This comprehensive review of DSM 
will assist all researchers in this field in improving energy management strategies and 
reducing the effects of system uncertainties, variances, and restrictions.

Abbreviations
SDN  Software-Defined Network
IN  Interdependent Networks
FAN  Field Area Networks
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AMI  Advanced metering infrastructure
SSM  Supply side management
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